1
|
Wang J, Xing L. Therapeutic targeting of cGAS-STING pathway in lung cancer. Cell Biol Int 2025; 49:129-138. [PMID: 39648304 DOI: 10.1002/cbin.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 12/10/2024]
Abstract
The presence of DNA in the cytosol triggers a protective response from the innate immune system. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) is an essential cytosolic DNA sensor that triggers a potent innate immune response. As a result of this signaling cascade reaction, type I interferon and other immune mediators activate an immune response. The cGAS-STING pathway has great anticancer immunity-boosting potential since it produces type I interferons. The detection of double-stranded DNA (dsDNA) in response to various stimuli initiates a protective host's cGAS-STING signals. So, it is clear that a substantial relationship is expected between cancer biotherapy and the functioning of the cGAS-STING pathway. Several STING agonists with promising outcomes have been created for preclinical cancer therapy research. Notably, immunotherapy has dramatically extended patient survival and radically altered the course of lung cancer treatment, particularly in more advanced instances. However, this method is still ineffective for a large number of lung cancer patients. cGAS-STING can overcome resistance and boost anticancer immunity by stimulating the activity of many pro-inflammatory mediators, augmenting dendritic cell cross-presentation, and initiating a tumor-specific CD8+ T cell response. This review aims to present the most recent results on the functionality of the cGAS-STING pathway in cancer progression and its potential as an immunotherapy target, with a focus on lung cancer.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Lumin Xing
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Li Z, Lin X, Yang Y, Tian M, Zhang L, Huang F, Wen X, Wei Z, Tian Y. EXO1 is a key gene for lung-resident memory T cells and has diagnostic and predictive values for lung adenocarcinoma. Sci Rep 2025; 15:4002. [PMID: 39893221 PMCID: PMC11787328 DOI: 10.1038/s41598-025-88126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a very common and lethal kind of lung malignancy. An increasing number of studies indicated that tissue-resident memory T (TRM) cells played significant roles in anti-cancer immunity. In our previous study, EXO1 was found to be a core gene for TRM cells in the prognosis of LUAD. However, the roles of EXO1 in the tumor microenvironment, and its application in the diagnosis and prognosis prediction of LUAD are still inadequately explored. In this study, the RNA expression, DNA methylation, CNV, somatic mutation data of EXO1, and the corresponding patients' clinical information from publicly available databases were analyzed using bioinformatic methods. The results were validated through immunohistochemical staining of EXO1 in LUAD samples. The results showed EXO1 was aberrantly highly expressed in LUAD tissues. High expression of EXO1 was a risky factor for LUAD patients. The expression level of EXO1 was associated with many clinical features such as TNM stages. It can also distinguish normal tissues and LUAD tumor tissues accurately. EXO1 expression was correlated with the infiltration of immune cells, and high expression of EXO1 was an adverse effect on LUAD patients receiving anti-PD-1/PD-L1 immunotherapy. Moreover, patients with EXO1 mutation had worse DSS, DFI and PFI.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, P.R. China
| | - Yuanhui Yang
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
| | - Mei Tian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, P.R. China
| | - Lu Zhang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Fujing Huang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiao Wen
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, 250014, Jinan, P.R. China.
| | - Yuan Tian
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China.
| |
Collapse
|
3
|
Kong N, Chen K, Chanboonyasitt P, Jiang H, Wong K, Ma H, Chan Y. The interplay of the translocase activity and protein recruitment function of PICH in ultrafine anaphase bridge resolution and genomic stability. Nucleic Acids Res 2025; 53:gkae1249. [PMID: 39704103 PMCID: PMC11797016 DOI: 10.1093/nar/gkae1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Incomplete sister centromere decatenation results in centromeric ultrafine anaphase bridges (UFBs). PICH (PLK1-interacting checkpoint helicase), a DNA translocase, plays a crucial role in UFB resolution by recruiting UFB-binding proteins and stimulating topoisomerase IIα. However, the involvement of distinct PICH functions in UFB resolution remains ambiguous. Here, we demonstrate that PICH depletion in non-transformed diploid cells induces DNA damage, micronuclei formation, p53 activation, G1-phase delay and cell death. Whole-genome sequencing reveals that segregation defects induced by PICH depletion cause chromosomal rearrangements, including translocations and inversions, emphasizing its significance in preserving genomic integrity. Furthermore, a PICH mutant that impairs UFB recruitment of BLM and RIF1 partially inhibits UFB resolution while a translocase-inactive mutant (PICHK128A) fails to resolve UFBs. Notably, expression of PICHK128A inhibits single-stranded UFB formation and induces hypocondensed chromosomes. We propose that PICH's translocase activity plays a dual role in promoting UFB resolution by facilitating the generation of single-stranded UFBs and stimulating topoisomerase IIα.
Collapse
Affiliation(s)
- Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kun Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Primrose Chanboonyasitt
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ka Yan Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hoi Tang Ma
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
4
|
Assouvie A, Gerbé-de-Thoré M, Torres C, Ménard V, Alfaro A, Deutsch E, Mondini M, Rousselet G. Deleting Trim33 in Myeloid Cells Improves the Efficiency of Radiotherapy through an IFNβ-Dependent Antitumor Immune Response. Cancer Immunol Res 2025; 13:109-121. [PMID: 39325415 DOI: 10.1158/2326-6066.cir-24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Radiotherapy (RT) triggers an immune response that contributes to antitumor effects. Induction of IFNβ is a key event in this immunogenicity of RT. We have previously shown that TRIM33, a chromatin reader, restrains IFNβ expression in Toll-like receptor-activated myeloid cells. In this study, we explored whether deleting Trim33 in myeloid cells might improve the radio-induced immune response and subsequent efficiency of RT. We first established that Trim33-/- bone marrow-derived macrophages showed increased expression of IFNβ in response to direct irradiation, or to treatment with irradiated cancer cells, further supporting our hypothesis. We then tested the efficiency of a single-dose RT in three subcutaneous tumor models and one orthotopic tumor model. In all models, myeloid deletion of Trim33 led to a significantly improved response after RT, leading to a complete and durable response in most of the treated mice bearing orthotopic oral tumors. This effect required the involvement of the type I IFN pathway and the presence of CD8+ T lymphocytes but not NK cells. In addition, cured mice were capable of rejecting a secondary tumor challenge, demonstrating an in situ vaccination effect. We conclude that deleting Trim33 in myeloid cells improves RT efficiency, through a mechanism involving the type I IFN pathway and the immune response. Our work suggests that myeloid Trim33 is a host factor affecting the tumor response to RT, thus representing a new potential therapeutic target for modifying RT responses.
Collapse
Affiliation(s)
- Anaïs Assouvie
- Laboratoire Réparation et Transcription dans les cellules Souches, Institut de Radiobiologie Cellulaire et Moléculaire, CEA/DRF/Jacob/IRCM, INSERM U1274, Université Paris-Saclay, Université Paris-Cité, Fontenay aux Roses, France
| | | | - Claire Torres
- Laboratoire Réparation et Transcription dans les cellules Souches, Institut de Radiobiologie Cellulaire et Moléculaire, CEA/DRF/Jacob/IRCM, INSERM U1274, Université Paris-Saclay, Université Paris-Cité, Fontenay aux Roses, France
| | - Véronique Ménard
- Plateforme d'Irradiation, Institut de Radiobiologie Cellulaire et Moléculaire, CEA/DRF/Jacob/IRCM, INSERM U1274, Université Paris-Saclay, Université Paris-Cité, Fontenay aux Roses, France
| | - Alexia Alfaro
- Gustave Roussy, Université Paris-Saclay, Plateforme Imagerie et Cytométrie, UMS 23/3655, Villejuif, France
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Germain Rousselet
- Laboratoire Réparation et Transcription dans les cellules Souches, Institut de Radiobiologie Cellulaire et Moléculaire, CEA/DRF/Jacob/IRCM, INSERM U1274, Université Paris-Saclay, Université Paris-Cité, Fontenay aux Roses, France
| |
Collapse
|
5
|
Du Y, Salehi-Rad R, Zhang TH, Crosson WP, Abascal J, Chen D, Shi Y, Jiang H, Tseng YW, Ma X, Hong M, Wang S, Wang X, Tang K, Hu S, Li Y, Ni S, Cai Y, Tappuni S, Shen Y, Liu B, Sun R. Hyper-Interferon Sensitive Influenza Induces Adaptive Immune Responses and Overcomes Resistance to Anti-PD-1 in Murine Non-Small Cell Lung Cancer. Cancer Immunol Res 2024; 12:1765-1779. [PMID: 39325056 PMCID: PMC11612624 DOI: 10.1158/2326-6066.cir-23-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Despite recent advances in immunotherapy with immune checkpoint inhibitors, many patients with non-small cell lung cancer (NSCLC) fail to respond or develop resistance after an initial response. In situ vaccination (ISV) with engineered viruses has emerged as a promising antigen-agnostic strategy that can both condition the tumor microenvironment and augment antitumor T-cell responses to overcome immune resistance. We engineered a live attenuated viral vaccine, hyper-IFN-sensitive (HIS) virus, by conducting a genome-wide functional screening and introducing eight IFN-sensitive mutations in the influenza genome to enhance host IFN response. Compared with wild-type influenza, HIS replication was attenuated in immunocompetent hosts, enhancing its potential as a safe option for cancer therapy. HIS ISV elicited robust yet transient type I IFN responses in murine NSCLCs, leading to an enrichment of polyfunctional effector Th1 CD4+ T cells and cytotoxic CD8+ T cells into the tumor. HIS ISV demonstrated enhanced antitumor efficacy compared with wild-type in multiple syngeneic murine models of NSCLC with distinct driver mutations and varying mutational burden. This efficacy was dependent on host type 1 IFN responses and T lymphocytes. HIS ISV overcame resistance to anti-PD-1 in LKB1-deficient murine NSCLC, resulting in improved overall survival and systemic tumor-specific immunity. These studies provide compelling evidence to support further clinical evaluation of HIS as an "off-the-shelf" ISV strategy for patients with NSCLC refractory to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Tian-hao Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - William P. Crosson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jensen Abascal
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dongdong Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hong Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yen-Wen Tseng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Xi Ma
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengying Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sihan Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xijuan Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejun Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyao Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaokai Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqi Cai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shahed Tappuni
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yong Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ren Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
6
|
Técher H, Kemiha S, Aobuli X, Kolinjivadi AM. Oncogenic RAS in Cancers from the DNA Replication Stress and Senescence Perspective. Cancers (Basel) 2024; 16:3993. [PMID: 39682179 DOI: 10.3390/cancers16233993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Rat Sarcoma (RAS)-driven cancers have been one of the main foci in the field of cancer science for over four decades. Despite significant improvement in understanding the biology of RAS oncogene, the method to target RAS-mutated cancers is still unclear. In recent years, the role for RAS beyond its hyperproliferation has been extensively documented. In this review, we systematically address and dwell on the details of the mechanisms of RAS oncogene-mediated alteration in the DNA replication and DNA damage response (DDR) pathways, focusing on lung cancers. We further extend this molecular connection towards cytosolic DNA accumulation, innate immune activation and senescence in RAS-addicted cancers. At the end, we briefly speculate on the potential strategies for targeting RAS mutated lung cancers, considering various approaches targeting DNA replication, DNA repair and the cGAS-STING pro-inflammatory pathway. These new lines of therapy, especially when used in combinations, may enhance treatment efficacy and overcome the challenges associated with these mutations.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Samira Kemiha
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Xieraili Aobuli
- Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arun Mouli Kolinjivadi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
7
|
Jiang T, Zhu F, Gao X, Wu X, Zhu W, Guo C. Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 245:114343. [PMID: 39486374 DOI: 10.1016/j.colsurfb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feikai Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Cui X, Xu J, Jia X. Targeting mitochondria: a novel approach for treating platinum-resistant ovarian cancer. J Transl Med 2024; 22:968. [PMID: 39456101 PMCID: PMC11515418 DOI: 10.1186/s12967-024-05770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Ovarian cancer is a prevalent gynecologic malignancy with the second-highest mortality rate among gynecologic malignancies. Platinum-based chemotherapy is the first-line treatment for ovarian cancer; however, a majority of patients with ovarian cancer experience relapse and develop platinum resistance following initial treatment. Despite extensive research on the mechanisms of platinum resistance at the nuclear level, the issue of platinum resistance in ovarian cancer remains largely unresolved. It is noteworthy that mitochondrial DNA (mtDNA) exhibits higher affinity for platinum compared to nuclear DNA (nDNA). Mutations in mtDNA can modulate tumor chemosensitivity through various mechanisms, including DNA damage responses, shifts in energy metabolism, maintenance of Reactive Oxygen Species (ROS) homeostasis, and alterations in mitochondrial dynamics. Concurrently, retrograde signals produced by mtDNA mutations and their subsequent cascades establish communication with the nucleus, leading to the reorganization of the nuclear transcriptome and governing the transcription of genes and signaling pathways associated with chemoresistance. Furthermore, mitochondrial translocation among cells emerges as a crucial factor influencing the effectiveness of chemotherapy in ovarian cancer. This review aims to explore the role and mechanism of mitochondria in platinum resistance, with a specific focus on mtDNA mutations and the resulting metabolic reprogramming, ROS regulation, changes in mitochondrial dynamics, mitochondria-nucleus communication, and mitochondrial transfer.
Collapse
Affiliation(s)
- Xin Cui
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, China.
| | - Xuemei Jia
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, China.
| |
Collapse
|
9
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
10
|
Zhuo H, Hou J, Hong Z, Yu S, Peng H, Zhang L, Xie W, Hong X. TAGLN2 induces resistance signature ISGs by activating AKT-YBX1 signal with dual pathways and mediates the IFN-related DNA damage resistance in gastric cancer. Cell Death Dis 2024; 15:608. [PMID: 39168971 PMCID: PMC11339399 DOI: 10.1038/s41419-024-07000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Recently, various cancer types have been identified to express a distinct subset of Interferon-stimulated genes (ISGs) that mediate therapy resistance. The mechanism through which cancer cells maintain prolonged Interferon stimulation effects to coordinate resistance remains unclear. Our research demonstrated that aberrant upregulation of TAGLN2 is associated with gastric cancer progression, and inhibiting its expression renders gastric cancer cells more susceptible to chemotherapy and radiation. We uncovered a novel role for TAGLN2 in the upregulation of resistance signature ISGs by enhancing YBX1-associated ssDNA aggregation and cGAS-STING pathway activation. TAGLN2 modulates YBX1 by recruiting c-Myc and SOX9 to YBX1 promoter region and directly interacting with AKT-YBX1, thereby enhancing YBX1 phosphorylation and nuclear translocation. Significantly, targeted downregulation of key proteins, inhibition of the TAGLN2-YBX1-AKT interaction (using Fisetin or MK2206) or disruption of the cGAS-STING pathway substantially reduced ssDNA accumulation, subsequent ISGs upregulation, and therapy resistance. The combination of Cisplatin with MK2206 displayed a synergistic effect in the higher TAGLN2-expressing xenograft tumors. Clinical analysis indicated that a derived nine-gene set effectively predicts therapeutic sensitivity and long-term prognosis in gastric cancer patients. These findings suggest that TAGLN2, YBX1 and induced ISGs are novel predictive markers for clinical outcomes, and targeting this axis is an attractive therapeutic sensitization strategy.
Collapse
Affiliation(s)
- Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China.
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Zhijun Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Shuqi Yu
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lihua Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Wen Xie
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China.
| |
Collapse
|
11
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
12
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
13
|
Pan D, Wang Q, Shen A, Qi Z, Zheng C, Hu B. When DNA damage responses meet tumor immunity: From mechanism to therapeutic opportunity. Int J Cancer 2024; 155:384-399. [PMID: 38655783 DOI: 10.1002/ijc.34954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
DNA damage is a prevalent phenomenon in the context of cancer progression. Evidence suggests that DNA damage responses (DDR) are pivotal in overcoming tumor immune evasion. Alternatively, traditional radiotherapy and chemotherapy operate by inducing DNA damage, consequently stimulating the immune system to target tumors. The intricate interplay between signaling pathways involved in DDR and immune activation underscores the significance of considering both factors in developing improved immunotherapies. By delving deeper into the mechanisms underlying immune activation brought on by DNA damage, it becomes possible to identify novel treatment approaches that boost the anticancer immune response while minimizing undesirable side effects. This review explores the mechanisms behind DNA damage-induced antitumor immune responses, the importance of DNA damage in antitumor immunity, and potential therapeutic approaches for cancer immunotherapy targeting DDR. Additionally, we discuss the challenges of combination therapy and strategies for integrating DNA damage-targeting therapies with current cancer immunotherapy. In summary, this review highlights the critical role of DNA damage in tumor immunology, underscoring the potential of DDR inhibitors as promising therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qi Wang
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Qi
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Smeets MWE, Steeghs EMP, Orsel J, Stalpers F, Vermeeren MMP, Veltman CHJ, Slenders L, Nierkens S, Van de Ven C, Den Boer ML. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/β response in bone marrow-derived mesenchymal stroma. Haematologica 2024; 109:2073-2084. [PMID: 38426282 PMCID: PMC11215384 DOI: 10.3324/haematol.2023.283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can hijack the normal bone marrow microenvironment to create a leukemic niche which facilitates blast cell survival and promotes drug resistance. Bone marrow-derived mesenchymal stromal cells (MSC) mimic this protective environment in ex vivo co-cultures with leukemic cells obtained from children with newly diagnosed BCP-ALL. We examined the potential mechanisms of this protection by RNA sequencing of flow-sorted MSC after co-culture with BCP-ALL cells. Leukemic cells induced an interferon (IFN)-related gene signature in MSC, which was partially dependent on direct cell-cell signaling. The signature was selectively induced by BCP-ALL cells, most profoundly by ETV6-RUNX1-positive ALL cells, as co-culture of MSC with healthy immune cells did not provoke a similar IFN signature. Leukemic cells and MSC both secreted IFNα and IFNβ, but not IFNγ. In line, the IFN gene signature was sensitive to blockade of IFNα/β signaling, but less to that of IFNγ. The viability of leukemic cells and level of resistance to three chemotherapeutic agents was not affected by interference with IFN signaling using selective IFNα/β inhibitors or silencing of IFN-related genes. Taken together, our data suggest that the leukemia-induced expression of IFNα/β-related genes by MSC does not support survival of BCP-ALL cells but may serve a different role in the pathobiology of BCP-ALL.
Collapse
Affiliation(s)
- Mandy W E Smeets
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - Jan Orsel
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | | | | | | | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center, Utrecht
| | | | - Monique L Den Boer
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht.
| |
Collapse
|
15
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
16
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
18
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
19
|
Yang M, Gao L, Gao Y, Hao Z, Zhou X, Su G, Bai C, Wei Z, Liu X, Yang L, Li G. Inactivation of Myostatin Delays Senescence via TREX1-SASP in Bovine Skeletal Muscle Cells. Int J Mol Sci 2024; 25:5277. [PMID: 38791317 PMCID: PMC11120739 DOI: 10.3390/ijms25105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (M.Y.); (L.G.); (Y.G.); (Z.H.); (X.Z.); (G.S.); (C.B.); (Z.W.); (X.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (M.Y.); (L.G.); (Y.G.); (Z.H.); (X.Z.); (G.S.); (C.B.); (Z.W.); (X.L.)
| |
Collapse
|
20
|
Saha R, Pal R, Ganguly B, Majhi B, Dutta S. Mono-quinoxaline-induced DNA structural alteration leads to ZBP1/RIP3/MLKL-driven necroptosis in cancer cells. Eur J Med Chem 2024; 270:116377. [PMID: 38581731 DOI: 10.1016/j.ejmech.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.
Collapse
Affiliation(s)
- Rimita Saha
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritesh Pal
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaskar Ganguly
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
22
|
Petito V, Di Vincenzo F, Putignani L, Abreu MT, Regenberg B, Gasbarrini A, Scaldaferri F. Extrachromosomal Circular DNA: An Emerging Potential Biomarker for Inflammatory Bowel Diseases? Genes (Basel) 2024; 15:414. [PMID: 38674347 PMCID: PMC11049804 DOI: 10.3390/genes15040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) comprising ulcerative colitis and Crohn's disease is a chronic immune-mediated disease which affects the gastrointestinal tract with a relapsing and remitting course, causing lifelong morbidity. IBD pathogenesis is determined by multiple factors including genetics, immune and microbial factors, and environmental factors. Although therapy options are expanding, remission rates are unsatisfiable, and together with the disease course, response to therapy remains unpredictable. Therefore, the identification of biomarkers that are predictive for the disease course and response to therapy is a significant challenge. Extrachromosomal circular DNA (eccDNA) fragments exist in all tissue tested so far. These fragments, ranging in length from a few hundreds of base pairs to mega base pairs, have recently gained more interest due to technological advances. Until now, eccDNA has mainly been studied in relation to cancer due to its ability to act as an amplification site for oncogenes and drug resistance genes. However, eccDNA could also play an important role in inflammation, expressed both locally in the- involved tissue and at distant sites. Here, we review the current evidence on the molecular mechanisms of eccDNA and its role in inflammation and IBD. Additionally, the potential of eccDNA as a tissue or plasma marker for disease severity and/or response to therapy is evaluated.
Collapse
Affiliation(s)
- Valentina Petito
- Digestive Disease Center-CEMAD, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Di Vincenzo
- Digestive Disease Center-CEMAD, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenza Putignani
- UOS Microbiomica, UOC Microbiologia e Diagnostica di Immunologia, Dipartimento di Medicina Diagnostica e di Laboratorio, Ospedale Pediatrico “Bambino Gesù” IRCCS, 00146 Rome, Italy
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Birgitte Regenberg
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Franco Scaldaferri
- Digestive Disease Center-CEMAD, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Kang JA, Kim YJ, Jang KY, Moon HW, Lee H, Lee S, Song HK, Cho SW, Yoo YS, Han HG, Kim MJ, Chung MJ, Choi CY, Lee C, Chung C, Hur GM, Kim YS, Jeon YJ. SIRT1 ISGylation accelerates tumor progression by unleashing SIRT1 from the inactive state to promote its deacetylase activity. Exp Mol Med 2024; 56:656-673. [PMID: 38443596 PMCID: PMC10985095 DOI: 10.1038/s12276-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
ISG15 is an interferon-stimulated ubiquitin-like protein (UBL) with multifaceted roles as a posttranslational modifier in ISG15 conjugation (ISGylation). However, the mechanistic consequences of ISGylation in cancer have not been fully elucidated, largely due to a lack of knowledge on the ISG15 target repertoire. Here, we identified SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, as a new target for ISGylation. SIRT1 ISGylation impairs the association of SIRT1 with its negative regulator, deleted in breast cancer 1 (DBC1), which unleashes SIRT1 from its inactive state and leads to an increase in its deacetylase activity. Importantly, SIRT1 ISGylation promoted lung cancer progression and limited lung cancer cell sensitivity to DNA damage-based therapeutics in vivo and in vitro models. The levels of ISG15 mRNA and protein were significantly higher in lung cancer tissues than in adjacent normal tissues. Accordingly, elevated expression of SIRT1 and ISG15 was associated with poor prognosis in lung cancer patients, a finding that could be translated for lung cancer patient stratification and disease outcome evaluation. Taken together, our findings provide a mechanistic understanding of the regulatory effect of SIRT1 ISGylation on tumor progression and therapeutic efficacy in lung cancer.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yoon Jung Kim
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonjeong Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Sun Yoo
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Min-Ju Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University, School of Medicine & Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
24
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
25
|
Mavroeidi D, Georganta A, Panagiotou E, Syrigos K, Souliotis VL. Targeting ATR Pathway in Solid Tumors: Evidence of Improving Therapeutic Outcomes. Int J Mol Sci 2024; 25:2767. [PMID: 38474014 DOI: 10.3390/ijms25052767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Emmanouil Panagiotou
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantinos Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
26
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 2024; 187:861-881.e32. [PMID: 38301646 PMCID: PMC10980358 DOI: 10.1016/j.cell.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/23/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Vasciaveo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alina Vaitsiankova
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordan S Kesner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rialdi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | | | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Zhou S, Sun Y, Wang K, Gao X, Dong K, Wang J, Wu X, Guo C. Polyvinylpyrrolidone-Polydatin nanoparticles protect against oxaliplatin induced intestinal toxicity in vitro and in vivo. Food Chem Toxicol 2024; 184:114427. [PMID: 38160781 DOI: 10.1016/j.fct.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXL) is a first-line drug for the treatment of colon cancer, with excellent efficacy. Intestinal toxicity is a common side effect of OXL, with unclear pathogenesis and a lack of effective treatment strategies. Polydatin (PD) has anti-inflammatory and antioxidant activities and is a potential drug for treating intestinal diseases, but its poor water solubility limits its application. In this study, polyvinylpyrrolidone (PVP) was used as a carrier to prepare nanoparticles loaded with PD (PVP-PD), with a particle size of 92.42 nm and exhibiting sustained release properties. In vitro results showed that PVP-PD protected NCM460 cells from OXL induced injury, mitochondrial membrane potential (MMP) disruption, and accumulation of reactive oxygen species (ROS). The in vivo results demonstrated the protective effect of PVP-PD on intestinal toxicity induced by OXL, such as alleviating weight loss and colon length reduction induced by OXL. Both in vivo and in vitro mechanisms indicated that OXL induced DNA damage and activated the cGAS-STING pathway, further inducing the expression of inflammatory factors such as IL-1β and TNF-α. PVP-PD alleviated the aforementioned changes induced by OXL by inhibiting the DNA damage-cGAS-STING pathway. In summary, our study demonstrated that the DNA damage-cGAS-STING pathway was involved in OXL induced intestinal toxicity, and PVP-PD provided a potential strategy for treating OXL induced intestinal toxicity.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuxuan Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaidi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
28
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Loftus SN, McNeely KE, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576771. [PMID: 38328232 PMCID: PMC10849619 DOI: 10.1101/2024.01.23.576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kelsey E. McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amanda M. Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor
| | | | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Ha CT, Tageldein MM, Harding SM. The entanglement of DNA damage and pattern recognition receptor signaling. DNA Repair (Amst) 2024; 133:103595. [PMID: 37988925 DOI: 10.1016/j.dnarep.2023.103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Cells are under constant pressure to suppress DNA damage originating from both exogenous and endogenous sources. Cellular responses to DNA damage help to prevent mutagenesis and cell death that arises when DNA damage is either left unrepaired or repaired inaccurately. During the "acute phase" of DNA damage signaling, lesions are recognized, processed, and repaired to restore the primary DNA sequence whilst cell cycle checkpoints delay mitotic progression, cell death and the propagation of errors to daughter cells. Increasingly, there is recognition of a "chronic phase" of DNA damage signaling, exemplified by the secretion of dozens of cytokines days after the inciting damage event. In this review, we focus on the cellular origin of these chronic responses, the molecular pathways that control them and the increasing appreciation for the interconnection between acute and chronic DNA damage responses.
Collapse
Affiliation(s)
- Cindy T Ha
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maha M Tageldein
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Hou J, Zheng Y, Gao C. Regulation of cellular senescence by innate immunity. BIOPHYSICS REPORTS 2023; 9:338-351. [PMID: 38524701 PMCID: PMC10960571 DOI: 10.52601/bpr.2023.230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 03/26/2024] Open
Abstract
During the COVID-19 pandemic, the interplay between the processes of immunity and senescence is drawing more and more intensive attention. SARS-CoV-2 infection induces senescence in lung cells, failure to clear infected cells and increased presence of inflammatory factors could lead to a cytokine storm and acute respiratory disease syndrome (ARDS), which together with aging and age-associated disease lead to 70% of COVID-19-related deaths. Studies on how senescence initiates upon viral infection and how to restrict excessive accumulation of senescent cells to avoid harmful inflammation are crucially important. Senescence can induce innate immune signaling, and innate immunity can engage cell senescence. Here, we mainly review the innate immune pathways, such as cGAS-STING, TLRs, NF-κB, and NLRP3 inflammasome, participating in the senescence process. In these pathways, IFN-I and inflammatory factors play key roles. At the end of the review, we propose the strategies by which we can improve the immune function and reduce inflammation based on these findings.
Collapse
Affiliation(s)
- Jinxiu Hou
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
32
|
Mikhalkevich N, Russ E, Iordanskiy S. Cellular RNA and DNA sensing pathways are essential for the dose-dependent response of human monocytes to ionizing radiation. Front Immunol 2023; 14:1235936. [PMID: 38152396 PMCID: PMC10751912 DOI: 10.3389/fimmu.2023.1235936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Circulating monocytes are important players of the inflammatory response to ionizing radiation (IR). These IR-resistant immune cells migrate to radiation-damaged tissues and differentiate into macrophages that phagocytize dying cells, but also facilitate inflammation. Besides the effect of damage-associated molecular patterns, released from irradiated tissues, the inflammatory activation of monocytes and macrophages is largely dependent on IR-induced DNA damage and aberrant transcriptional activity, which may facilitate expression of type I interferons (IFN-I) and numerous inflammation-related genes. We analyzed the accumulation of dsRNA, dsDNA fragments, and RNA:DNA hybrids in the context of induction of RNA-triggered MAVS-mediated and DNA-triggered STING-mediated signaling pathways, in primary human monocytes and a monocytic cell line, THP1, in response to various doses of gamma IR. We found that exposure to lower doses (<7.5 Gy) led to the accumulation of dsRNA, along with dsDNA and RNA:DNA hybrids and activated both MAVS and STING pathway-induced gene expression and signaling activity of IFN-I. Higher doses of IR resulted in the reduced dsRNA level, degradation of RNA-sensing mediators involved in MAVS signaling and coincided with an increased accumulation of dsDNA and RNA:DNA hybrids that correlated with elevated STING signaling and NF-κB-dependent gene expression. While both pathways activate IFN-I expression, using MAVS- and STING-knockout THP1 cells, we identified differences in the spectra of interferon-stimulated genes (ISGs) that are associated with each specific signaling pathway and outlined a large group of STING signaling-associated genes. Using the RNAi technique, we found that increasing the dose of IR activates STING signaling through the DNA sensor cGAS, along with suppression of the DDX41 helicase, which is known to reduce the accumulation of RNA:DNA hybrids and thereby limit cGAS/STING signaling activity. Together, these results indicate that depending on the applied dose, IR leads to the activation of either dsRNA-induced MAVS signaling, which predominantly leads to the expression of both pro- and anti-inflammatory markers, or dsDNA-induced STING signaling that contributes to pro-inflammatory activation of the cells. While RNA:DNA hybrids boost both MAVS- and STING-mediated signaling pathways, these structures being accumulated upon high IR doses promote type I interferon expression and appear to be potent enhancers of radiation dose-dependent pro-inflammatory activation of monocytes.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Eric Russ
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of The Health Sciences, Bethesda, MD, United States
| |
Collapse
|
33
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
34
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
35
|
Moro RN, Biswas U, Kharat SS, Duzanic FD, Das P, Stavrou M, Raso MC, Freire R, Chaudhuri AR, Sharan SK, Penengo L. Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15. Nat Commun 2023; 14:6140. [PMID: 37783689 PMCID: PMC10545780 DOI: 10.1038/s41467-023-41801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
DNA replication and repair defects or genotoxic treatments trigger interferon (IFN)-mediated inflammatory responses. However, whether and how IFN signaling in turn impacts the DNA replication process has remained elusive. Here we show that basal levels of the IFN-stimulated gene 15, ISG15, and its conjugation (ISGylation) are essential to protect nascent DNA from degradation. Moreover, IFNβ treatment restores replication fork stability in BRCA1/2-deficient cells, which strictly depends on topoisomerase-1, and rescues lethality of BRCA2-deficient mouse embryonic stem cells. Although IFNβ activates hundreds of genes, these effects are specifically mediated by ISG15 and ISGylation, as their inactivation suppresses the impact of IFNβ on DNA replication. ISG15 depletion significantly reduces cell proliferation rates in human BRCA1-mutated triple-negative, whereas its upregulation results in increased resistance to the chemotherapeutic drug cisplatin in mouse BRCA2-deficient breast cancer cells, respectively. Accordingly, cells carrying BRCA1/2 defects consistently show increased ISG15 levels, which we propose as an in-built mechanism of drug resistance linked to BRCAness.
Collapse
Affiliation(s)
- Ramona N Moro
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Uddipta Biswas
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Prosun Das
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD, Rotterdam, the Netherlands
| | - Maria Stavrou
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Maria C Raso
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, La Laguna, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD, Rotterdam, the Netherlands
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland.
| |
Collapse
|
36
|
Zhang J, Dai H, Huo L, Burks JK, McGrail DJ, Lin SY. Cytosolic DNA accumulation promotes breast cancer immunogenicity via a STING-independent pathway. J Immunother Cancer 2023; 11:e007560. [PMID: 37907220 PMCID: PMC10619126 DOI: 10.1136/jitc-2023-007560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, ICB alone has demonstrated only benefit in a small subset of patients with breast cancer. Recent studies have shown that agents targeting DNA damage response improve the efficacy of ICB and promote cytosolic DNA accumulation. However, recent clinical trials have shown that these agents are associated with hematological toxicities. More effective therapeutic strategies are urgently needed. METHODS Primary triple negative breast cancer tumors were stained for cytosolic single-stranded DNA (ssDNA) using multiplex immunohistochemical staining. To increase cytosolic ssDNA, we genetically silenced TREX1. The role of tumor cytosolic ssDNA in promoting tumor immunogenicity and antitumor immune response was evaluated using murine breast cancer models. RESULTS We found the tumorous cytosolic ssDNA is associated with tumor-infiltrating lymphocyte in patients with triple negative breast cancer. TREX1 deficiency triggered a STING-independent innate immune response via DDX3X. Cytosolic ssDNA accumulation in tumors due to TREX1 deletion is sufficient to drastically improve the efficacy of ICB. We further identified a cytosolic ssDNA inducer CEP-701, which sensitized breast tumors to ICB without the toxicities associated with inhibiting DNA damage response. CONCLUSIONS This work demonstrated that cytosolic ssDNA accumulation promotes breast cancer immunogenicity and may be a novel therapeutic strategy to improve the efficacy of ICB with minimal toxicities.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Texas, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Texas, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
37
|
Goad DW, Nesmelova AY, Yohe LR, Grdzelishvili VZ. Intertumoral heterogeneity impacts oncolytic vesicular stomatitis virus efficacy in mouse pancreatic cancer cells. J Virol 2023; 97:e0100523. [PMID: 37671865 PMCID: PMC10537684 DOI: 10.1128/jvi.01005-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/07/2023] Open
Abstract
Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies demonstrated that human PDAC cell lines are highly variable in their permissiveness to OVs. Mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during OV and other cancer therapies, have never been examined systematically for the impact of intertumoral heterogeneity (the differences observed between tumors in different patients) on OV virus efficacy. Here, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines (C57BL6 genetic background): Panc02 (derived from chemically induced PDAC; also known as Pan02), and two cell lines originated from PDACs developed in two different KPC (KrasG12D, Trp53R172H, and PDX-1-Cre) mouse models. Our study (i) characterized the ability of a widely used attenuated oncolytic vesicular stomatitis virus VSV-ΔM51-GFP to infect, replicate in, and kill mouse PDAC cells; (ii) examined their innate antiviral responses; (iii) compared their permissiveness to a non-attenuated VSV-Mwt-GFP and chemotherapeutic drugs; and (iv) analyzed their karyotype and exome. Mouse PDAC cell lines showed high divergence in their permissiveness to VSV-ΔM51-GFP, which negatively correlated with their abilities to mount innate antiviral responses, while all three cell lines were highly permissive to VSV-Mwt-GFP. No correlation was found between resistance to VSV-ΔM51-GFP and chemotherapy. Also, mouse PDAC cell lines showed high divergence in their karyotype and exome. The exome analysis demonstrated that more VSV-ΔM51-GFP-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. IMPORTANCE Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies using various human PDAC cell lines demonstrated that they are highly variable in their permissiveness to OVs. In this study, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during cancer therapies. Mouse PDAC cell lines showed high divergence in their permissiveness to oncolytic vesicular stomatitis virus (VSV), which negatively correlated with their abilities to mount innate antiviral responses. Also, we discovered that more VSV-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. Our study provides essential information about three model mouse PDAC cell lines and proposes a novel platform to study OV-based therapies against different PDACs in immunocompetent mice.
Collapse
Affiliation(s)
- Dakota W. Goad
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Anna Y. Nesmelova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Laurel R. Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
38
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
39
|
Dressel N, Natusch L, Munz CM, Costas Ramon S, Morcos MNF, Loff A, Hiller B, Haase C, Schulze L, Müller P, Lesche M, Dahl A, Luksch H, Rösen-Wolff A, Roers A, Behrendt R, Gerbaulet A. Activation of the cGAS/STING Axis in Genome-Damaged Hematopoietic Cells Does Not Impact Blood Cell Formation or Leukemogenesis. Cancer Res 2023; 83:2858-2872. [PMID: 37335136 DOI: 10.1158/0008-5472.can-22-3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.
Collapse
Affiliation(s)
- Nicole Dressel
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Loreen Natusch
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Clara M Munz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Mina N F Morcos
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anja Loff
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Björn Hiller
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christa Haase
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Livia Schulze
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
40
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
42
|
Wardlaw CP, Petrini JH. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Bioessays 2023; 45:e2300042. [PMID: 37147792 PMCID: PMC10473822 DOI: 10.1002/bies.202300042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
Pan X, Zhang W, Guo H, Wang L, Wu H, Ding L, Yang B. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Biochem Pharmacol 2023; 213:115596. [PMID: 37201875 DOI: 10.1016/j.bcp.2023.115596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Recent studies have expanded the known functions of cGAS-STING in inflammation to a role in cancer due to its participation in activating immune surveillance. In cancer cells, the cGAS-STING pathway can be activated by cytosolic dsDNA derived from genomic, mitochondrial and exogenous origins. The resulting immune-stimulatory factors from this cascade can either attenuate tumor growth or recruit immune cells for tumor clearance. Furthermore, STING-IRF3-induced type I interferon signaling can enforce tumor antigen presentation on dendritic cells and macrophages and thus cross-prime CD8+ T cells for antitumor immunity. Given the functions of the STING pathway in antitumor immunity, multiple strategies are being developed and tested with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells to elicit immunostimulatory effects, either alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. Based on the canonical molecular mechanism of STING activation, numerous strategies for inducing mitochondrial and nuclear dsDNA release have been used to activate the cGAS-STING signaling pathway. Other noncanonical strategies that activate cGAS-STING signaling, including the use of direct STING agonists and STING trafficking facilitation, also show promise in type I interferon release and antitumor immunity priming. Here, we review the key roles of the STING pathway in different steps of the cancer-immunity cycle and characterize the canonical and noncanonical mechanisms of cGAS-STING pathway activation to understand the potential of cGAS-STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
44
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
45
|
Jiang H, Kong N, Liu Z, West SC, Chan YW. Human Endonuclease ANKLE1 Localizes at the Midbody and Processes Chromatin Bridges to Prevent DNA Damage and cGAS-STING Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204388. [PMID: 36825683 PMCID: PMC10131833 DOI: 10.1002/advs.202204388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Chromatin bridges connecting the two segregating daughter nuclei arise from chromosome fusion or unresolved interchromosomal linkage. Persistent chromatin bridges are trapped in the cleavage plane, triggering cytokinesis delay. The trapped bridges occasionally break during cytokinesis, inducing DNA damage and chromosomal rearrangements. Recently, Caenorhabditis elegans LEM-3 and human TREX1 nucleases have been shown to process chromatin bridges. Here, it is shown that ANKLE1 endonuclease, the human ortholog of LEM-3, accumulates at the bulge-like structure of the midbody via its N-terminal ankyrin repeats. Importantly, ANKLE1-/- knockout cells display an elevated level of G1-specific 53BP1 nuclear bodies, prolonged activation of the DNA damage response, and replication stress. Increased DNA damage observed in ANKLE1-/- cells is rescued by inhibiting actin polymerization or reducing actomyosin contractility. ANKLE1 does not act in conjunction with structure-selective endonucleases, GEN1 and MUS81 in resolving recombination intermediates. Instead, ANKLE1 acts on chromatin bridges by priming TREX1 nucleolytic activity and cleaving bridge DNA to prevent the formation of micronuclei and cytosolic dsDNA that activate the cGAS-STING pathway. It is therefore proposed that ANKLE1 prevents DNA damage and autoimmunity by cleaving chromatin bridges to avoid catastrophic breakage mediated by actomyosin contractile forces.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Nannan Kong
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Zeyuan Liu
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Stephen C. West
- The Francis Crick InstituteDNA Recombination and Repair Laboratory1 Midland RoadLondonNW1 1ATUK
| | - Ying Wai Chan
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| |
Collapse
|
46
|
Holicek P, Truxova I, Rakova J, Salek C, Hensler M, Kovar M, Reinis M, Mikyskova R, Pasulka J, Vosahlikova S, Remesova H, Valentova I, Lysak D, Holubova M, Kaspar P, Prochazka J, Kasikova L, Spisek R, Galluzzi L, Fucikova J. Type I interferon signaling in malignant blasts contributes to treatment efficacy in AML patients. Cell Death Dis 2023; 14:209. [PMID: 36964168 PMCID: PMC10039058 DOI: 10.1038/s41419-023-05728-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
While type I interferon (IFN) is best known for its key role against viral infection, accumulating preclinical and clinical data indicate that robust type I IFN production in the tumor microenvironment promotes cancer immunosurveillance and contributes to the efficacy of various antineoplastic agents, notably immunogenic cell death inducers. Here, we report that malignant blasts from patients with acute myeloid leukemia (AML) release type I IFN via a Toll-like receptor 3 (TLR3)-dependent mechanism that is not driven by treatment. While in these patients the ability of type I IFN to stimulate anticancer immune responses was abolished by immunosuppressive mechanisms elicited by malignant blasts, type I IFN turned out to exert direct cytostatic, cytotoxic and chemosensitizing activity in primary AML blasts, leukemic stem cells from AML patients and AML xenograft models. Finally, a genetic signature of type I IFN signaling was found to have independent prognostic value on relapse-free survival and overall survival in a cohort of 132 AML patients. These findings delineate a clinically relevant, therapeutically actionable and prognostically informative mechanism through which type I IFN mediates beneficial effects in patients with AML.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Hana Remesova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Iva Valentova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Daniel Lysak
- Department of Hematology and Oncology, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Kaspar
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic.
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
47
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
48
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Li S, Kong L, Meng Y, Cheng C, Lemacon DS, Yang Z, Tan K, Cheruiyot A, Lu Z, You Z. Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca 2+ release to protect stressed replication forks. Mol Cell 2023; 83:556-573.e7. [PMID: 36696898 PMCID: PMC9974760 DOI: 10.1016/j.molcel.2022.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/14/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.
Collapse
Affiliation(s)
- Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Delphine Sangotokun Lemacon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zheng Yang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ke Tan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
50
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|