1
|
Eickhorst C, Babic R, Rush-Kittle J, Lucya L, Imam FL, Sánchez-Martín P, Hollenstein DM, Michaelis J, Münch C, Meisinger C, Slade D, Gámez-Díaz L, Kraft C. FIP200 Phosphorylation Regulates Late Steps in Mitophagy. J Mol Biol 2024; 436:168631. [PMID: 38821350 DOI: 10.1016/j.jmb.2024.168631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear. Our findings reveal that multiple phosphorylation events on FIP200 differentially control the early and late stages of mitophagy. Furthermore, these phosphorylation events influence FIP200's interaction with ATG16L1. In summary, our results highlight the necessity for precise and dynamic regulation of FIP200, underscoring its importance in the progression of mitophagy.
Collapse
Affiliation(s)
- Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jorrell Rush-Kittle
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Leon Lucya
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Fatimah Lami Imam
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David M Hollenstein
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Jonas Michaelis
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Zhu YF, Yu RH, Zhou S, Tang PP, Zhang R, Wu YX, Xu R, Wei JM, Wang YY, Zhang JL, Li MK, Shi XJ, Zhang YW, Liu GZ, Thorne RF, Zhang XD, Wu M, Chen S. TAX1BP1 and FIP200 orchestrate non-canonical autophagy of p62 aggregates for mouse neural stem cell maintenance. Zool Res 2024; 45:937-950. [PMID: 39021082 PMCID: PMC11298671 DOI: 10.24272/j.issn.2095-8137.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024] Open
Abstract
Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Fu Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rong-Hua Yu
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Shuai Zhou
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Pei-Pei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China
| | - Rui Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Yu-Xin Wu
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW 2308, Australia
| | - Jia-Ming Wei
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China
| | - Ying-Ying Wang
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Jia-Li Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Meng-Ke Li
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yu-Wei Zhang
- Henan Key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan 450053, China
| | - Guang-Zhi Liu
- Henan Key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan 450053, China
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW 2308, Australia
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW 2308, Australia
| | - Mian Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
- Henan Key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan 450053, China. E-mail:
| | - Song Chen
- Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China
- Henan Key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan 450053, China. E-mail:
| |
Collapse
|
3
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Tang X, Walter E, Wohleb E, Fan Y, Wang C. ATG5 (autophagy related 5) in microglia controls hippocampal neurogenesis in Alzheimer disease. Autophagy 2024; 20:847-862. [PMID: 37915255 PMCID: PMC11062374 DOI: 10.1080/15548627.2023.2277634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Macroautophagy/autophagy is the intracellular degradation process of cytoplasmic content and damaged organelles. Autophagy is strongly associated with the progression of Alzheimer disease (AD). Microglia are brain-resident macrophages, and recent studies indicate that autophagy in microglia protects neurons from neurodegeneration. Postnatal neurogenesis, the generation of new neurons from adult neural stem cells (NSCs), is impaired in AD patients as well as in AD animal models. However, the extent to which microglial autophagy influences adult NSCs and neurogenesis in AD animal models has not been studied. Here, we showed that conditional knock out (cKO) of Atg5 (autophagy related 5) in microglia inhibited postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus, but not in the subventricular zone (SVZ) of a 5×FAD mouse model. Interestingly, the protection of neurogenesis by Atg5 in microglia was only observed in female AD mice. To confirm the roles of autophagy in microglia for postnatal hippocampal neurogenesis, we generated additional cKO mice to delete autophagy essential genes Rb1cc1 or Atg14 in microglia. However, these rb1cc1 cKO and atg14 cKO mice did not exhibit neurogenesis defects in the context of a female AD mouse model. Last, we used the CSF1R antagonist to deplete ATG5-deficient microglia and this intervention restored neurogenesis in the hippocampus of 5×FAD mice. These results indicate that microglial ATG5 is essential to maintain postnatal hippocampal neurogenesis in a mouse model of AD. Our findings further support the notion that ATG5 in microglia supports NSC health and may prevent neurodegeneration.Abbreviations: 5×FAD: familial Alzheimer disease; Aβ: β-amyloid; AD: Alzheimer disease; AIF1: allograft inflammatory factor 1; ATG: autophagy related; BrdU: 5-bromo-2'-deoxyuridine; CA: Cornu Ammonis; cKO: conditional knock out; CSF1R: colony stimulating factor 1 receptor; Ctrl: control; DCX: doublecortin; DG: dentate gyrus; GFAP: glial fibrillary acidic protein; GZ: granular zone; H&E: hematoxylin and eosin; IF: immunofluorescence; LD: lipid droplet; LDAM: lipid droplets accumulated microglia; LPS: lipopolysaccharides; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; NSCs: neural stem cells; RB1CC1: RB1-inducible coiled-coil 1; SOX2: SRY (sex determining region Y)-box 2; SGZ: subgranular zone; SVZ: subventricular zone; WT: wild type.
Collapse
Affiliation(s)
- Xin Tang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Ellen Walter
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Shang JN, Yu CG, Li R, Xi Y, Jian YJ, Xu N, Chen S. The nonautophagic functions of autophagy-related proteins. Autophagy 2024; 20:720-734. [PMID: 37682088 PMCID: PMC11062363 DOI: 10.1080/15548627.2023.2254664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yue Jenny Jian
- Nanjing Foreign Language School, Nanjing, Jiangsu, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| |
Collapse
|
7
|
Yeo SK, Haas M, Manupati K, Hao M, Yang F, Chen S, Guan JL. AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor complexes with implications for CD8 T-cell infiltration in breast cancer. Autophagy 2024; 20:525-540. [PMID: 37733921 PMCID: PMC10936636 DOI: 10.1080/15548627.2023.2259775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
9
|
Priem D, Huyghe J, Bertrand MJM. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023; 19:2585-2589. [PMID: 37014272 PMCID: PMC10392734 DOI: 10.1080/15548627.2023.2197760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.
Collapse
Affiliation(s)
- Dario Priem
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jon Huyghe
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu JM Bertrand
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Ponticelli C, Moroni G, Reggiani F. Autophagy and podocytopathy. Nephrol Dial Transplant 2023; 38:1931-1939. [PMID: 36708169 DOI: 10.1093/ndt/gfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Indexed: 01/29/2023] Open
Abstract
Autophagy is a complex process of lysosomal-dependent degradation of unwanted cellular material. In response to endogenous or exogenous stimuli, autophagy is induced and regulated by two kinases: the AMP activated kinase and the mammalian target of rapamycin (mTOR). Cells activated by Unc-51-like kinase 1 form a double membrane complex that sequesters the cargo (phagophore) and elongates producing spherical vesicles (autophagosomes). These reach and fuse with lysosomes, which degrade the cargo (autolysosomes). The resulting macromolecules are released back and recycled in the cytosol for reuse. In the podocyte, autophagy is a homeostatic mechanism that contributes to the formation and preservation of the morphological and functional integrity of actin cytoskeleton. Podocytes, fenestrated endothelial cells and glomerular basement membrane compose the glomerular filtration barrier. Podocyte damage may cause dysfunction of the glomerular barrier, proteinuria and glomerulosclerosis in different glomerular diseases and particularly in so-called podocytopathies, namely minimal change disease and focal segmental glomerulosclerosis. Several drugs and molecules may activate autophagic function in murine models. Among them, aldosterone inhibitors, mineralocorticoid inhibitors and vitamin D3 were proven to protect podocyte from injury and reduce proteinuria in clinical studies. However, no clinical trial with autophagy regulators in podocytopathies has been conducted. Caution is needed with other autophagy activators, such as mTOR inhibitors and metformin, because of potential adverse events.
Collapse
Affiliation(s)
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
11
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Bestion E, Raymond E, Mezouar S, Halfon P. Update on Autophagy Inhibitors in Cancer: Opening up to a Therapeutic Combination with Immune Checkpoint Inhibitors. Cells 2023; 12:1702. [PMID: 37443736 PMCID: PMC10341243 DOI: 10.3390/cells12131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| | - Eric Raymond
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Department of Medical Oncology, Paris Saint-Joseph Hospital Group, 75014 Paris, France
| | - Soraya Mezouar
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Établissement Français du Sang, Provence Alpes Côte d’Azur et Corse, Marseille, France; «Biologie des Groupes Sanguins», Aix Marseille Univ-CNRS-EFS-ADÉS, 13005 Marseille, France
| | - Philippe Halfon
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| |
Collapse
|
13
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
14
|
Yi F, Cai C, Ruan B, Hao M, Yeo SK, Haas M, Yang F, Zhang X, Guan JL. Regulation of RB1CC1/FIP200 stability and autophagy function by CREBBP-mediated acetylation in an intrinsically disordered region. Autophagy 2023; 19:1662-1677. [PMID: 36394358 PMCID: PMC10262773 DOI: 10.1080/15548627.2022.2148432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
RB1CC1/FIP200 is an essential macroautophagy/autophagy protein that plays an important role in a variety of biological and disease processes through its canonical autophagy-dependent and -independent functions. However, it remains largely unknown whether post-translational modifications could regulate RB1CC1 and its associated autophagy functions. Here, we report acetylation of several lysine residues of RB1CC1 by acetyltransferase CREBBP (CREB binding protein), with K276 as the major CREBBP acetylation site. K276 is also identified as a ubiquitination site by mass spectrometry, and acetylation at this site reduces ubiquitination of RB1CC1 to inhibit its ubiquitin-dependent degradation. We also find that RB1CC1 contains an N-terminal intrinsically disordered region (IDR) capable of forming liquid-liquid phase separation (LLPS) in vitro, which may drive formation of RB1CC1 puncta with LLPS properties in cells independent of SQSTM1/p62 and other autophagy receptors CALCOCO2/NDP52, NBR1, TAX1BP1 and OPTN. Mutational analysis shows that both K276 acetylation and the N-terminal IDR containing it are important for maintaining canonical autophagy function of RB1CC1 in breast cancer cells. Our findings demonstrate regulation of RB1CC1 by a new post-translational mechanism and suggest potential therapeutic application of inducing RB1CC1 degradation through blocking K276 acetylation in the treatment of cancer and other diseases.Abbreviations: Baf-A1: bafilomycin A1; CREBBP/CBP: CREB binding protein; CHX: cycloheximide; EP300/p300: E1A binding protein p300; FRAP: fluorescence recovery after photobleaching; HADCs: histone deacetylases; IDR: intrinsically disordered region; LLPS: liquid-liquid phase separation; KAT2A/GCN5: lysine acetyltransferase 2A; KAT2B/PCAF: lysine acetyltransferase 2B; KAT5/TIP60: lysine acetyltransferase 5; KAT8/MOF: lysine acetyltransferase 8; NAM: nicotinamide; PAS: phagophore assembly site; PEG-8000: polyethylene glycol 8000; RB1CC1/FIP200: RB1 inducible coiled-coil 1; TSA: trichostatin A.
Collapse
Affiliation(s)
- Fei Yi
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Chunmiao Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Banzhan Ruan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267, USA
| |
Collapse
|
15
|
Wang YT, Sansone A, Smirnov A, Stallings CL, Orvedahl A. Myeloid autophagy genes protect mice against fatal TNF- and LPS-induced cytokine storm syndromes. Autophagy 2023; 19:1114-1127. [PMID: 36056542 PMCID: PMC10012903 DOI: 10.1080/15548627.2022.2116675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
ABBREVIATIONS ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; ATG16L1: autophagy related 16-like 1 (S. cerevisiae); BECN1: beclin 1, autophagy related; CASP1: caspase 1; CASP4/CASP11: caspase 4, apoptosis-related cysteine peptidase; CIM: conditionally immortalized macrophage; CLP: cecal ligation and puncture; CSS: cytokine storm syndrome; DC: dendritic cell; IFNG/IFNγ: interferon gamma; IFNGR1: interferon gamma receptor 1; ip: intraperitoneal; iv: intravenous; IL12/p70: interleukin 12, p70 heterodimer; IL18: Interleukin 18; ITGAX/CD11c: integrin alpha X; LAP: LC3-associated phagocytosis; LPS: lipopolysaccharide; LYZ2/LYSM: lysozyme 2; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; RB1CC1/FIP200: RB1-inducible coiled-coil 1; S100A8/MRP8: S100 calcium binding protein A8 (calgranulin A); TICAM1/TRIF: TIR domain containing adaptor molecule 1; TLR4: toll-like receptor 4; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Center for Infectious Disease Research, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, Haidian, China
| | - Amy Sansone
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling. Nat Commun 2023; 14:978. [PMID: 36813768 PMCID: PMC9946935 DOI: 10.1038/s41467-023-36562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.
Collapse
|
17
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Xu Y, Yang X. Autophagy and pluripotency: self-eating your way to eternal youth. Trends Cell Biol 2022; 32:868-882. [PMID: 35490141 PMCID: PMC10433133 DOI: 10.1016/j.tcb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/18/2023]
Abstract
Pluripotent stem cells (PSCs) can self-renew indefinitely in culture while retaining the potential to differentiate into virtually all normal cell types in the adult animal. Due to these remarkable properties, PSCs not only provide a superb system to investigate mammalian development and model diseases, but also hold promise for regenerative therapies. Autophagy is a self-digestive process that targets proteins, organelles, and other cellular contents for lysosomal degradation. Here, we review recent literature on the mechanistic role of different types of autophagy in embryonic development, embryonic stem cells (ESCs), and induced PSCs (iPSCs), focusing on their remodeling functions on protein, metabolism, and epigenetics. We present a perspective on unsolved issues and propose that autophagy is a promising target to modulate acquisition, maintenance, and directed differentiation of PSCs.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
19
|
Yang Y, Zhu Y, Zhou S, Tang P, Xu R, Zhang Y, Wei D, Wen J, Thorne RF, Zhang XD, Guan JL, Liu L, Wu M, Chen S. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis. EMBO J 2022; 41:e109777. [PMID: 35670107 DOI: 10.15252/embj.2021109777] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022] Open
Abstract
Autophagy represents a fundamental mechanism for maintaining cell survival and tissue homeostasis in response to physiological and pathological stress. Autophagy initiation converges on the FIP200-ATG13-ULK1 complex wherein the serine/threonine kinase ULK1 plays a central role. Here, we reveal that the E3 ubiquitin ligase TRIM27 functions as a negative regulatory component of the FIP200-ATG13-ULK1 complex. TRIM27 directly polyubiquitinates ULK1 at K568 and K571 sites with K48-linked ubiquitin chains, with proteasomal turnover maintaining control over basal ULK1 levels. However, during starvation-induced autophagy, TRIM27 catalyzes non-degradative K6- and K11-linked ubiquitination of the serine/threonine kinase 38-like (STK38L) kinase. In turn, STK38L ubiquitination promotes its activation and phosphorylation of ULK1 at Ser495, rendering ULK1 in a permissive state for TRIM27-mediated hyper-ubiquitination of ULK1. This cooperative mechanism serves to restrain the amplitude and duration of autophagy. Further evidence from mouse models shows that basal autophagy levels are increased in Trim27 knockout mice and that Trim27 differentially regulates tumorigenesis and metastasis. Our study identifies a key role of STK38L-TRIM27-ULK1 signaling axis in negatively controlling autophagy with relevance established in human breast cancer.
Collapse
Affiliation(s)
- Yi Yang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifu Zhu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China
| | - Ran Xu
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongping Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lianxin Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mian Wu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
20
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
21
|
Yang D, Wu X, Wang W, Zhou Y, Wang Z. Ciliary Type III Adenylyl Cyclase in the VMH Is Crucial for High-Fat Diet-Induced Obesity Mediated by Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102568. [PMID: 34783461 PMCID: PMC8787410 DOI: 10.1002/advs.202102568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Neuronal primary cilia are crucial for body weight maintenance. Type III adenylyl cyclase (AC3) is abundantly enriched in neuronal cilia, and mice with global AC3 ablation are obese. However, whether AC3 regulates body weight through its ciliary expression and the mechanism underlying this potential regulation are not clear. In this study, humanized AC3 knock-in mice that are resistant to high-fat diet (HFD)-induced obesity are generated, and increases in the number and length of cilia in the ventromedial hypothalamus (VMH) are shown. It is demonstrated that mice with specifically knocked down ciliary AC3 expression in the VMH show pronounced HFD-induced obesity. In addition, in vitro and in vivo analyses of the VMH show that ciliary AC3 regulates autophagy by binding an autophagy-related gene, gamma-aminobutyric acid A receptor-associated protein (GABARAP). Mice with GABARAP knockdown in the VMH exhibit exacerbated HFD-induced obesity. Overall, the findings may reveal a potential mechanism by which ciliary AC3 expression regulates body weight in the mouse VMH.
Collapse
Affiliation(s)
- Dong Yang
- College of Life ScienceInstitute of Life Science and Green DevelopmentHebei UniversityBaodingHebei071002China
| | - Xiangbo Wu
- College of Life ScienceInstitute of Life Science and Green DevelopmentHebei UniversityBaodingHebei071002China
| | - Weina Wang
- College of Life ScienceInstitute of Life Science and Green DevelopmentHebei UniversityBaodingHebei071002China
| | - Yanfen Zhou
- College of Life ScienceInstitute of Life Science and Green DevelopmentHebei UniversityBaodingHebei071002China
| | - Zhenshan Wang
- College of Life ScienceInstitute of Life Science and Green DevelopmentHebei UniversityBaodingHebei071002China
| |
Collapse
|
22
|
Non-canonical function of FIP200 is required for neural stem cell maintenance and differentiation by limiting TBK1 activation and p62 aggregate formation. Sci Rep 2021; 11:23907. [PMID: 34903812 PMCID: PMC8668875 DOI: 10.1038/s41598-021-03404-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/24/2021] [Indexed: 01/31/2023] Open
Abstract
FIP200 is an essential autophagy gene implicated in the regulation of postnatal neural progenitor/stem cells (NSCs). However, the contribution of FIP200's canonical-autophagy function and its non-canonical functions to postnatal NSC maintenance remains unclear. Utilizing a recently generated Fip200-4A allele that specifically impairs FIP200's canonical-autophagy function, we found that non-canonical functions of FIP200 was required for regulation of mouse NSC maintenance and neurogenesis in vivo. Ablating the non-canonical functions of FIP200, but not its autophagy function, increased TBK1 activation and p62 phosphorylation at S403 in NSCs. Phosphorylation of p62 was dependent on TBK1 kinase activity and increased the propensity of p62 aggregate formation specifically in FIP200-null NSCs. Accordingly, inhibition of TBK1 by amlexanox reduced p62 aggregates and restored NSC maintenance and differentiation in Fip200hGFAP cKO mice. These results reveal a mechanism for the non-canonical functions of FIP200 in NSC maintenance and differentiation by limiting TBK1 activation and subsequently, p62 aggregate formation.
Collapse
|
23
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
24
|
Yin B, Ma Q, Zhao L, Song C, Wang C, Yu F, Shi Y, Ye L. Epigenetic Control of Autophagy Related Genes Transcription in Pulpitis via JMJD3. Front Cell Dev Biol 2021; 9:654958. [PMID: 34434926 PMCID: PMC8381646 DOI: 10.3389/fcell.2021.654958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is an intracellular self-cannibalization process delivering cytoplasmic components to lysosomes for digestion. Autophagy has been reported to be involved in pulpitis, but the regulation of autophagy during pulpitis progression is largely unknown. To figure out the epigenetic regulation of autophagy during pulpitis, we screened several groups of histone methyltransferases and demethylases in response to TNFα treatment. It was found JMJD3, a histone demethylase reducing di- and tri-methylation of H3K27, regulated the expression of several key autophagy genes via demethylation of H3K27me3 at the gene promoters. Our study highlighted the epigenetic regulation of autophagy genes during pulpitis, which will potentially provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingge Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingyi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Oestreich AK, Chadchan SB, Medvedeva A, Lydon JP, Jungheim ES, Moley KH, Kommagani R. The autophagy protein, FIP200 (RB1CC1) mediates progesterone responses governing uterine receptivity and decidualization†. Biol Reprod 2021; 102:843-851. [PMID: 31901086 DOI: 10.1093/biolre/ioz234] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.
Collapse
Affiliation(s)
- Arin K Oestreich
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Sangappa B Chadchan
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Alexandra Medvedeva
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Ramakrishna Kommagani
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| |
Collapse
|
26
|
FIP200 restricts RNA virus infection by facilitating RIG-I activation. Commun Biol 2021; 4:921. [PMID: 34326461 PMCID: PMC8322336 DOI: 10.1038/s42003-021-02450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) senses viral RNA and instigates an innate immune signaling cascade to induce type I interferon expression. Currently, the regulatory mechanisms controlling RIG-I activation remain to be fully elucidated. Here we show that the FAK family kinase-interacting protein of 200 kDa (FIP200) facilitates RIG-I activation. FIP200 deficiency impaired RIG-I signaling and increased host susceptibility to RNA virus infection. In vivo studies further demonstrated FIP200 knockout mice were more susceptible to RNA virus infection due to the reduced innate immune response. Mechanistic studies revealed that FIP200 competed with the helicase domain of RIG-I for interaction with the two tandem caspase activation and recruitment domains (2CARD), thereby facilitating the release of 2CARD from the suppression status. Furthermore, FIP200 formed a dimer and facilitated 2CARD oligomerization, thereby promoting RIG-I activation. Taken together, our study defines FIP200 as an innate immune signaling molecule that positively regulates RIG-I activation. Lingyan Wang et al. report that the autophagy-associated protein FIP200 interacts with the RNA sensor RIG-I to trigger activation of the type I interferon pathway.
Collapse
|
27
|
FIP200 controls the TBK1 activation threshold at SQSTM1/p62-positive condensates. Sci Rep 2021; 11:13863. [PMID: 34226595 PMCID: PMC8257712 DOI: 10.1038/s41598-021-92408-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
The protein kinase TBK1 is a central regulator of innate immune responses and autophagy, and ablation of either function has been linked to neuroinflammatory or degenerative diseases. Autophagy is an intracellular process that recycles old or damaged proteins and organelles. In recent years, the TBK1-dependent regulation of autophagy pathways has been characterized. However, the autophagy-dependent regulation of TBK1 activity awaits further clarification. Here, we observed that TBK1 is recruited to SQSTM1/p62-containing aggregates via the selective autophagy receptor TAX1BP1. In these aggregates, TBK1 phosphorylates SQSTM1/p62 at serine 403 and thus presumably regulates the efficient engulfment and clearance of these structures. We found that TBK1 activation is strongly increased if FIP200, a component of the autophagy-inducing ULK1 complex, is not present or cannot bind to TAX1BP1. Given our collective findings, we hypothesize that FIP200 ensures the inducible activation of TBK1 at SQSTM1/p62 condensates.
Collapse
|
28
|
Autophagy mediated lipid catabolism facilitates glioma progression to overcome bioenergetic crisis. Br J Cancer 2021; 124:1711-1723. [PMID: 33723393 PMCID: PMC8110959 DOI: 10.1038/s41416-021-01294-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation of cancer cells within stressed environments are still under-appreciated. We recently revealed high autophagy activity in tumour cells with mTORC1 hyper-activation. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in glioma are not studied. METHODS Using glioma patient database and human glioma cells, we assessed the mechanisms and function of selective autophagy to sustain mTORC1 hyper-activation in glioma. RESULTS We revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with prognosis of glioma patients. Our results indicated that autophagy-mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibitors in combination with 2-Deoxy-D-glucose (2DG) decreased energy production and survival of glioma cells in vitro. Consistently, inhibition of autophagy or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with hyper-activated mTORC1. CONCLUSIONS This study established an autophagy/lipid degradation/FAO/ATP generation pathway, which might be used in brain cancer cells under energy stresses to maintain high mTORC1 signalling for tumour progression.
Collapse
|
29
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
30
|
Hao M, Yeo SK, Turner K, Harold A, Yang Y, Zhang X, Guan JL. Autophagy Blockade Limits HER2+ Breast Cancer Tumorigenesis by Perturbing HER2 Trafficking and Promoting Release Via Small Extracellular Vesicles. Dev Cell 2021; 56:341-355.e5. [PMID: 33472043 DOI: 10.1016/j.devcel.2020.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
Autophagy modulation is an emerging strategy for cancer therapy. By deleting an essential autophagy gene or disrupting its autophagy function, we determined a mechanism of HER2+ breast cancer tumorigenesis by directly regulating the oncogenic driver. Disruption of FIP200-mediated autophagy reduced HER2 expression on the tumor cell surface and abolished mammary tumorigenesis in MMTV-Neu mice. Decreased HER2 surface expression was due to trafficking from the Golgi to the endocytic pathways instead of the plasma membrane. Autophagy inhibition led to HER2 accumulation in early and late endosomes associated with intraluminal vesicles and released from tumor cells in small extracellular vesicles (sEVs). Increased HER2 release from sEVs correlated with reduced tumor cell surface levels. Blocking sEVs secretion rescued HER2 levels in tumor cells. Our results demonstrate a role for autophagy to promote tumorigenesis in HER2+ breast cancer. This suggests that blocking autophagy could supplement current anti-HER2 agents for treating the disease.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kevin Turner
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alexis Harold
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yongguang Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
31
|
Autophagy Is Required for Maturation of Surfactant-Containing Lamellar Bodies in the Lung and Swim Bladder. Cell Rep 2020; 33:108477. [PMID: 33296658 DOI: 10.1016/j.celrep.2020.108477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.
Collapse
|
32
|
Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, Wagatsuma K, Itoi T, Nakase H. Autophagy and Autophagy-Related Diseases: A Review. Int J Mol Sci 2020; 21:ijms21238974. [PMID: 33255983 PMCID: PMC7729615 DOI: 10.3390/ijms21238974] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy refers to the process involving the decomposition of intracellular components via lysosomes. Autophagy plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells. In vivo, autophagy has been shown to be involved in the starvation response, intracellular quality control, early development, and cell differentiation. Recent studies have revealed that autophagy dysfunction is implicated in neurodegenerative diseases and tumorigenesis. In addition to the discovery of certain disease-causing autophagy-related mutations and elucidation of the pathogenesis of conditions resulting from the abnormal degradation of selective autophagy substrates, the activation of autophagy is essential for prolonging life and suppressing aging. This article provides a comprehensive review of the role of autophagy in health, physiological function, and autophagy-related disease.
Collapse
Affiliation(s)
- Tadashi Ichimiya
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Tsukasa Yamakawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
- Correspondence: ; Tel.: +81-11-611-2111
| |
Collapse
|
33
|
Yeo SK, Wang C, Guan JL. Role of FIP200 in inflammatory processes beyond its canonical autophagy function. Biochem Soc Trans 2020; 48:1599-1607. [PMID: 32662824 DOI: 10.1042/bst20191156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
FIP200 (RB1CC1) is a critical regulator of canonical macroautophagy and has also emerged as a crucial regulator of selective autophagy as well as inflammatory processes. The illumination of FIP200's role in autophagy at the molecular level has been accompanied by studies demonstrating the importance of its autophagy function in physiological processes in mammals and pathological contexts such as cancer. However, there is an increasing appreciation that most, if not all of the autophagy genes, also play a role in other processes such as LC3-associated phagocytosis, vesicle trafficking and protein secretion. Consequently, this has led to efforts in generating specific mutants of autophagy genes that are more amenable to dissecting their autophagy versus non-autophagy functions. In this aspect, we have generated a FIP200 knock-in mouse allele that is defective for canonical macroautophagy. This has revealed a canonical-autophagy-independent function of FIP200 that is responsible for limiting pro-inflammatory signaling. In this review, we will discuss FIP200's role in this process, the implications with regards to cancer immunotherapy and highlight key prospective avenues to specifically dissect the distinct functions of FIP200.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
34
|
Kang HJ, Yoo EJ, Lee HH, An SM, Park H, Lee-Kwon W, Choi SY, Kwon HM. TonEBP Promotes β-Cell Survival under ER Stress by Enhancing Autophagy. Cells 2020; 9:cells9091928. [PMID: 32825390 PMCID: PMC7563687 DOI: 10.3390/cells9091928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin–proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
Collapse
|
35
|
Assar EA, Tumbarello DA. Loss of the Essential Autophagy Regulators FIP200 or Atg5 Leads to Distinct Effects on Focal Adhesion Composition and Organization. Front Cell Dev Biol 2020; 8:733. [PMID: 32850845 PMCID: PMC7417463 DOI: 10.3389/fcell.2020.00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an essential catabolic intracellular pathway that maintains homeostasis by degrading long-lived proteins, damaged organelles, and provides an energy source during nutrient starvation. It is now understood that autophagy has discrete functions as a selective lysosomal degradation pathway targeting large cytosolic structural and signaling complexes to influence cell motility and adhesion. We provide evidence suggesting the primary autophagy regulators Atg5 and FIP200 both play a role in cell motility and extracellular matrix adhesion. However, their loss of function has a differential impact on focal adhesion composition and organization, as well as signaling in response to fibronectin induced cell spreading. This differential impact on focal adhesions is illustrated by smaller focal adhesion complexes and a decrease in FAK, paxillin, and vinculin expression associated with FIP200 loss of function. In contrast, Atg5 loss of function results in production of large and stable focal adhesions, characterized by their retention of phosphorylated FAK and Src, which correlates with increased vinculin and FAK protein expression. Importantly, autophagy is upregulated during processes associated with focal adhesion reorganization and their exhibits colocalization of autophagosomes with focal adhesion cargo. Interestingly, FIP200 localizes to vinculin-rich focal adhesions and its loss negatively regulates FAK phosphorylation. These data collectively suggest FIP200 and Atg5 may have both autophagy-dependent and -independent functions that provide distinct mechanisms and impacts on focal adhesion dynamics associated with cell motility.
Collapse
Affiliation(s)
- Emelia A Assar
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Shi X, Yokom AL, Wang C, Young LN, Youle RJ, Hurley JH. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. J Cell Biol 2020; 219:e201911047. [PMID: 32516362 PMCID: PMC7337493 DOI: 10.1083/jcb.201911047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 01/11/2023] Open
Abstract
The autophagy-initiating human ULK complex consists of the kinase ULK1/2, FIP200, ATG13, and ATG101. Hydrogen-deuterium exchange mass spectrometry was used to map their mutual interactions. The N-terminal 640 residues (NTD) of FIP200 interact with the C-terminal IDR of ATG13. Mutations in these regions abolish their interaction. Negative stain EM and multiangle light scattering showed that FIP200 is a dimer, while a single molecule each of the other subunits is present. The FIP200NTD is flexible in the absence of ATG13, but in its presence adopts the shape of the letter C ∼20 nm across. The ULK1 EAT domain interacts loosely with the NTD dimer, while the ATG13:ATG101 HORMA dimer does not contact the NTD. Cryo-EM of the NTD dimer revealed a structural similarity to the scaffold domain of TBK1, suggesting an evolutionary similarity between the autophagy-initiating TBK1 kinase and the ULK1 kinase complex.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
| | - Adam L. Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Lindsey N. Young
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - James H. Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
37
|
Okamoto T, Yeo SK, Hao M, Copley MR, Haas MA, Chen S, Guan JL. FIP200 Suppresses Immune Checkpoint Therapy Responses in Breast Cancers by Limiting AZI2/TBK1/IRF Signaling Independent of Its Canonical Autophagy Function. Cancer Res 2020; 80:3580-3592. [PMID: 32580962 DOI: 10.1158/0008-5472.can-20-0519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICI) have the potential to induce durable therapeutic responses, yet response rates in breast cancer are modest and limited to particular subtypes. To expand the applicability of ICI, we examined the role of an essential autophagy gene, FIP200, which has been shown to be important for tumor progression in mammary tumors. Specific disruption of the autophagy function of FIP200 or complete ablation of FIP200 in genetic mouse models revealed that FIP200 autophagy function was required for progression of PyMT-driven mammary tumors. However, a noncanonical autophagy function of FIP200 was responsible for limiting T-cell recruitment and activation of the TBK1-IFN signaling axis. FIP200 also interacted with the TBK1 adaptor protein, AZI2, which was crucial for activation of TBK1 following FIP200 ablation. Accordingly, disrupting the noncanonical autophagy function of FIP200 in combination with ICI therapy led to superior, durable responses in immune-competent models of breast cancer. Collectively, these insights could guide future development of therapeutic agents against FIP200 for combinatorial ICI therapies in nonresponsive breast cancers. SIGNIFICANCE: These findings show that deletion of FIP200 enhances immune checkpoint inhibitor efficacy in nonresponsive breast cancer.
Collapse
Affiliation(s)
- Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary Rose Copley
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
38
|
Chen Q, Shao X, Hao M, Fang H, Guan R, Tian Z, Li M, Wang C, Ji L, Chao H, Guan JL, Diao J. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials 2020; 250:120059. [PMID: 32339858 DOI: 10.1016/j.biomaterials.2020.120059] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Super-resolution optical microscopy has extended the spatial resolution of cell biology from the cellular level to the nanoscale, enabling the observation of the interactive behavior of single mitochondria and lysosomes. Quantitative parametrization of interactions between mitochondria and lysosomes under super-resolution optical microscopy, however, is currently unavailable, which has severely limited our understanding of the molecular machinery underlying mitochondrial functionality. Here, we introduce an M-value to quantitatively investigate mitochondria and lysosome contact (MLC) and mitophagy under structured illumination microscopy. We found that the M-value for an MLC is typically less than 0.4, whereas in mitophagy it ranges from 0.5 to 1.0. This system permits further investigation of the detailed molecular mechanism governing the interactive behavior of mitochondria and lysosomes.
Collapse
Affiliation(s)
- Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xintian Shao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Hongbao Fang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
39
|
Towers CG, Wodetzki D, Thorburn A. Autophagy-dependent cancer cells circumvent loss of the upstream regulator RB1CC1/FIP200 and loss of LC3 conjugation by similar mechanisms. Autophagy 2020; 16:1332-1340. [PMID: 32160093 DOI: 10.1080/15548627.2020.1741204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy degrades proteins and organelles to generate macromolecular building blocks. As such, some cancer cells are particularly dependent on autophagy. In a previous paper, we found that even highly autophagy-dependent cancer cells can adapt to circumvent autophagy inhibition. However, it remains unclear if autophagy-dependent cancer cells could survive the complete elimination of autophagosome formation. We extended our previous findings to show that knockout (KO) of both the upstream autophagy regulator RB1CC1/FIP200 and the downstream regulator and mediator of LC3 conjugation, ATG7, strongly inhibits growth in highly autophagy-dependent cells within one week of editing. However, rare clones survived the loss of ATG7 or RB1CC1 and maintained growth even under autophagy-inducing conditions. Autophagy-dependent cells circumvent the complete loss of autophagy that is mediated by RB1CC1 KO, similar to the loss of ATG7, by upregulating NFE2L2/NRF2 signaling. These results indicate that cancer cell lines could adapt to the complete loss of autophagy by changing their biology to adopt alternative ways of dealing with autophagy-mediated cellular functions. ABBREVIATIONS CGS: CRISPR growth score; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: Earl's balanced salt solution; EEF2: eukaryotic translation elongation factor 2; FOXO3/FOXO3a: forkhead box O3; GFP: green fluorescent protein; KEAP1: kelch Like ECH associated protein 1; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NLS: nuclear localization signal; PCNA: proliferating cell nuclear antigen; PE: phosphatidylethanolamine; POLR2A: RNA polymerase II subunit A; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SNARE: soluble NSF attachment protein receptor; SQSTM1: sequestosome 1; STX17: syntaxin 17; TBHP: tert-butyl hydroperoxide; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; WT: wild type.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Darya Wodetzki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| |
Collapse
|
40
|
Autophagy-Independent Functions of the Autophagy Machinery. Cell 2020; 177:1682-1699. [PMID: 31199916 PMCID: PMC7173070 DOI: 10.1016/j.cell.2019.05.026] [Citation(s) in RCA: 583] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Macroautophagy (herein referred to as autophagy) is an evolutionary ancient mechanism that culminates with the lysosomal degradation of superfluous or potentially dangerous cytosolic entities. Over the past 2 decades, the molecular mechanisms underlying several variants of autophagy have been characterized in detail. Accumulating evidence suggests that most, if not all, components of the molecular machinery for autophagy also mediate autophagy-independent functions. Here, we discuss emerging data on the non-autophagic functions of autophagy-relevant proteins.
Collapse
|
41
|
Eickhorst C, Licheva M, Kraft C. Scaffold proteins in bulk and selective autophagy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:15-35. [PMID: 32620241 DOI: 10.1016/bs.pmbts.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autophagy is a crucial cellular degradation and recycling pathway. During autophagy double-membrane vesicles, called autophagosomes, encapsulate cellular components and deliver their cargo to the lytic compartment for degradation. Formation of autophagosomes is regulated by the Atg1 kinase complex in yeast and the homologous ULK1 kinase complex in mammals. While research on Atg1 and ULK1 has advanced our understanding of how these protein kinases function in autophagy, the other Atg1/ULK1 kinase complex members have received much less attention. Here, we focus on the functions of the Atg1 kinase complex members Atg11 and Atg17 as well as the ULK1 kinase complex member FIP200 in autophagy. These three proteins act as scaffolds in their respective complexes. Recent studies have made it evident that they have similar but also distinct functions. In this article, we review our current understanding of how these scaffold proteins function from autophagosome formation to fusion and also discuss their possible roles in diseases.
Collapse
Affiliation(s)
- Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
Wang QW, Liu HJ, Zhao Z, Zhang Y, Wang Z, Jiang T, Bao ZS. Prognostic Correlation of Autophagy-Related Gene Expression-Based Risk Signature in Patients with Glioblastoma. Onco Targets Ther 2020; 13:95-107. [PMID: 32021258 PMCID: PMC6954841 DOI: 10.2147/ott.s238332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Autophagy plays a vital role in cancer initiation, malignant progression, and resistance to treatment; however, autophagy-related gene sets have rarely been analyzed in glioblastoma. The purpose of this study was to evaluate the prognostic significance of autophagy-related genes in patients with glioblastoma. Patients and methods Here, we collected whole transcriptome expression data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets to explore the relationship between autophagy-related gene expression and glioblastoma prognosis. R language was the primary analysis and drawing tool. Results We screened 531 autophagy-related genes and identified 14 associated with overall survival in data from 986 patients with glioblastoma. Patients could be clustered into two groups (high and low risk) using expression data from the 14 associated genes, based on significant differences in clinicopathology and prognosis. Next, we constructed a signature based on the 14 genes and found that most patients designated high risk using our gene signature were IDH wild-type, MGMT promoter non-methylated, and likely to have more malignant tumor subtypes (including classical and mesenchymal subtypes). Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with their low-risk counterparts. Cox regression analysis further confirmed the independent prognostic value of our 14 gene signature. Moreover, functional and ESTIMATE analyses revealed enrichment of immune and inflammatory responses in the high-risk group. Conclusion In this study, we identified a novel autophagy-related signature for the prediction of prognosis in patients with glioblastoma.
Collapse
Affiliation(s)
- Qiang-Wei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Han-Jie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ying Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.,Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
43
|
Turco E, Fracchiolla D, Martens S. Recruitment and Activation of the ULK1/Atg1 Kinase Complex in Selective Autophagy. J Mol Biol 2020; 432:123-134. [PMID: 31351898 PMCID: PMC6971721 DOI: 10.1016/j.jmb.2019.07.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/26/2023]
Abstract
Autophagy is a major cellular degradation pathway, which mediates the delivery of cytoplasmic cargo material into lysosomes. This is achieved by the specific sequestration of the cargo within double-membrane vesicles, the autophagosomes, which form de novo around this material. Autophagosome formation requires the action of a conserved set of factors, which act in hierarchical manner. The ULK1/Atg1 kinase complex is one of the most upstream acting components of the autophagy machinery. Here we discuss recent insights into the mechanisms of ULK1/Atg1 recruitment and activation at the cargo during selective autophagy. In particular, we will focus on the role of cargo receptors such as p62 and NDP52 during this process and discuss the emerging concept that cargo receptors act upstream of the autophagy machinery during cargo-induced selective autophagy.
Collapse
Affiliation(s)
- Eleonora Turco
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| |
Collapse
|
44
|
Abstract
Metastasis is the most important biological potential of malignant tumour cells. A variety of mechanisms is involved in regulating tumour invasion and metastasis and interacts with each other, forming a large regulatory system. Autophagy plays an important role in organisms in maintaining environmental homoeostasis. A large amount of evidence has shown that autophagy is also involved in tumour development processes, including invasion and metastasis. Autophagy not only controls some biological processes in tumour cells but is also affected by the microenvironment. Therefore, the role of autophagy in tumours is far more important and complicated than previously estimated. The role of autophagy in tumour metastasis will be discussed in this chapter.
Collapse
|
45
|
Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019; 176:11-42. [PMID: 30633901 DOI: 10.1016/j.cell.2018.09.048] [Citation(s) in RCA: 1767] [Impact Index Per Article: 353.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The lysosomal degradation pathway of autophagy plays a fundamental role in cellular, tissue, and organismal homeostasis and is mediated by evolutionarily conserved autophagy-related (ATG) genes. Definitive etiological links exist between mutations in genes that control autophagy and human disease, especially neurodegenerative, inflammatory disorders and cancer. Autophagy selectively targets dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes may lead to disease. Moreover, ATG genes have diverse physiologically important roles in other membrane-trafficking and signaling pathways. This Review discusses the biological functions of autophagy genes from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
Collapse
|
46
|
Wang C, Haas MA, Yang F, Yeo S, Okamoto T, Chen S, Wen J, Sarma P, Plas DR, Guan JL. Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells. Nat Metab 2019; 1:1127-1140. [PMID: 32577608 PMCID: PMC7311104 DOI: 10.1038/s42255-019-0137-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jian Wen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Breast Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
48
|
Autophagy genes in myeloid cells counteract IFNγ-induced TNF-mediated cell death and fatal TNF-induced shock. Proc Natl Acad Sci U S A 2019; 116:16497-16506. [PMID: 31346084 DOI: 10.1073/pnas.1822157116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Host inflammatory responses must be tightly regulated to ensure effective immunity while limiting tissue injury. IFN gamma (IFNγ) primes macrophages to mount robust inflammatory responses. However, IFNγ also induces cell death, and the pathways that regulate IFNγ-induced cell death are incompletely understood. Using genome-wide CRISPR/Cas9 screening, we identified autophagy genes as central mediators of myeloid cell survival during the IFNγ response. Hypersensitivity of autophagy gene-deficient cells to IFNγ was mediated by tumor necrosis factor (TNF) signaling via receptor interacting protein kinase 1 (RIPK1)- and caspase 8-mediated cell death. Mice with myeloid cell-specific autophagy gene deficiency exhibited marked hypersensitivity to fatal systemic TNF administration. This increased mortality in myeloid autophagy gene-deficient mice required the IFNγ receptor, and mortality was completely reversed by pharmacologic inhibition of RIPK1 kinase activity. These findings provide insight into the mechanism of IFNγ-induced cell death via TNF, demonstrate a critical function of autophagy genes in promoting cell viability in the presence of inflammatory cytokines, and implicate this cell survival function in protection against mortality during the systemic inflammatory response.
Collapse
|
49
|
Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T, Nighot P. Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol Cell Physiol 2019; 316:C753-C765. [PMID: 30892937 DOI: 10.1152/ajpcell.00246.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defective tight junction (TJ) barrier is a key pathogenic factor for inflammatory bowel disease. Previously, we have shown that autophagy, a cell survival mechanism, enhances intestinal epithelial TJ barrier function. Autophagy-related protein-6 (ATG6/beclin 1), a key protein in the autophagy pathway, also plays a role in the endocytic pathway. The constitutive role of beclin 1 in the intestinal TJ barrier is not known. In Caco-2 cells, beclin 1 was found to be coimmunoprecipitated with the TJ protein occludin and colocalized with occludin on the membrane. Treatment of Caco-2 cells with beclin 1 peptide [transactivating regulatory protein (Tat)-beclin 1] reduced TJ barrier function. Activation of beclin 1 increased occludin endocytosis and reduced total occludin protein level. In contrast, beclin 1 siRNA transfection enhanced Caco-2 TJ barrier function. In pharmacologic and genetic autophagy inhibition studies, the constitutive function of beclin 1 in the TJ barrier was found to be autophagy independent. However, de novo induction of autophagy with starvation or rapamycin prevented Tat-beclin 1-induced increase in TJ permeability and reduction in occludin level. Induction of autophagy also resulted in reduced beclin 1-occludin association. In mouse colon, beclin 1 colocalized with occludin on the epithelial membrane. Perfusion of mouse colon with beclin 1 peptide caused an increase in colonic TJ permeability that was prevented by in vivo induction of autophagy. These findings show that beclin 1 plays a constitutive, autophagy-independent role in the regulation of intestinal TJ barrier function via endocytosis of occludin. Autophagy terminates constitutive beclin 1 function in the TJ barrier and enhances the TJ barrier.
Collapse
Affiliation(s)
- Morgan Wong
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | | | - Eric Suchanec
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Laura Laidler
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Thomas Ma
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| | - Prashant Nighot
- Department of Medicine, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania
| |
Collapse
|
50
|
Vargas JNS, Wang C, Bunker E, Hao L, Maric D, Schiavo G, Randow F, Youle RJ. Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Mol Cell 2019; 74:347-362.e6. [PMID: 30853401 PMCID: PMC6642318 DOI: 10.1016/j.molcel.2019.02.010] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis. NDP52 associates with the ULK1 complex through FIP200, facilitated by TBK1 NDP52/TBK1 targets ULK1 to cargo to initiate autophagy in the absence of LC3 ULK1 is activated on cargo independently of AMPK and mTOR activity Ectopic recruitment of FIP200-binding peptide is sufficient to degrade cargo
Collapse
Affiliation(s)
- Jose Norberto S Vargas
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling Hao
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, University College London, London WC1E 6BT, UK
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|