1
|
Shin S, Kim D, Kim H, Cho WH, Kim G, Lee JK. Interaction of RECQL4 with poly(ADP-ribose) is critical for the DNA double-strand break response in human cells. FEBS Open Bio 2024. [PMID: 39462683 DOI: 10.1002/2211-5463.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
To overcome genotoxicity, cells have evolved powerful and effective mechanisms to detect and respond to DNA lesions. RecQ Like Helicase-4 (RECQL4) plays a vital role in DNA damage responses. RECQL4 is recruited to DNA double-strand break (DSB) sites in a poly(ADP-ribosyl)ation (PARylation)-dependent manner, but the mechanism and significance of this process remain unclear. Here, we showed that the domain of RECQL4 recruited to DSBs in a PARylation-dependent manner directly interacts with poly(ADP-ribose) (PAR) and contains a PAR-binding motif (PBM). By replacing this PBM with a PBM of hnRNPA2 or its mutated form, we demonstrated that the PBM in RECQL4 is required for PARylation-dependent recruitment and the roles of RECQL4 in the DSB response. These results suggest that the direct interaction of RECQL4 with PAR is critical for proper cellular response to DSBs and provide insights to understand PARylation-dependent control of the DSB response and cancer therapeutics using PARylation inhibitors.
Collapse
Affiliation(s)
- Sunyoung Shin
- Department of Biology Education, Seoul National University, Korea
| | - Dongmin Kim
- Department of Biology Education, Seoul National University, Korea
| | - Hyemi Kim
- Department of Biology Education, Seoul National University, Korea
| | - Won-Ho Cho
- Department of Biology Education, Seoul National University, Korea
| | - Gyungmin Kim
- Department of Biology Education, Seoul National University, Korea
| | - Joon-Kyu Lee
- Department of Biology Education, Seoul National University, Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Korea
| |
Collapse
|
2
|
Zhang Z, Samsa WE, Gong Z. NBS1 dePARylation by NUDT16 is critical for DNA double-strand break repair. Mol Cell Biochem 2024:10.1007/s11010-024-05140-8. [PMID: 39438373 DOI: 10.1007/s11010-024-05140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
NBS1, a protein linked to the autosomal recessive disorder Nijmegen breakage syndrome, plays an essential role in the DNA damage response and DNA repair. Despite its importance, the mechanisms regulating NBS1 and the impact of this regulation on DNA repair processes remain obscure. In this study, we discovered a new post-translational modification of NBS1, ADP-ribosylation. This modification can be removed by the NUDT16 hydrolase. The loss of NUDT16 results in a reduction of NBS1 protein levels due to NBS1 PARylation-dependent ubiquitination and degradation, which is mediated by the PAR-binding E3 ubiquitin ligase, RNF146. Importantly, ADP-ribosylation of NBS1 is crucial for its localization at DSBs and its involvement in homologous recombination (HR) repair. Additionally, the NUDT16-NBS1 interaction is regulated in response to DNA damage, providing further rationale for NBS1 regulation by NUDT16 hydrolase. In summary, our study unveils the critical role of NUDT16 in governing both the stability of NBS1 and recruitment of NBS1 to DNA double-strand breaks, providing novel insights into the regulation of NBS1 in the HR repair pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39221603 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wu CK, Shiu JL, Wu CL, Hung CF, Ho YC, Chen YT, Tung SY, Yeh CF, Shen CH, Liaw H, Su WP. APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res 2024; 52:5676-5697. [PMID: 38520407 PMCID: PMC11162786 DOI: 10.1093/nar/gkae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.
Collapse
Affiliation(s)
- Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chi-Feng Hung
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Sheng-Yung Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Urology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
7
|
Lin X, Leung KSK, Wolfe KF, Lee BJ, Zha S. XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to DNA damage sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594230. [PMID: 38798615 PMCID: PMC11118530 DOI: 10.1101/2024.05.14.594230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poly-ADP-ribose polymerases 1 and 2 (PARP1 and PARP2) are crucial sensors of DNA-strand breaks and emerging cancer therapy targets. Once activated by DNA breaks, PARP1 and PARP2 generate poly-ADP-ribose (PAR) chains on themselves and other substrates to promote DNA single-strand break repair (SSBR). PARP1 can be activated by diverse DNA lesions, whereas PARP2 specifically recognizes 5' phosphorylated nicks. They can be activated independently and provide mutual backup in the absence of the other. However, whether PARP1 and PARP2 have synergistic functions in DNA damage response remains elusive. Here, we show that PARP1 and the PAR chains generated by PARP1 recruit PARP2 to the vicinity of DNA damage sites through the scaffold protein XRCC1. Using quantitative live-cell imaging, we found that loss of XRCC1 markedly reduces irradiation-induced PARP2 foci in PARP1-proficient cells. The central BRCT domain (BRCT1) of XRCC1 binds to the PAR chain, while the C-terminal BRCT domain (BRCT2) of XRCC1 interacts with the catalytic domain of PARP2, facilitating its localization near the breaks. Together, these findings unveil a new function of XRCC1 in augmenting PARP2 recruitment in response to PARP1 activation and explain why PARP1, but not PARP2, is aggregated and hyperactivated in XRCC1-deficient cells.
Collapse
|
8
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
9
|
Al-Rahahleh RQ, Saville KM, Andrews JF, Wu Z, Koczor CA, Sobol RW. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573650. [PMID: 38234836 PMCID: PMC10793466 DOI: 10.1101/2023.12.29.573650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F. Andrews
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912
| | - Christopher A. Koczor
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
10
|
Deeksha W, Abhishek S, Rajakumara E. PAR recognition by PARP1 regulates DNA-dependent activities and independently stimulates catalytic activity of PARP1. FEBS J 2023; 290:5098-5113. [PMID: 37462479 DOI: 10.1111/febs.16907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribosyl)ation is predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single-strand (SSB) and double-strand (DSB) DNA breaks are bona fide stimulators of PARP1 activity. However, PAR-mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT, and WGR, hitherto uncharacterized, as PAR reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared with PAR but bind with weak or no affinity to DNA breaks as standalone domains. Conversely, ZnF1 and ZnF2 of PARP1 recognize DNA breaks but bind weakly to PAR. In addition, PAR reader domains, together, exhibit a synergy to recognize PAR or PARylated protein. Further competition-binding studies suggest that PAR binding releases DNA from PARP1, and the WGR domain facilitates DNA release. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampered the DNA-dependent stimulation. Altogether, our work discovers dedicated high-affinity PAR reader domains of PARP1 and uncovers a novel mechanism of allosteric regulation of DNA-dependent and DNA-independent activities of PARP1 by its catalytic product PAR.
Collapse
Affiliation(s)
- Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
11
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wu D, Huang H, Chen T, Gai X, Li Q, Wang C, Yao J, Liu Y, Cai S, Yu X. The BRCA1/BARD1 complex recognizes pre-ribosomal RNA to facilitate homologous recombination. Cell Discov 2023; 9:99. [PMID: 37789001 PMCID: PMC10547766 DOI: 10.1038/s41421-023-00590-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/16/2023] [Indexed: 10/05/2023] Open
Abstract
The BRCA1/BARD1 complex plays a key role in the repair of DNA double-strand breaks (DSBs) in both somatic cells and germ cells. However, the underlying molecular mechanism by which this complex mediates DSB repair is not fully understood. Here, we examined the XY body of male germ cells, where DSBs are accumulated. We show that the recruitment of the BRCA1/BARD1 complex to the unsynapsed axis of the XY body is mediated by pre-ribosomal RNA (pre-rRNA). Similarly, the BRCA1/BARD1 complex associates with pre-rRNA in somatic cells, which not only forms nuclear foci in response to DSBs, but also targets the BRCA1/BARD1 complex to DSBs. The interactions between the BRCT domains of the BRCA1/BARD1 complex and pre-rRNA induce liquid-liquid phase separations, which may be the molecular basis of DSB-induced nuclear foci formation of the BRCA1/BARD1 complex. Moreover, cancer-associated mutations in the BRCT domains of BRCA1 and BARD1 abolish their interactions with pre-rRNA. Pre-rRNA also mediates BRCA1-dependent homologous recombination, and suppression of pre-rRNA biogenesis sensitizes cells to PARP inhibitor treatment. Collectively, this study reveals that pre-rRNA is a functional partner of the BRCA1/BARD1 complex in the DSB repair.
Collapse
Affiliation(s)
- Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huang Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tenglong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia Yao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shang Cai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
14
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
15
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
16
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Lodovichi S, Quadri R, Sertic S, Pellicioli A. PARylation of BRCA1 limits DNA break resection through BRCA2 and EXO1. Cell Rep 2023; 42:112060. [PMID: 36735534 DOI: 10.1016/j.celrep.2023.112060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The nucleolytic processing (resection) of a DNA double-strand break (DSB) is a critical step to repair the lesion by homologous recombination (HR). PARylation, which is the attachment of poly(ADP-ribose) (PAR) units to specific targets by PAR polymerases (PARPs), regulates many steps of HR, including resection. Here, we show that preventing PARylation of the oncosuppressor BRCA1 induces hyper-resection of DSBs through BRCA2 and the EXO1 nuclease. Upon expression of the unPARylatable variant of BRCA1, we observe a reduced 53BP1-RIF1 barrier for resection accompanied by an increase in the recruitment of the RAD51 recombinase. Similar results are observed when cells are treated with the clinically approved PARP inhibitor olaparib. We propose that PARylation of BRCA1 is important to limit the formation of excessively extended DNA filaments, thereby reducing illegitimate chromosome rearrangements. Our results shed light on molecular aspects of HR and on the mechanisms of PARP inhibitor treatment.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy.
| |
Collapse
|
18
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
19
|
Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat Commun 2022; 13:6569. [PMID: 36323657 PMCID: PMC9630430 DOI: 10.1038/s41467-022-34148-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity. A highly kinked DNA structure in complex with human PARP-1 domains led to the proposal that SSB sensing in Eukaryotes relies on dynamics of both the broken DNA double helix and PARP-1's multi-domain organization. Here, we directly probe this process at the single-molecule level. Quantitative smFRET and structural ensemble calculations reveal how PARP-1's N-terminal zinc fingers convert DNA SSBs from a largely unperturbed conformation, via an intermediate state into the highly kinked DNA conformation. Our data suggest an induced fit mechanism via a multi-domain assembly cascade that drives SSB sensing and stimulates an interplay with the scaffold protein XRCC1 orchestrating subsequent DNA repair events. Interestingly, a clinically used PARP-1 inhibitor Niraparib shifts the equilibrium towards the unkinked DNA conformation, whereas the inhibitor EB47 stabilizes the kinked state.
Collapse
Affiliation(s)
- Anna Sefer
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Eleni Kallis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias Eilert
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Boehringer Ingelheim, CoC CMC Statistics & Data Science, Birkendorfer Str. 65, 88400, Biberach, Germany
| | - Carlheinz Röcker
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Olga Kolesnikova
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
20
|
Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol 2022; 32:733-745. [PMID: 35643889 DOI: 10.1016/j.tcb.2022.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
21
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
22
|
Oh KS, Nam AR, Bang JH, Seo HR, Kim JM, Yoon J, Kim TY, Oh DY. A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab resistance in HER2-positive cancers. Oncogene 2022; 41:3939-3952. [PMID: 35798878 DOI: 10.1038/s41388-022-02384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Despite its clinical efficacy in HER2-positive cancers, resistance to trastuzumab inevitably occurs. The DNA damage response (DDR) pathway is essential for maintaining genomic stability and cell survival. However, the role of the DDR pathway in HER2-positive tumors and trastuzumab resistance remains elusive. In this study, we verified that increased PARP1 expression in trastuzumab-resistant (TR) cells, owing to its augmented stability by escape from proteasomal degradation, confers tolerability to trastuzumab-induced DNA damage. Interruption of PARP1 in TR cells restrains its cellular growth, while simultaneously activating ATM to retain its genome stability. Dual inhibition of PARP and ATM induces synthetic lethality in TR cells by favoring the toxic NHEJ pathway instead of the HRR pathway. Our results highlight the potential of clinical development of DDR-targeting strategies for trastuzumab-resistant HER2-positive cancer patients.
Collapse
Affiliation(s)
- Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hye-Rim Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jae-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
23
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
24
|
Reber JM, Božić-Petković J, Lippmann M, Mazzardo M, Dilger A, Warmers R, Bürkle A, Mangerich A. PARP1 and XRCC1 exhibit a reciprocal relationship in genotoxic stress response. Cell Biol Toxicol 2022; 39:345-364. [PMID: 35778544 PMCID: PMC10042965 DOI: 10.1007/s10565-022-09739-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
PARP1 (aka ARTD1) acts as a prime sensor of cellular genotoxic stress response. PARP1 detects DNA strand breaks and subsequently catalyzes the formation of poly(ADP-ribose) (PAR), which leads to the recruitment of the scaffold protein XRCC1 during base excision and single strand break repair and the assembly of multi-protein complexes to promote DNA repair. Here, we reveal that the recruitment of either protein to sites of DNA damage is impeded in the absence of the other, indicating a strong reciprocal relationship between the two DNA repair factors during genotoxic stress response. We further analyzed several cellular and molecular endpoints in HeLa PARP1 KO, XRCC1 KO, and PARP1/XRCC1 double KO (DKO) cells after genotoxic treatments, i.e., PARylation response, NAD+ levels, clonogenic survival, cell cycle progression, cell death, and DNA repair. The analysis of NAD+ levels and cytotoxicity after treatment with the topoisomerase I inhibitor camptothecin revealed a hypersensitivity phenotype of XRCC1 KO cells compared to PARP1 KO cells-an effect that could be rescued by the additional genetic deletion of PARP1 as well as by pharmacological PARP inhibition. Moreover, impaired repair of hydrogen peroxide and CPT-induced DNA damage in XRCC1 KO cells could be partially rescued by additional deletion of PARP1. Our results therefore highlight important reciprocal regulatory functions of XRCC1 and PARP1 during genotoxic stress response.
Collapse
Affiliation(s)
- Julia M Reber
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Jovana Božić-Petković
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Michelle Lippmann
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Marvin Mazzardo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Asisa Dilger
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Rebecca Warmers
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Constance, Germany.
| |
Collapse
|
25
|
Longarini EJ, Matic I. The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst) 2022; 118:103382. [DOI: 10.1016/j.dnarep.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
26
|
Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022; 44:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res 2022; 50:3958-3973. [PMID: 35349716 PMCID: PMC9023293 DOI: 10.1093/nar/gkac188] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO80309, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| |
Collapse
|
28
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
29
|
Ataxia with Ocular Apraxia Type 1 (AOA1) (APTX, W279* Mutation): Neurological, Neuropsychological, and Molecular Outlining of a Heterogenous Phenotype in Four Colombian Siblings. Mol Neurobiol 2022; 59:3845-3858. [PMID: 35420381 DOI: 10.1007/s12035-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Hereditary ataxias are a group of devastating neurological disorders that affect coordination of gait and are often associated with poor coordination of hands, speech, and eye movements. Ataxia with ocular apraxia type 1 (AOA1) (OMIM: 606,350.0006) is characterized by slowly progressive symptoms of childhood-onset and pathogenic mutations in APTX; the only known cause underpinning AOA1. APTX encodes the protein aprataxin, composed of three domains sharing homology with proteins involved in DNA damage, signaling, and repair. We present four siblings from an endogamic family in a rural, isolated town of Colombia with ataxia and ocular apraxia of childhood-onset and confirmed molecular diagnosis of AOA1, homozygous for the W279* p.Trp279Ter mutation. We predicted the mutated APTX with AlphaFold to demonstrate the effects of this stop-gain mutation that deletes three beta helices encoded by amino acid 270 to 339 rescinding the C2H2-type zinc fingers (Znf) (C2H2 Znf) DNA-binding, the DNA-repair domain, and the whole 3D structure of APTX. All siblings exhibited different ages of onset (4, 6, 8, and 11 years old) and heterogeneous patterns of dysarthria (ranging from absence to mild-moderate dysarthria). Neuropsychological evaluation showed no neurocognitive impairment in three siblings, but one sibling showed temporospatial disorientation, semantic and phonologic fluency impairment, episodic memory affection, constructional apraxia, moderate anomia, low executive function, and symptoms of depression. To our knowledge, this report represents the most extensive series of siblings affected with AOA1 in Latin America, and the genetic analysis completed adds important knowledge to outline this family's disease and general complex phenotype of hereditary ataxias.
Collapse
|
30
|
Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X. Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 2022; 32:254-268. [PMID: 34980897 PMCID: PMC8888703 DOI: 10.1038/s41422-021-00597-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), DNA damage repair factors are recruited to DNA lesions and form nuclear foci. However, the underlying molecular mechanism remains largely elusive. Here, by analyzing the localization of DSB repair factors in the XY body and DSB foci, we demonstrate that pre-ribosomal RNA (pre-rRNA) mediates the recruitment of DSB repair factors around DNA lesions. Pre-rRNA exists in the XY body, a DSB repair hub, during meiotic prophase, and colocalizes with DSB repair factors, such as MDC1, BRCA1 and TopBP1. Moreover, pre-rRNA-associated proteins and RNAs, such as ribosomal protein subunits, RNase MRP and snoRNAs, also localize in the XY body. Similar to those in the XY body, pre-rRNA and ribosomal proteins also localize at DSB foci and associate with DSB repair factors. RNA polymerase I inhibitor treatment that transiently suppresses transcription of rDNA but does not affect global protein translation abolishes foci formation of DSB repair factors as well as DSB repair. The FHA domain and PST repeats of MDC1 recognize pre-rRNA and mediate phase separation of DSB repair factors, which may be the molecular basis for the foci formation of DSB repair factors during DSB response.
Collapse
Affiliation(s)
- Xiaochen Gai
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Di Xin
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Duo Wu
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xin Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Linlin Chen
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Yiqing Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Kai Ma
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Qilin Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Peng Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
32
|
Kristofova M, Ori A, Wang ZQ. Multifaceted Microcephaly-Related Gene MCPH1. Cells 2022; 11:cells11020275. [PMID: 35053391 PMCID: PMC8774270 DOI: 10.3390/cells11020275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
MCPH1, or BRIT1, is often mutated in human primary microcephaly type 1, a neurodevelopmental disorder characterized by a smaller brain size at birth, due to its dysfunction in regulating the proliferation and self-renewal of neuroprogenitor cells. In the last 20 years or so, genetic and cellular studies have identified MCPH1 as a multifaceted protein in various cellular functions, including DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, centrosome activity and the metabolism. Yet, genetic and animal model studies have revealed an unpredicted essential function of MPCH1 in gonad development and tumorigenesis, although the underlying mechanism remains elusive. These studies have begun to shed light on the role of MPCH1 in controlling various pathobiological processes of the disorder. Here, we summarize the biological functions of MCPH1, and lessons learnt from cellular and mouse models of MCPH1.
Collapse
Affiliation(s)
- Martina Kristofova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Bachstrasse 18k, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-656415; Fax: +49-3641-656335
| |
Collapse
|
33
|
Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79:60. [PMID: 35000037 PMCID: PMC11073082 DOI: 10.1007/s00018-021-04109-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.
Collapse
Affiliation(s)
- Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jiaxiang Li
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
34
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
35
|
Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtiö L. A molecular toolbox for ADP-ribosyl binding proteins. CELL REPORTS METHODS 2021; 1:100121. [PMID: 34786571 PMCID: PMC8580838 DOI: 10.1016/j.crmeth.2021.100121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Sarah Wazir
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Heli I. Alanen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Mirko M. Maksimainen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Lari Lehtiö
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
36
|
Wahner Hendrickson AE, Visscher DW, Hou X, Goergen KM, Atkinson HJ, Beito TG, Negron V, Lingle WL, Bruzek AK, Hurley RM, Wagner JM, Flatten KS, Peterson KL, Schneider PA, Larson MC, Maurer MJ, Kalli KR, Oberg AL, Weroha SJ, Kaufmann SH. CHFR and Paclitaxel Sensitivity of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13236043. [PMID: 34885153 PMCID: PMC8657201 DOI: 10.3390/cancers13236043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
The poly(ADP-ribose) binding protein CHFR regulates cellular responses to mitotic stress. The deubiquitinase UBC13, which regulates CHFR levels, has been associated with better overall survival in paclitaxel-treated ovarian cancer. Despite the extensive use of taxanes in the treatment of ovarian cancer, little is known about expression of CHFR itself in this disease. In the present study, tissue microarrays containing ovarian carcinoma samples from 417 women who underwent initial surgical debulking were stained with anti-CHFR antibody and scored in a blinded fashion. CHFR levels, expressed as a modified H-score, were examined for association with histology, grade, time to progression (TTP) and overall survival (OS). In addition, patient-derived xenografts from 69 ovarian carcinoma patients were examined for CHFR expression and sensitivity to paclitaxel monotherapy. In clinical ovarian cancer specimens, CHFR expression was positively associated with serous histology (p = 0.0048), higher grade (p = 0.000014) and higher stage (p = 0.016). After correction for stage and debulking, there was no significant association between CHFR staining and overall survival (p = 0.62) or time to progression (p = 0.91) in patients with high grade serous cancers treated with platinum/taxane chemotherapy (N = 249). Likewise, no association between CHFR expression and paclitaxel sensitivity was observed in ovarian cancer PDXs treated with paclitaxel monotherapy. Accordingly, differences in CHFR expression are unlikely to play a major role in paclitaxel sensitivity of high grade serous ovarian cancer.
Collapse
Affiliation(s)
- Andrea E. Wahner Hendrickson
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
- Correspondence: (A.E.W.H.); (S.H.K.); Tel.: +1-507-284-3731 (A.E.W.H.); +1-507-284-8950 (S.H.K.); Fax: +1-507-293-0107 (A.E.W.H. & S.H.K.)
| | - Daniel W. Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - Hunter J. Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | | | - Vivian Negron
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Wilma L. Lingle
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Amy K. Bruzek
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Rachel M. Hurley
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jill M. Wagner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Karen S. Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Kevin L. Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Paula A. Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Melissa C. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - Matthew J. Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | | | - Ann L. Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - S. John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
- Correspondence: (A.E.W.H.); (S.H.K.); Tel.: +1-507-284-3731 (A.E.W.H.); +1-507-284-8950 (S.H.K.); Fax: +1-507-293-0107 (A.E.W.H. & S.H.K.)
| |
Collapse
|
37
|
Glumoff T, Sowa ST, Lehtiö L. Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers. Bioessays 2021; 44:e2100240. [PMID: 34816463 DOI: 10.1002/bies.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.
Collapse
Affiliation(s)
- Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Kim JJ, Lee SY, Hwang Y, Kim S, Chung JM, Park S, Yoon J, Yun H, Ji JH, Chae S, Cho H, Kim CG, Dawson TM, Kim H, Dawson VL, Kang HC. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Res 2021; 49:11083-11102. [PMID: 34614178 PMCID: PMC8565343 DOI: 10.1093/nar/gkab892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mutual crosstalk among poly(ADP-ribose) (PAR), activated PAR polymerase 1 (PARP1) metabolites, and DNA repair machinery has emerged as a key regulatory mechanism of the DNA damage response (DDR). However, there is no conclusive evidence of how PAR precisely controls DDR. Herein, six deubiquitinating enzymes (DUBs) associated with PAR-coupled DDR were identified, and the role of USP39, an inactive DUB involved in spliceosome assembly, was characterized. USP39 rapidly localizes to DNA lesions in a PAR-dependent manner, where it regulates non-homologous end-joining (NHEJ) via a tripartite RG motif located in the N-terminus comprising 46 amino acids (N46). Furthermore, USP39 acts as a molecular trigger for liquid demixing in a PAR-coupled N46-dependent manner, thereby directly interacting with the XRCC4/LIG4 complex during NHEJ. In parallel, the USP39-associated spliceosome complex controls homologous recombination repair in a PAR-independent manner. These findings provide mechanistic insights into how PAR chains precisely control DNA repair processes in the DDR.
Collapse
Affiliation(s)
- Jae Jin Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Life Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo Yun Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jee Min Chung
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sangwook Park
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Junghyun Yoon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hansol Yun
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Chan Gil Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Republic of Korea
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongtae Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ho Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
39
|
Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proc Natl Acad Sci U S A 2021; 118:2019408118. [PMID: 33692124 DOI: 10.1073/pnas.2019408118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.
Collapse
|
40
|
Reber JM, Mangerich A. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Res 2021; 49:8432-8448. [PMID: 34302489 PMCID: PMC8421145 DOI: 10.1093/nar/gkab618] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a multifaceted post-translational modification, carried out by poly(ADP-ribosyl)transferases (poly-ARTs, PARPs), which play essential roles in (patho-) physiology, as well as cancer therapy. Using NAD+ as a substrate, acceptors, such as proteins and nucleic acids, can be modified with either single ADP-ribose units or polymers, varying considerably in length and branching. Recently, the importance of PAR structural heterogeneity with regards to chain length and branching came into focus. Here, we provide a concise overview on the current knowledge of the biochemical and physiological significance of such differently structured PAR. There is increasing evidence revealing that PAR's structural diversity influences the binding characteristics of its readers, PAR catabolism, and the dynamics of biomolecular condensates. Thereby, it shapes various cellular processes, such as DNA damage response and cell cycle regulation. Contrary to the knowledge on the consequences of PAR's structural diversity, insight into its determinants is just emerging, pointing to specific roles of different PARP members and accessory factors. In the future, it will be interesting to study the interplay with other post-translational modifications, the contribution of natural PARP variants, and the regulatory role of accessory molecules. This has the exciting potential for new therapeutic approaches, with the targeted modulation and tuning of PARPs' enzymatic functions, rather than their complete inhibition, as a central premise.
Collapse
Affiliation(s)
- Julia M Reber
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| |
Collapse
|
41
|
Rashid I, Hammel M, Sverzhinsky A, Tsai MS, Pascal JM, Tainer JA, Tomkinson AE. Direct interaction of DNA repair protein tyrosyl DNA phosphodiesterase 1 and the DNA ligase III catalytic domain is regulated by phosphorylation of its flexible N-terminus. J Biol Chem 2021; 297:100921. [PMID: 34181949 PMCID: PMC8318918 DOI: 10.1016/j.jbc.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3'-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped by either DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigIIIα-catalyzed joining of the SSB. Here we define a direct interaction between the TDP1 catalytic domain and the LigIII DNA-binding domain (DBD) regulated by conformational changes in the unstructured TDP1 N-terminal region induced by phosphorylation and/or alterations in amino acid sequence. Full-length and N-terminally truncated TDP1 are more effective at correcting SSB repair defects in TDP1 null cells compared with full-length TDP1 with amino acid substitutions of an N-terminal serine residue phosphorylated in response to DNA damage. TDP1 forms a stable complex with LigIII170-755, as well as full-length LigIIIα alone or in complex with the DNA repair scaffold protein XRCC1. Small-angle X-ray scattering and negative stain electron microscopy combined with mapping of the interacting regions identified a TDP1/LigIIIα compact dimer of heterodimers in which the two LigIII catalytic cores are positioned in the center, whereas the two TDP1 molecules are located at the edges of the core complex flanked by highly flexible regions that can interact with other repair proteins and SSBs. As TDP1and LigIIIα together repair adducts caused by TOP1 cancer chemotherapy inhibitors, the defined interaction architecture and regulation of this enzyme complex provide insights into a key repair pathway in nonmalignant and cancer cells.
Collapse
Affiliation(s)
- Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
42
|
Epithelial cell transforming factor ECT2 is an important regulator of DNA double-strand break repair and genome stability. J Biol Chem 2021; 297:101036. [PMID: 34343566 PMCID: PMC8385449 DOI: 10.1016/j.jbc.2021.101036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Proteins containing breast cancer type 1 (BRCA1) C-terminal domains play crucial roles in response to and repair of DNA damage. Epithelial cell transforming factor (epithelial cell transforming sequence 2 [ECT2]) is a member of the BRCA1 C-terminal protein family, but it is not known if ECT2 directly contributes to DNA repair. In this study, we report that ECT2 is recruited to DNA lesions in a poly (ADP-ribose) polymerase 1–dependent manner. Using co-immunoprecipitation analysis, we showed that ECT2 physically associates with KU70–KU80 and BRCA1, proteins involved in nonhomologous end joining and homologous recombination, respectively. ECT2 deficiency impairs the recruitment of KU70 and BRCA1 to DNA damage sites, resulting in defective DNA double-strand break repair, an accumulation of damaged DNA, and hypersensitivity of cells to genotoxic insults. Interestingly, we demonstrated that ECT2 promotes DNA repair and genome integrity largely independently of its canonical guanine nucleotide exchange activity. Together, these results suggest that ECT2 is directly involved in DNA double-strand break repair and is an important genome caretaker.
Collapse
|
43
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
44
|
Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, Rogier M, Moritz J, IJspeert H, Stoepker C, van Ostaijen-Ten Dam MM, Heyer V, Luijsterburg MS, de Groot A, Jak R, Grootaers G, Wang J, Rao P, Vertegaal ACO, van Tol MJD, Pan-Hammarström Q, Reina-San-Martin B, Shah GM, van der Burg M, van der Maarel SM, van Attikum H. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med 2021; 217:152060. [PMID: 32865561 PMCID: PMC7526497 DOI: 10.1084/jem.20191688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome.
Collapse
Affiliation(s)
- Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter E Thijssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashmi G Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Sanami Takada
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jacques Moritz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chantal Stoepker
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Anton de Groot
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rianca Jak
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gwendolynn Grootaers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jun Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten J D van Tol
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Girish M Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Dasovich M, Beckett MQ, Bailey S, Ong SE, Greenberg MM, Leung AKL. Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. J Am Chem Soc 2021; 143:3037-3042. [PMID: 33596067 PMCID: PMC8109396 DOI: 10.1021/jacs.0c12246] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational modification of proteins with poly(ADP-ribose) (PAR) is an important component of the DNA damage response. Four PAR synthesis inhibitors have recently been approved for the treatment of breast, ovarian, and prostate cancers. Despite the clinical significance of PAR, a molecular understanding of its function, including its binding partners, remains incomplete. In this work, we synthesized a PAR photoaffinity probe that captures and isolates endogenous PAR binders. Our method identified dozens of known PAR-binding proteins and hundreds of novel candidates involved in DNA repair, RNA processing, and metabolism. PAR binding by eight candidates was confirmed using pull-down and/or electrophoretic mobility shift assays. Using PAR probes of defined lengths, we detected proteins that preferentially bind to 40-mer versus 8-mer PAR, indicating that polymer length may regulate the outcome and timing of PAR signaling pathways. This investigation produces the first census of PAR-binding proteins, provides a proteomics analysis of length-selective PAR binding, and associates PAR binding with RNA metabolism and the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Morgan Q. Beckett
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marc M. Greenberg
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Rapid Detection and Signaling of DNA Damage by PARP-1. Trends Biochem Sci 2021; 46:744-757. [PMID: 33674152 DOI: 10.1016/j.tibs.2021.01.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
Poly(ADP-ribosyl) polymerase-1 (PARP-1) is an abundant ADP-ribosyl transferase that regulates various biological processes. PARP-1 is widely recognized as a first-line responder molecule in DNA damage response (DDR). Here, we review the full cycle of detecting DNA damage by PARP-1, PARP-1 activation upon DNA binding, and PARP-1 release from a DNA break. We also discuss the allosteric consequence upon binding of PARP inhibitors (PARPi) and the opportunity to tune its release from a DNA break. It is now possible to harness this new understanding to design novel PARPi for treating diseases where cell toxicity caused by PARP-1 'trapping' on DNA is either the desired consequence or entirely counterproductive.
Collapse
|
47
|
Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, Wu R, Leng L, Xie B, Song C, Li M. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun 2021; 12:1243. [PMID: 33623049 PMCID: PMC7902612 DOI: 10.1038/s41467-021-21519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.
Collapse
Affiliation(s)
- Wenjing Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Pan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.
| |
Collapse
|
48
|
Wang J, Oh YT, Li Z, Dou J, Tang S, Wang X, Wang H, Takeda S, Wang Y. RAD52 Adjusts Repair of Single-Strand Breaks via Reducing DNA-Damage-Promoted XRCC1/LIG3α Co-localization. Cell Rep 2021; 34:108625. [PMID: 33440161 PMCID: PMC7872142 DOI: 10.1016/j.celrep.2020.108625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
Radiation sensitive 52 (RAD52) is an important factor for double-strand break repair (DSBR). However, deficiency in vertebrate/mammalian Rad52 has no apparent phenotype. The underlying mechanism remains elusive. Here, we report that RAD52 deficiency increased cell survival after camptothecin (CPT) treatment. CPT generates single-strand breaks (SSBs) that further convert to double-strand breaks (DSBs) if they are not repaired. RAD52 inhibits SSB repair (SSBR) through strong single-strand DNA (ssDNA) and/or poly(ADP-ribose) (PAR) binding affinity to reduce DNA-damage-promoted X-Ray Repair Cross Complementing 1 (XRCC1)/ligase IIIα (LIG3α) co-localization. The inhibitory effects of RAD52 on SSBR neutralize the role of RAD52 in DSBR, suggesting that RAD52 may maintain a balance between cell survival and genomic integrity. Furthermore, we demonstrate that blocking RAD52 oligomerization that disrupts RAD52’s DSBR, while retaining its ssDNA binding capacity that is required for RAD52’s inhibitory effects on SSBR, sensitizes cells to different DNA-damaging agents. This discovery provides guidance for developing efficient RAD52 inhibitors in cancer therapy. Wang et al. show that vertebrate/mammalian RAD52 promotes CPT-induced cell death via inhibition of PARP-mediated SSBR, which involves RAD52’s strong ssDNA/PAR binding affinity that reduces DNA-damage-promoted XRCC1-LIG3a interaction. Blocking of RAD52 oligomerization, while retaining the ssDNA binding capacity of RAD52, efficiently sensitizes cells to different DNA-damaging agents.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - You-Take Oh
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Zhentian Li
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Siyuan Tang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Shunichi Takeda
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Zhao B, Naila T, Lieber MR, Tomkinson AE. NAD+ is not utilized as a co-factor for DNA ligation by human DNA ligase IV. Nucleic Acids Res 2020; 48:12746-12750. [PMID: 33264406 PMCID: PMC7736778 DOI: 10.1093/nar/gkaa1118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
As nucleotidyl transferases, formation of a covalent enzyme-adenylate intermediate is a common first step of all DNA ligases. While it has been shown that eukaryotic DNA ligases utilize ATP as the adenylation donor, it was recently reported that human DNA ligase IV can also utilize NAD+ and, to a lesser extent ADP-ribose, as the source of the adenylate group and that NAD+, unlike ATP, enhances ligation by supporting multiple catalytic cycles. Since this unexpected finding has significant implications for our understanding of the mechanisms and regulation of DNA double strand break repair, we attempted to confirm that NAD+ and ADP-ribose can be used as co-factors by human DNA ligase IV. Here, we provide evidence that NAD+ does not enhance ligation by pre-adenylated DNA ligase IV, indicating that this co-factor is not utilized for re-adenylation and subsequent cycles of ligation. Moreover, we find that ligation by de-adenylated DNA ligase IV is dependent upon ATP not NAD+ or ADP-ribose. Thus, we conclude that human DNA ligase IV cannot use either NAD+ or ADP-ribose as adenylation donor for ligation.
Collapse
Affiliation(s)
- Bailin Zhao
- Department of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, and Section of Computational and Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Tasmin Naila
- Department of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, USA
| | - Michael R Lieber
- Department of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, and Section of Computational and Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Alan E Tomkinson
- Department of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, USA
| |
Collapse
|
50
|
Shiu JL, Wu CK, Chang SB, Sun YJ, Chen YJ, Lai CC, Chiu WT, Chang WT, Myung K, Su WP, Liaw H. The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis 2020; 9:104. [PMID: 33281189 PMCID: PMC7719709 DOI: 10.1038/s41389-020-00289-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022] Open
Abstract
Human HLTF participates in the lesion-bypass mechanism through the fork reversal structure, known as template switching of post-replication repair. However, the mechanism by which HLTF promotes the replication progression and fork stability of damaged forks remains unclear. Here, we identify a novel protein–protein interaction between HLTF and PARP1. The depletion of HLTF and PARP1 increases chromosome breaks, further reduces the length of replication tracks, and concomitantly increases the number of stalled forks after methyl methanesulfonate treatment according to a DNA fiber analysis. The progression of replication also depends on BARD1 in the presence of MMS treatment. By combining 5-ethynyl-2′-deoxyuridine with a proximity ligation assay, we revealed that the HLTF, PARP1, and BRCA1/BARD1/RAD51 proteins were initially recruited to damaged forks. However, prolonged stalling of damaged forks results in fork collapse. HLTF and PCNA dissociate from the collapsed forks, with increased accumulation of PARP1 and BRCA1/BARD1/RAD51 at the collapsed forks. Our results reveal that HLTF together with PARP1 and BARD1 participates in the stabilization of damaged forks, and the PARP1–BARD1 interaction is further involved in the repair of collapse forks.
Collapse
Affiliation(s)
- Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Yan-Jhih Sun
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Yen-Ju Chen
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Science, National Chung Hsing University, No.145 Xingda Rd. South Dist., Taichung City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan. .,Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 704, Taiwan.
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan.
| |
Collapse
|