1
|
Taniue K, Sugawara A, Zeng C, Han H, Gao X, Shimoura Y, Ozeki AN, Onoguchi-Mizutani R, Seki M, Suzuki Y, Hamada M, Akimitsu N. The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons. Nat Commun 2024; 15:8684. [PMID: 39419981 PMCID: PMC11487169 DOI: 10.1038/s41467-024-51981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
RNA surveillance systems degrade aberrant RNAs that result from defective transcriptional termination, splicing, and polyadenylation. Defective RNAs in the nucleus are recognized by RNA-binding proteins and MTR4, and are degraded by the RNA exosome complex. Here, we detect aberrant RNAs in MTR4-depleted cells using long-read direct RNA sequencing and 3' sequencing. MTR4 destabilizes intronic polyadenylated transcripts generated by transcriptional read-through over one or more exons, termed 3' eXtended Transcripts (3XTs). MTR4 also associates with hnRNPK, which recognizes 3XTs with multiple exons. Moreover, the aberrant protein translated from KCTD13 3XT is a target of the hnRNPK-MTR4-RNA exosome pathway and forms aberrant condensates, which we name KCTD13 3eXtended Transcript-derived protein (KeXT) bodies. Our results suggest that RNA surveillance in human cells inhibits the formation of condensates of a defective polyadenylated transcript-derived protein.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Han Han
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Xinyue Gao
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuko Nakanishi Ozeki
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Rena Onoguchi-Mizutani
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
2
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024:10.1038/s41586-024-08015-6. [PMID: 39385025 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Wu YW, Deng ZQ, Rong Y, Bu GW, Wu YK, Wu X, Cheng H, Fan HY. RNA surveillance by the RNA helicase MTR4 determines volume of mouse oocytes. Dev Cell 2024:S1534-5807(24)00537-9. [PMID: 39378876 DOI: 10.1016/j.devcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
Collapse
Affiliation(s)
- Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zuo-Qi Deng
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guo-Wei Bu
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
5
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
6
|
Liu C, Dou X, Zhao Y, Zhang L, Zhang L, Dai Q, Liu J, Wu T, Xiao Y, He C. IGF2BP3 promotes mRNA degradation through internal m 7G modification. Nat Commun 2024; 15:7421. [PMID: 39198433 PMCID: PMC11358264 DOI: 10.1038/s41467-024-51634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have suggested that mRNA internal m7G and its writer protein METTL1 are closely related to cell metabolism and cancer regulation. Here, we identify that IGF2BP family proteins IGF2BP1-3 can preferentially bind internal mRNA m7G. Such interactions, especially IGF2BP3 with m7G, could promote the degradation of m7G target transcripts in cancer cells. IGF2BP3 is more responsive to changes of m7G modification, while IGF2BP1 prefers m6A to stabilize the bound transcripts. We also demonstrate that p53 transcript, TP53, is m7G-modified at its 3'UTR in cancer cells. In glioblastoma, the methylation level and the half lifetime of the modified transcript could be modulated by tuning IGF2BP3, or by site-specific targeting of m7G through a dCas13b-guided system, resulting in modulation of cancer progression and chemosensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Xiao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
8
|
Papadopoulos D, Ha SA, Fleischhauer D, Uhl L, Russell TJ, Mikicic I, Schneider K, Brem A, Valanju OR, Cossa G, Gallant P, Schuelein-Voelk C, Maric HM, Beli P, Büchel G, Vos SM, Eilers M. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Mol Cell 2024; 84:2070-2086.e20. [PMID: 38703770 DOI: 10.1016/j.molcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timothy J Russell
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Ivan Mikicic
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Katharina Schneider
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Annika Brem
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Omkar Rajendra Valanju
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schuelein-Voelk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Petra Beli
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
9
|
Elder JJH, Papadopoulos R, Hayne CK, Stanley RE. The making and breaking of tRNAs by ribonucleases. Trends Genet 2024; 40:511-525. [PMID: 38641471 PMCID: PMC11152995 DOI: 10.1016/j.tig.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.
Collapse
Affiliation(s)
- Jessica J H Elder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ry Papadopoulos
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
11
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
12
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
13
|
Ares M, Igel H, Katzman S, Donohue JP. Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586863. [PMID: 38585890 PMCID: PMC10996645 DOI: 10.1101/2024.03.26.586863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - John P. Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| |
Collapse
|
14
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300:105646. [PMID: 38219817 PMCID: PMC10875230 DOI: 10.1016/j.jbc.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024] Open
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
Affiliation(s)
- Julia L de Amorim
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Development Biology, Emory University, Atlanta, Georgia, USA
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Giannini M, Porrua O. Senataxin: A key actor in RNA metabolism, genome integrity and neurodegeneration. Biochimie 2024; 217:10-19. [PMID: 37558082 DOI: 10.1016/j.biochi.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The RNA/DNA helicase senataxin (SETX) has been involved in multiple crucial processes related to genome expression and integrity such us transcription termination, the regulation of transcription-replication conflicts and the resolution of R-loops. SETX has been the focus of numerous studies since the discovery that mutations in its coding gene are the root cause of two different neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and a juvenile form of Amyotrophic Lateral Sclerosis (ALS4). A plethora of cellular phenotypes have been described as the result of SETX deficiency, yet the precise molecular function of SETX as well as the molecular pathways leading from SETX mutations to AOA2 and ALS4 pathologies have remained unclear. However, recent data have shed light onto the biochemical activities and biological roles of SETX, thus providing new clues to understand the molecular consequences of SETX mutation. In this review we summarize near two decades of scientific effort to elucidate SETX function, we discuss strengths and limitations of the approaches and models used thus far to investigate SETX-associated diseases and suggest new possible research avenues for the study of AOA2 and ALS4 pathogenesis.
Collapse
Affiliation(s)
- Marta Giannini
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
17
|
Dubiez E, Pellegrini E, Finderup Brask M, Garland W, Foucher AE, Huard K, Heick Jensen T, Cusack S, Kadlec J. Structural basis for competitive binding of productive and degradative co-transcriptional effectors to the nuclear cap-binding complex. Cell Rep 2024; 43:113639. [PMID: 38175753 DOI: 10.1016/j.celrep.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.
Collapse
Affiliation(s)
- Etienne Dubiez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maja Finderup Brask
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | | | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| | - Jan Kadlec
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
18
|
Keidel A, Kögel A, Reichelt P, Kowalinski E, Schäfer IB, Conti E. Concerted structural rearrangements enable RNA channeling into the cytoplasmic Ski238-Ski7-exosome assembly. Mol Cell 2023; 83:4093-4105.e7. [PMID: 37879335 PMCID: PMC10659929 DOI: 10.1016/j.molcel.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The Ski2-Ski3-Ski8 (Ski238) helicase complex directs cytoplasmic mRNAs toward the nucleolytic exosome complex for degradation. In yeast, the interaction between Ski238 and exosome requires the adaptor protein Ski7. We determined different cryo-EM structures of the Ski238 complex depicting the transition from a rigid autoinhibited closed conformation to a flexible active open conformation in which the Ski2 helicase module has detached from the rest of Ski238. The open conformation favors the interaction of the Ski3 subunit with exosome-bound Ski7, leading to the recruitment of the exosome. In the Ski238-Ski7-exosome holocomplex, the Ski2 helicase module binds the exosome cap, enabling the RNA to traverse from the helicase through the internal exosome channel to the Rrp44 exoribonuclease. Our study pinpoints how conformational changes within the Ski238 complex regulate exosome recruitment for RNA degradation. We also reveal the remarkable conservation of helicase-exosome RNA channeling mechanisms throughout eukaryotic nuclear and cytoplasmic exosome complexes.
Collapse
Affiliation(s)
- Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Eva Kowalinski
- EMBL Grenoble, 71 Avenue des Martyrs, 38072 Grenoble, France
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
19
|
Wu D, Dean J. Reduced female fertility due to sequestration of RNA Pol II by pervasive transcription in exosome RNase-depleted oocytes. Cell Rep 2023; 42:113247. [PMID: 37831603 DOI: 10.1016/j.celrep.2023.113247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Perturbing the transcriptome of mammalian oocytes results in meiotic failure. We previously reported that RNA-exosome-associated RNase, EXOSC10, degrades unwanted protein-coding RNA and processes ribosomal RNA to ensure proper oocyte maturation. Here, we establish oocyte-specific knockout mice of another RNA-exosome-associated RNase, DIS3. Mutant females (Dis3cKO) exhibit significantly reduced fertility because oocytes arrest after the growth phase. Single-oocyte RNA sequencing (RNA-seq) and CUT&Tag analyses show that DIS3 degrades intergenic RNA and mediates transcription silencing that is essential for chromatin condensation and resumption of meiosis. Dis3cKO oocytes exhibit elevated H3K27me3 in a pre-defined manner due to insufficient demethylation. During oocyte growth, EXOSC10 functions with DIS3 to degrade intergenic RNA. Double-knockout oocytes have earlier growth defects and more accumulated transcripts. We conclude that RNA exosomes synergistically degrade unwanted RNA and mediate transcription termination to ensure transcriptome integrity during oocyte development.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Contreras X, Depierre D, Akkawi C, Srbic M, Helsmoortel M, Nogaret M, LeHars M, Salifou K, Heurteau A, Cuvier O, Kiernan R. PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs. Nat Commun 2023; 14:6745. [PMID: 37875486 PMCID: PMC10598014 DOI: 10.1038/s41467-023-42620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Pervasive transcription of the human genome generates an abundance of RNAs that must be processed and degraded. The nuclear RNA exosome is the main RNA degradation machinery in the nucleus. However, nuclear exosome must be recruited to its substrates by targeting complexes, such as NEXT or PAXT. By proteomic analysis, we identify additional subunits of PAXT, including many orthologs of MTREC found in S. pombe. In particular, we show that polyA polymerase gamma (PAPγ) associates with PAXT. Genome-wide mapping of the binding sites of ZFC3H1, RBM27 and PAPγ shows that PAXT is recruited to the TSS of hundreds of genes. Loss of ZFC3H1 abolishes recruitment of PAXT subunits including PAPγ to TSSs and concomitantly increases the abundance of PROMPTs at the same sites. Moreover, PAPγ, as well as MTR4 and ZFC3H1, is implicated in the polyadenylation of PROMPTs. Our results thus provide key insights into the direct targeting of PROMPT ncRNAs by PAXT at their genomic sites.
Collapse
Affiliation(s)
- Xavier Contreras
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - David Depierre
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Charbel Akkawi
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Marina Srbic
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Marion Helsmoortel
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Maguelone Nogaret
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Matthieu LeHars
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Kader Salifou
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Alexandre Heurteau
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Olivier Cuvier
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Rosemary Kiernan
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France.
| |
Collapse
|
21
|
Sterrett MC, Farchi D, Strassler SE, Boise LH, Fasken MB, Corbett AH. In vivo characterization of the critical interaction between the RNA exosome and the essential RNA helicase Mtr4 in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2023; 13:jkad049. [PMID: 36861343 PMCID: PMC10411580 DOI: 10.1093/g3journal/jkad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5' exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.
Collapse
Affiliation(s)
- Maria C Sterrett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Daniela Farchi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Strassler
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Yuan Y, Mao X, Abubakar YS, Zheng W, Wang Z, Zhou J, Zheng H. Genome-Wide Characterization of the RNA Exosome Complex in Relation to Growth, Development, and Pathogenicity of Fusarium graminearum. Microbiol Spectr 2023; 11:e0505822. [PMID: 37158744 PMCID: PMC10269758 DOI: 10.1128/spectrum.05058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The RNA exosome complex is a conserved, multisubunit RNase complex that contributes to the processing and degradation of RNAs in mammalian cells. However, the roles of the RNA exosome in phytopathogenic fungi and how it relates to fungal development and pathogenicity remain unclear. Herein, we identified 12 components of the RNA exosome in the wheat fungal pathogen Fusarium graminearum. Live-cell imaging showed that all the components of the RNA exosome complex are localized in the nucleus. FgEXOSC1 and FgEXOSCA were successfully knocked out; they are both involved in the vegetative growth, sexual reproduction, and pathogenicity of F. graminearum. Moreover, deletion of FgEXOSC1 resulted in abnormal toxisomes, decreased deoxynivalenol (DON) production, and downregulation of the expression levels of DON biosynthesis genes. The RNA-binding domain and N-terminal region of FgExosc1 are required for its normal localization and functions. Transcriptome sequencing (RNA-seq) showed that the disruption of FgEXOSC1 resulted in differential expression of 3,439 genes. Genes involved in processing of noncoding RNA (ncRNA), rRNA and ncRNA metabolism, ribosome biogenesis, and ribonucleoprotein complex biogenesis were significantly upregulated. Furthermore, subcellular localization, green fluorescent protein (GFP) pulldown, and coimmunoprecipitation (co-IP) assays demonstrated that FgExosc1 associates with the other components of the RNA exosome to form the RNA exosome complex in F. graminearum. Deletion of FgEXOSC1 and FgEXOSCA reduced the relative expression of some of the other subunits of the RNA exosome. Deletion of FgEXOSC1 affected the localization of FgExosc4, FgExosc6, and FgExosc7. In summary, our study reveals that the RNA exosome is involved in vegetative growth, sexual reproduction, DON production, and pathogenicity of F. graminearum. IMPORTANCE The RNA exosome complex is the most versatile RNA degradation machinery in eukaryotes. However, little is known about how this complex regulates the development and pathogenicity of plant-pathogenic fungi. In this study, we systematically identified 12 components of the RNA exosome complex in Fusarium head blight fungus Fusarium graminearum and first unveiled their subcellular localizations and established their biological functions in relation to the fungal development and pathogenesis. All the RNA exosome components are localized in the nucleus. FgExosc1 and FgExoscA are both required for the vegetative growth, sexual reproduction, DON production and pathogenicity in F. graminearum. FgExosc1 is involved in ncRNA processing, rRNA and ncRNA metabolism process, ribosome biogenesis and ribonucleoprotein complex biogenesis. FgExosc1 associates with the other components of RNA exosome complex and form the exosome complex in F. graminearum. Our study provides new insights into the role of the RNA exosome in regulating RNA metabolism, which is associated with fungal development and pathogenicity.
Collapse
Affiliation(s)
- Yanping Yuan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wenhui Zheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
24
|
de Amorim JL, Asafu-Adjaye D, Corbett AH. Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544082. [PMID: 37333323 PMCID: PMC10274776 DOI: 10.1101/2023.06.07.544082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Exosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of a ribonuclease complex termed the RNA exosome. The RNA exosome mediates both RNA processing and degradation of multiple classes of RNA. This complex is evolutionarily conserved and required for fundamental cellular functions, including rRNA processing. Recently, missense mutations in genes encoding structural subunits of the RNA exosome complex have been linked to a variety of distinct neurological diseases, many of them childhood neuronopathies with at least some cerebellar atrophy. Understanding how these missense mutations lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how these specific changes alter cell-specific RNA exosome function. Although the RNA exosome complex is routinely referred to as ubiquitously expressed, little is known about the tissue- or cell-specific expression of the RNA exosome complex or any individual subunit. Here, we leverage publicly available RNA-sequencing data to analyze RNA exosome subunit transcript levels in healthy human tissues, focusing on those tissues that are impacted in exosomopathy patients described in clinical reports. This analysis provides evidence to support the characterization of the RNA exosome as ubiquitously expressed with transcript levels for the individual subunits that vary in different tissues. However, the cerebellar hemisphere and cerebellum have high levels of nearly all RNA exosome subunit transcripts. These findings could suggest that the cerebellum has a high requirement for RNA exosome function and potentially explain why cerebellar pathology is common in RNA exosomopathies.
Collapse
|
25
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The RNA helicase DDX1 associates with the nuclear RNA exosome and modulates R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537228. [PMID: 37131662 PMCID: PMC10153151 DOI: 10.1101/2023.04.17.537228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A) followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks, and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing (DRIP-Seq). We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
|
26
|
Wu D, Dean J. RNA exosome ribonuclease DIS3 degrades Pou6f1 to promote mouse pre-implantation cell differentiation. Cell Rep 2023; 42:112047. [PMID: 36724075 PMCID: PMC10387129 DOI: 10.1016/j.celrep.2023.112047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/24/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Mammalian development is precisely controlled by cell differentiation. Identifying new regulators and investigating their interactions provide insight into genetic networks defining pre-implantation development. We established a knockout mouse model of Dis3, an exosome associated ribonuclease. Homozygous Dis3 null embryos arrest at the morula stage of development. Using single-embryo RNA sequencing (RNA-seq), we observed persistence of Pou6f1 mRNA in homozygous null Dis3 embryos and that the cognate protein represses transcription of Nanog and Cdx2. The resultant defects in cell differentiation disrupt the morula-to-blastocyst transition and are embryonic lethal. Microinjection of Dis3 mRNA into zygotes rescues the phenotype. Point mutations of Dis3 ribonuclease in individual blastomeres prevents their incorporation into embryos. To overcome the paucity of embryos, we derived homozygous Dis3 null mouse embryonic stem cells to identify additional gene targets of POU6F1. Our findings delineate a regulatory pathway of DIS3-POU6F1 in pre-implantation mammalian embryogenesis.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 2023; 14:772. [PMID: 36774373 PMCID: PMC9922296 DOI: 10.1038/s41467-023-36402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Anusree Sivadas
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Leo Kiss
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Meyerhofstr, 1, D-69117, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany.
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
Xie J, Libri D, Porrua O. Mechanisms of eukaryotic transcription termination at a glance. J Cell Sci 2023; 136:286227. [PMID: 36594557 DOI: 10.1242/jcs.259873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.
Collapse
Affiliation(s)
- Juanjuan Xie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| |
Collapse
|
29
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
30
|
Wu S, Tian P, Tan T. CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnol Adv 2022; 61:108047. [DOI: 10.1016/j.biotechadv.2022.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
31
|
MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing. Biochem Biophys Res Commun 2022; 637:203-209. [DOI: 10.1016/j.bbrc.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
32
|
Yoshinaga M, Han K, Morgens DW, Horii T, Kobayashi R, Tsuruyama T, Hia F, Yasukura S, Kajiya A, Cai T, Cruz PHC, Vandenbon A, Suzuki Y, Kawahara Y, Hatada I, Bassik MC, Takeuchi O. The N 6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat Commun 2022; 13:6435. [PMID: 36307435 PMCID: PMC9616860 DOI: 10.1038/s41467-022-34078-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023] Open
Abstract
During erythroid differentiation, the maintenance of genome integrity is key for the success of multiple rounds of cell division. However, molecular mechanisms coordinating the expression of DNA repair machinery in erythroid progenitors are poorly understood. Here, we discover that an RNA N6-methyladenosine (m6A) methyltransferase, METTL16, plays an essential role in proper erythropoiesis by safeguarding genome integrity via the control of DNA-repair-related genes. METTL16-deficient erythroblasts exhibit defective differentiation capacity, DNA damage and activation of the apoptotic program. Mechanistically, METTL16 controls m6A deposition at the structured motifs in DNA-repair-related transcripts including Brca2 and Fancm mRNAs, thereby upregulating their expression. Furthermore, a pairwise CRISPRi screen revealed that the MTR4-nuclear RNA exosome complex is involved in the regulation of METTL16 substrate mRNAs in erythroblasts. Collectively, our study uncovers that METTL16 and the MTR4-nuclear RNA exosome act as essential regulatory machinery to maintain genome integrity and erythropoiesis.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Kyuho Han
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - David W. Morgens
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Takuro Horii
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan
| | - Ryosuke Kobayashi
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan
| | - Tatsuaki Tsuruyama
- grid.258799.80000 0004 0372 2033Department of Drug and Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Fabian Hia
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Shota Yasukura
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Asako Kajiya
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Ting Cai
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Pedro H. C. Cruz
- grid.136593.b0000 0004 0373 3971Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Alexis Vandenbon
- grid.258799.80000 0004 0372 2033Laboratory of Tissue Homeostasis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507 Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Yukio Kawahara
- grid.136593.b0000 0004 0373 3971Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Izuho Hatada
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan ,grid.256642.10000 0000 9269 4097Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8512 Japan
| | - Michael C. Bassik
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Osamu Takeuchi
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
33
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Foucher AE, Touat-Todeschini L, Juarez-Martinez AB, Rakitch A, Laroussi H, Karczewski C, Acajjaoui S, Soler-López M, Cusack S, Mackereth CD, Verdel A, Kadlec J. Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex. Nat Commun 2022; 13:4969. [PMID: 36002457 PMCID: PMC9402713 DOI: 10.1038/s41467-022-32542-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
To eliminate specific or aberrant transcripts, eukaryotes use nuclear RNA-targeting complexes that deliver them to the exosome for degradation. S. pombe MTREC, and its human counterpart PAXT, are key players in this mechanism but inner workings of these complexes are not understood in sufficient detail. Here, we present an NMR structure of an MTREC scaffold protein Red1 helix-turn-helix domain bound to the Iss10 N-terminus and show this interaction is required for proper cellular growth and meiotic mRNA degradation. We also report a crystal structure of a Red1-Ars2 complex explaining mutually exclusive interactions of hARS2 with various ED/EGEI/L motif-possessing RNA regulators, including hZFC3H1 of PAXT, hFLASH or hNCBP3. Finally, we show that both Red1 and hZFC3H1 homo-dimerize via their coiled-coil regions indicating that MTREC and PAXT likely function as dimers. Our results, combining structures of three Red1 interfaces with in vivo studies, provide mechanistic insights into conserved features of MTREC/PAXT architecture.
Collapse
Affiliation(s)
| | - Leila Touat-Todeschini
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | | | - Auriane Rakitch
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | - Hamida Laroussi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Claire Karczewski
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble, France
| | - Montserrat Soler-López
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9, 38042, France
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Institut Européen de Chimie et Biologie, 33607, Pessac, France.
| | - André Verdel
- Institut for Advanced Biosciences, UMR Inserm U1209/CNRS 5309/University Grenoble Alpes, La Tronche, France.
| | - Jan Kadlec
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
35
|
Fujiwara N, Shigemoto M, Hirayama M, Fujita KI, Seno S, Matsuda H, Nagahama M, Masuda S. MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus. Nucleic Acids Res 2022; 50:8779-8806. [PMID: 35902094 PMCID: PMC9410898 DOI: 10.1093/nar/gkac559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Maki Shigemoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Mizuki Hirayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Ken-Ichi Fujita
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara 631-8505, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara 631-8505, Japan.,Antiaging center, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
36
|
Genetic suppressors of Δgrx3 Δgrx4, lacking redundant multidomain monothiol yeast glutaredoxins, rescue growth and iron homeostasis. Biosci Rep 2022; 42:231328. [PMID: 35593209 PMCID: PMC9202360 DOI: 10.1042/bsr20212665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.
Collapse
|
37
|
Puno MR, Lima CD. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 2022; 185:2132-2147.e26. [PMID: 35688134 PMCID: PMC9210550 DOI: 10.1016/j.cell.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.
Collapse
Affiliation(s)
- M Rhyan Puno
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
38
|
Villa T, Porrua O. Pervasive transcription: a controlled risk. FEBS J 2022. [PMID: 35587776 DOI: 10.1111/febs.16530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Transcriptome-wide interrogation of eukaryotic genomes has unveiled the pervasive nature of RNA polymerase II transcription. Virtually, any DNA region with an accessible chromatin structure can be transcribed, resulting in a mass production of noncoding RNAs (ncRNAs) with the potential of interfering with gene expression programs. Budding yeast has proved to be a powerful model organism to understand the mechanisms at play to control pervasive transcription and overcome the risks of hazardous disruption of cellular functions. In this review, we focus on the actors and strategies yeasts employ to govern ncRNA production, and we discuss recent findings highlighting the dangers of losing control over pervasive transcription.
Collapse
Affiliation(s)
- Tommaso Villa
- Institut Jacques Monod CNRS, Université de Paris Cité France
| | - Odil Porrua
- Institut Jacques Monod CNRS, Université de Paris Cité France
| |
Collapse
|
39
|
Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022; 13:4753-4761. [PMID: 35655897 PMCID: PMC9067582 DOI: 10.1039/d2sc00670g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The preparation of highly modified mRNAs and visualization of their cellular distribution are challenging. We report in-cell application of in vitro transcribed mRNA containing natural base modifications and site-specifically introduced artificial nucleotides. Click chemistry on mRNA allows visualization in cells with excellent signal intensities. While non-specific introduction of reporter groups often leads to loss in mRNA functionality, we combined the benefits from site-specificity in the 3′-UTR incorporated unnatural nucleotides with the improved translation efficiency of the natural base modifications Ψ and 5mC. A series of experiments is described to observe, quantify and verify mRNA functionality. This approach represents a new way to visualize mRNA delivery into cells and monitor its spread on a cellular level and translation efficiency. We observed increased protein expression from this twofold chemically modified, artificial mRNA counterbalancing a reduced transfection rate. This synergetic effect can be exploited as a powerful tool for future research on mRNA therapeutics. Introducing unnatural base modifications site-specifically into the 3′-UTR of an mRNA bearing natural base modifications allows efficient visualization in cells by click chemistry. An enhanced protein expression in cells is observed from this twofold modified mRNA.![]()
Collapse
Affiliation(s)
- Lisa Bornewasser
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Christof Domnick
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
40
|
Gerlach P, Garland W, Lingaraju M, Salerno-Kochan A, Bonneau F, Basquin J, Jensen TH, Conti E. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol Cell 2022; 82:2505-2518.e7. [PMID: 35688157 PMCID: PMC9278407 DOI: 10.1016/j.molcel.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3′ end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome. NEXT homodimerizes through two intertwined ZCCHC8 subunits ZCCHC8 binds MTR4 with both constitutive and regulatory interactions Stable MTR4 arch interactions orient the two helicases in opposite directions Regulatory interactions at the MTR4 helicase domain guide RNA to the exosome
Collapse
Affiliation(s)
- Piotr Gerlach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mahesh Lingaraju
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Anna Salerno-Kochan
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|
41
|
Daniels PW, Hama Soor T, Levicky Q, Hettema EH, Mitchell P. Contribution of domain structure to the function of the yeast DEDD family exoribonuclease and RNase T functional homolog, Rex1. RNA (NEW YORK, N.Y.) 2022; 28:493-507. [PMID: 35082142 PMCID: PMC8925975 DOI: 10.1261/rna.078939.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The 3' exonucleolytic processing of stable RNAs is conserved throughout biology. Yeast strains lacking the exoribonuclease Rex1 are defective in the 3' processing of stable RNAs, including 5S rRNA and tRNA. The equivalent RNA processing steps in Escherichia coli are carried out by RNase T. Rex1 is larger than RNase T, the catalytic DEDD domain being embedded within uncharacterized amino- and carboxy-terminal regions. Here we report that both amino- and carboxy-terminal regions of Rex1 are essential for its function, as shown by genetic analyses and 5S rRNA profiling. Full-length Rex1, but not mutants lacking amino- or carboxy-terminal regions, accurately processed a 3' extended 5S rRNA substrate. Crosslinking analyses showed that both amino- and carboxy-terminal regions of Rex1 directly contact RNA in vivo. Sequence homology searches identified YFE9 in Schizosaccharomyces pombe and SDN5 in Arabidopsis thaliana as closely related proteins to Rex1. In addition to the DEDD domain, these proteins share a domain, referred to as the RYS (Rex1, YFE9 and SDN5) domain, that includes elements of both the amino- and caroxy-terminal flanking regions. We also characterize a nuclear localization signal in the amino-terminal region of Rex1. These studies reveal a novel dual domain structure at the core of Rex1-related ribonucleases, wherein the catalytic DEDD domain and the RYS domain are aligned such that they both contact the bound substrate. The domain organization of Rex1 is distinct from that of other previously characterized DEDD family nucleases and expands the known repertoire of structures for this fundamental family of RNA processing enzymes.
Collapse
Affiliation(s)
- Peter W Daniels
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Taib Hama Soor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Quentin Levicky
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Phil Mitchell
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| |
Collapse
|
42
|
Liu X, Guo Z, Han J, Peng B, Zhang B, Li H, Hu X, David CJ, Chen M. The PAF1 complex promotes 3' processing of pervasive transcripts. Cell Rep 2022; 38:110519. [PMID: 35294889 DOI: 10.1016/j.celrep.2022.110519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022] Open
Abstract
The PAF1 complex (PAF1C) functions in multiple transcriptional processes involving RNA polymerase II (RNA Pol II). Enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs) are pervasive transcripts transcribed by RNA Pol II and degraded rapidly by the nuclear exosome complex after 3' endonucleolytic cleavage by the Integrator complex (Integrator). Here we show that PAF1C has a role in termination of eRNAs and PROMPTs that are cleaved 1-3 kb downstream of the transcription start site. Mechanistically, PAF1C facilitates recruitment of Integrator to sites of pervasive transcript cleavage, promoting timely cleavage and transcription termination. We also show that PAF1C recruits Integrator to coding genes, where PAF1C then dissociates from Integrator upon entry into processive elongation. Our results demonstrate a function of PAF1C in limiting the length and accumulation of pervasive transcripts that result from non-productive transcription.
Collapse
Affiliation(s)
- Xinhong Liu
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Ziwei Guo
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Jing Han
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bo Peng
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bin Zhang
- Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Haitao Li
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Charles J David
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China
| | - Mo Chen
- Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
43
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
44
|
Gockert M, Schmid M, Jakobsen L, Jens M, Andersen JS, Jensen TH. Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res 2022; 50:1583-1600. [PMID: 35048984 PMCID: PMC8860595 DOI: 10.1093/nar/gkac001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3′ end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.
Collapse
Affiliation(s)
- Maria Gockert
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-271A, Cambridge, MA 02139-4307, USA
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
45
|
Kitagawa M, Wu P, Balkunde R, Cunniff P, Jackson D. An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. Science 2022; 375:177-182. [PMID: 35025667 DOI: 10.1126/science.abm0840] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Messenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog. Our findings suggest that AtRRP44A promotes mRNA trafficking through plasmodesmata to control stem cell–dependent processes in plants.
Collapse
Affiliation(s)
| | - Peipei Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Patrick Cunniff
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
46
|
Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, Ono Y, Tamamura N, Takahashi K, Wada Y, Mizukami Y, Akimitsu N. RNA Exosome Component EXOSC4 Amplified in Multiple Cancer Types Is Required for the Cancer Cell Survival. Int J Mol Sci 2022; 23:496. [PMID: 35008922 PMCID: PMC8745236 DOI: 10.3390/ijms23010496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies' datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Shuhei Mitsutomi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Nobue Tamamura
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Kenji Takahashi
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yusuke Mizukami
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| |
Collapse
|
47
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 40S Subunit. Acta Naturae 2022; 14:14-30. [PMID: 35441050 PMCID: PMC9013438 DOI: 10.32607/actanaturae.11540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs' tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
48
|
Ogami K, Suzuki HI. Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. Int J Mol Sci 2021; 22:13401. [PMID: 34948199 PMCID: PMC8707817 DOI: 10.3390/ijms222413401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.
Collapse
Affiliation(s)
- Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
49
|
Papadopoulos D, Solvie D, Baluapuri A, Endres T, Ha SA, Herold S, Kalb J, Giansanti C, Schülein-Völk C, Ade CP, Schneider C, Gaballa A, Vos S, Fischer U, Dobbelstein M, Wolf E, Eilers M. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Mol Cell 2021; 82:159-176.e12. [PMID: 34847357 DOI: 10.1016/j.molcel.2021.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023]
Abstract
The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Solvie
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Endres
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Celeste Giansanti
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Patrick Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Abdallah Gaballa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seychelle Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
50
|
Tsuda M, Noguchi M, Kurai T, Ichihashi Y, Ise K, Wang L, Ishida Y, Tanino M, Hirano S, Asaka M, Tanaka S. Aberrant expression of MYD88 via RNA-controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer Sci 2021; 112:5100-5113. [PMID: 34626022 PMCID: PMC8645755 DOI: 10.1111/cas.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
In 2020, the worldwide incidence and mortality of colorectal cancer (CRC) were third and second, respectively. As the 5‐y survival rate is low when CRC is diagnosed at an advanced stage, a reliable method to predict CRC susceptibility is important for preventing the onset and development and improving the prognosis of CRC. Therefore, we focused on the normal colonic mucosa to investigate changes in gene expression that may induce subsequent genetic alterations that induce malignant transformation. Comprehensive gene expression profiling in the normal mucosa adjacent to colon cancer (CC) compared with tissue from non‐colon cancer patients was performed. PCR arrays and qRT‐PCR revealed that the expression of 5 genes involved in the immune response, including MYD88, was increased in the normal mucosa of CC patients. The expression levels of MYD88 were strikingly increased in precancerous normal mucosa specimens, which harbored no somatic mutations, as shown by immunohistochemistry. Microarray analysis identified 2 novel RNA‐controlling molecules, EXOSC3 and CNOT4, that were significantly upregulated in the normal mucosa of CC patients and were clearly visualized in the nuclei. Forced expression of EXOSC3 and CNOT4 in human colonic epithelial cells increased the expression of IFNGR1, MYD88, NFκBIA, and STAT3 and activated ERK1/2 and JNK in 293T cells. Taken together, these results suggested that, in the inflamed mucosa, EXOSC3‐ and CNOT4‐mediated RNA stabilization, including that of MYD88, may trigger the development of cancer and can serve as a potential predictive marker and innovative treatment to control cancer development.
Collapse
Affiliation(s)
- Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Misa Noguchi
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsuyoshi Kurai
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Ichihashi
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Koki Ise
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yusuke Ishida
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Mishie Tanino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|