1
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Mukherjee A, Huang Y, Elgeti J, Oh S, Abreu JG, Neliat AR, Schüttler J, Su DD, Dupre C, Benites NC, Liu X, Peshkin L, Barboiu M, Stocker H, Kirschner MW, Basan M. Membrane potential as master regulator of cellular mechano-transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565386. [PMID: 37961564 PMCID: PMC10635089 DOI: 10.1101/2023.11.02.565386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane potential is a property of all living cells1. Nevertheless, its physiological role in non-excitable cells is poorly understood. Resting membrane potential is typically considered fixed and under tight homeostatic control2. Contrary to this paradigm, we find that membrane potential is a dynamic property that directly reflects mechanical forces acting on the cell and that cells use membrane potential to assess their biomechanical state. We show that several important mechano-sensitive signal transduction pathways, like MAPK and Hippo3-9, are directly controlled by membrane potential and this signaling is mediated by upstream membrane-bound receptors, including FAT1. We further show that mechano-transduction via membrane potential plays a critical role in the homeostasis of epithelial tissues, setting cellular biomass density and cell number density by controlling proliferation and cell elimination. In epithelial scratch wound assays, as well as Xenopus tadpole tail regeneration, we observe a wave of depolarization caused by a drop in cellular biomass density due to mechanical stretch and we show that this depolarization wave is critical for wound closure. Together, these data are explained by a first-principles biophysical model, which demonstrates that membrane potential is physically coupled to mechanical pressure and cellular biomass density. Membrane potential thereby provides a quasi-instantaneous, global readout of the biophysical state of the cell and in turn regulates cell growth, resulting in homeostatic feedback control of biomass density and cell number density in tissues. This interplay may be an ancient mechanism for growth control in multi-cellular organisms and its misregulation may play an important role in tumorigenesis.
Collapse
|
3
|
Cerda-Jara CA, Kim SJ, Thomas G, Farsi Z, Zolotarov G, Dube G, Deter A, Bahry E, Georgii E, Woehler A, Piwecka M, Rajewsky N. miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner. EMBO Rep 2024; 25:3008-3039. [PMID: 38831125 PMCID: PMC11239925 DOI: 10.1038/s44319-024-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
Collapse
Affiliation(s)
- Cledi A Cerda-Jara
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Seung Joon Kim
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Zohreh Farsi
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Giuliana Dube
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Aylina Deter
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Ella Bahry
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany Hannoversche Str. 28, 10115, Berlin, Germany
| | - Elisabeth Georgii
- Helmholtz AI, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Andrew Woehler
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Monika Piwecka
- Department of Non-Coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany.
| |
Collapse
|
4
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Pumo GM, Kitazawa T, Rijli FM. Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development. Front Neural Circuits 2022; 16:911023. [PMID: 35664458 PMCID: PMC9158562 DOI: 10.3389/fncir.2022.911023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity generated before the onset of sensory transduction has a key role in wiring developing sensory circuits. From axonal targeting, to synapse formation and elimination, to the balanced integration of neurons into developing circuits, this type of activity is implicated in a variety of cellular processes. However, little is known about its molecular mechanisms of action, especially at the level of genome regulation. Conversely, sensory experience-dependent activity implements well-characterized transcriptional and epigenetic chromatin programs that underlie heterogeneous but specific genomic responses that shape both postnatal circuit development and neuroplasticity in the adult. In this review, we focus on our knowledge of the developmental processes regulated by spontaneous activity and the underlying transcriptional mechanisms. We also review novel findings on how chromatin regulates the specificity and developmental induction of the experience-dependent program, and speculate their relevance for our understanding of how spontaneous activity may act at the genomic level to instruct circuit assembly and prepare developing neurons for sensory-dependent connectivity refinement and processing.
Collapse
Affiliation(s)
- Gabriele M. Pumo
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Taro Kitazawa
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M. Rijli
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Chang CY, Park JH, Ouh IO, Gu NY, Jeong SY, Lee SA, Lee YH, Hyun BH, Kim KS, Lee J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. Eur J Pharmacol 2021; 911:174416. [PMID: 34606836 DOI: 10.1016/j.ejphar.2021.174416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.
Collapse
Affiliation(s)
- Chi Young Chang
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - Ju Hyun Park
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So Yeon Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Se-A Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ki Suk Kim
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea; Division of Regenerative Medicine Safety Control, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
7
|
Yi C, Spitters TWGM, Al-Far EADA, Wang S, Xiong T, Cai S, Yan X, Guan K, Wagner M, El-Armouche A, Antos CL. A calcineurin-mediated scaling mechanism that controls a K +-leak channel to regulate morphogen and growth factor transcription. eLife 2021; 10:e60691. [PMID: 33830014 PMCID: PMC8110307 DOI: 10.7554/elife.60691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The increase in activity of the two-pore potassium-leak channel Kcnk5b maintains allometric juvenile growth of adult zebrafish appendages. However, it remains unknown how this channel maintains allometric growth and how its bioelectric activity is regulated to scale these anatomical structures. We show the activation of Kcnk5b is sufficient to activate several genes that are part of important development programs. We provide in vivo transplantation evidence that the activation of gene transcription is cell autonomous. We also show that Kcnk5b will induce the expression of different subsets of the tested developmental genes in different cultured mammalian cell lines, which may explain how one electrophysiological stimulus can coordinately regulate the allometric growth of diverse populations of cells in the fin that use different developmental signals. We also provide evidence that the post-translational modification of serine 345 in Kcnk5b by calcineurin regulates channel activity to scale the fin. Thus, we show how an endogenous bioelectric mechanism can be regulated to promote coordinated developmental signaling to generate and scale a vertebrate appendage.
Collapse
Affiliation(s)
- Chao Yi
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Tim WGM Spitters
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | | | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - TianLong Xiong
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Simian Cai
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Kaomei Guan
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Michael Wagner
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
- Klinik für Innere Medizin und Kardiologie, Herzzentrum Dresden, Technische Universität DresdenDresdenGermany
| | - Ali El-Armouche
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Christopher L Antos
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| |
Collapse
|
8
|
Franceschini A, Costantini I, Pavone FS, Silvestri L. Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Front Neurosci 2020; 14:569517. [PMID: 33192255 PMCID: PMC7645181 DOI: 10.3389/fnins.2020.569517] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Visualizing neuronal activation on a brain-wide scale yet with cellular resolution is a fundamental technical challenge for neuroscience. This would enable analyzing how different neuronal circuits are disrupted in pathology and how they could be rescued by pharmacological treatments. Although this goal would have appeared visionary a decade ago, recent technological advances make it eventually feasible. Here, we review the latest developments in the fields of genetics, sample preparation, imaging, and image analysis that could be combined to afford whole-brain cell-resolution activation mapping. We show how the different biochemical and optical methods have been coupled to study neuronal circuits at different spatial and temporal scales, and with cell-type specificity. The inventory of techniques presented here could be useful to find the tools best suited for a specific experiment. We envision that in the next years, mapping of neuronal activation could become routine in many laboratories, allowing dissecting the neuronal counterpart of behavior.
Collapse
Affiliation(s)
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Iino S, Shiota Y, Nishimura M, Asada S, Ono M, Kubo T. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci Rep 2020; 10:7887. [PMID: 32398802 PMCID: PMC7217898 DOI: 10.1038/s41598-020-64701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Honey bees and bumble bees belong to the same family (Apidae) and their workers exhibit a division of labor, but the style of division of labor differs between species. The molecular and neural bases of the species-specific social behaviors of Apidae workers have not been analyzed. Here, we focused on two immediate early genes, hormone receptor 38 (HR38) and early growth response gene-1 (Egr1), and late-upregulated ecdysone receptor (EcR), all of which are upregulated by foraging flight and expressed preferentially in the small-type Kenyon cells of the mushroom bodies (MBs) in the honey bee brain. Gene expression analyses in Bombus ignitus revealed that HR38 and Egr1, but not EcR, exhibited an immediate early response during awakening from CO2 anesthesia. Both premature mRNA for HR38 and mature mRNA for Egr1 were induced during foraging flight, and mRNAs for HR38 and Egr1 were sparsely detected inside the whole MB calyces. In contrast, EcR expression was higher in forager brains than in nurse bees and was expressed preferentially in the small-type Kenyon cells inside the MBs. Our findings suggest that Kenyon cells are active during foraging flight and that the function of late-upregulated EcR in the brain is conserved among these Apidae species.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yurika Shiota
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masakazu Nishimura
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Shinichi Asada
- Bioresource Sciences Major, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Masato Ono
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Rienecker KDA, Poston RG, Saha RN. Merits and Limitations of Studying Neuronal Depolarization-Dependent Processes Using Elevated External Potassium. ASN Neuro 2020; 12:1759091420974807. [PMID: 33256465 PMCID: PMC7711227 DOI: 10.1177/1759091420974807] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Elevated extracellular potassium chloride is widely used to achieve membrane depolarization of cultured neurons. This technique has illuminated mechanisms of calcium influx through L-type voltage sensitive calcium channels, activity-regulated signaling, downstream transcriptional events, and many other intracellular responses to depolarization. However, there is enormous variability in these treatments, including durations from seconds to days and concentrations from 3mM to 150 mM KCl. Differential effects of these variable protocols on neuronal activity and transcriptional programs are underexplored. Furthermore, potassium chloride treatments in vitro are criticized for being poor representatives of in vivo phenomena and are questioned for their effects on cell viability. In this review, we discuss the intracellular consequences of elevated extracellular potassium chloride treatment in vitro, the variability of such treatments in the literature, the strengths and limitations of this tool, and relevance of these studies to brain functions and dysfunctions.
Collapse
Affiliation(s)
- Kira D. A. Rienecker
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Robert G. Poston
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Ramendra N. Saha
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| |
Collapse
|
11
|
Pernia M, Díaz I, Colmenárez-Raga AC, Rivadulla C, Cudeiro J, Plaza I, Merchán MA. Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Struct Funct 2020; 225:129-148. [PMID: 31781971 PMCID: PMC6957565 DOI: 10.1007/s00429-019-01991-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Visual cortex (VC) over-activation analysed by evoked responses has been demonstrated in congenital deafness and after long-term acquired hearing loss in humans. However, permanent hearing deprivation has not yet been explored in animal models. Thus, the present study aimed to examine functional and molecular changes underlying the visual and auditory cross-modal reaction. For such purpose, we analysed cortical visual evoked potentials (VEPs) and the gene expression (RT-qPCR) of a set of markers for neuronal activation (c-Fos) and activity-dependent homeostatic compensation (Arc/Arg3.1). To determine the state of excitation and inhibition, we performed RT-qPCR and quantitative immunocytochemistry for excitatory (receptor subunits GluA2/3) and inhibitory (GABAA-α1, GABAB-R2, GAD65/67 and parvalbumin-PV) markers. VC over-activation was demonstrated by a significant increase in VEPs wave N1 and by up-regulation of the activity-dependent early genes c-Fos and Arc/Arg3.1 (thus confirming, by RT-qPCR, our previously published immunocytochemical results). GluA2 gene and protein expression were significantly increased in the auditory cortex (AC), particularly in layers 2/3 pyramidal neurons, but inhibitory markers (GAD65/67 and PV-GABA interneurons) were also significantly upregulated in the AC, indicating a concurrent increase in inhibition. Therefore, after permanent hearing loss in the rat, the VC is not only over-activated but also potentially balanced by homeostatic regulation, while excitatory and inhibitory markers remain imbalanced in the AC, most likely resulting from changes in horizontal intermodal regulation.
Collapse
Affiliation(s)
- M Pernia
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - I Díaz
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - A C Colmenárez-Raga
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - C Rivadulla
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - J Cudeiro
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - I Plaza
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - M A Merchán
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
12
|
Karnay A, Karisetty BC, Beaver M, Elefant F. Hippocampal stimulation promotes intracellular Tip60 dynamics with concomitant genome reorganization and synaptic gene activation. Mol Cell Neurosci 2019; 101:103412. [PMID: 31682915 DOI: 10.1016/j.mcn.2019.103412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic reorganizations mediating the engagement of target genes to transcription factories (TFs), characterized as specialized nuclear subcompartments enriched in hyperphosphorylated RNA polymerase II (RNAPII) and transcriptional regulators, act as an important layer of control in coordinating efficient gene transcription. However, their presence in hippocampal neurons and potential role in activity-dependent coregulation of genes within the brain remains unclear. Here, we investigate whether the well-characterized role for the histone acetyltransferase (HAT) Tip60 in mediating epigenetic control of inducible neuroplasticity genes involves TF associated chromatin reorganization in the hippocampus. We show that Tip60 shuttles into the nucleus following extracellular stimulation of rat hippocampal neurons with concomitant enhancement of Tip60 binding and activation of specific synaptic plasticity genes. Multicolor three-dimensional (3D) DNA fluorescent in situ hybridization (DNA-FISH) reveals that hippocampal stimulation mobilizes these same synaptic plasticity genes and Tip60 to RNAPII-rich TFs. Our data support a model by which external hippocampal stimulation promotes intracellular Tip60 HAT dynamics with concomitant TF associated genome reorganization to initiate Tip60mediated synaptic gene activation.
Collapse
Affiliation(s)
- Ashley Karnay
- Department of Biology, Drexel University, Philadelphia, PA, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Burnsed J, Skwarzyńska D, Wagley PK, Isbell L, Kapur J. Neuronal Circuit Activity during Neonatal Hypoxic-Ischemic Seizures in Mice. Ann Neurol 2019; 86:927-938. [PMID: 31509619 DOI: 10.1002/ana.25601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To identify circuits active during neonatal hypoxic-ischemic (HI) seizures and seizure propagation using electroencephalography (EEG), behavior, and whole-brain neuronal activity mapping. METHODS Mice were exposed to HI on postnatal day 10 using unilateral carotid ligation and global hypoxia. EEG and video were recorded for the duration of the experiment. Using immediate early gene reporter mice, active cells expressing cfos were permanently tagged with reporter protein tdTomato during a 90-minute window. After 1 week, allowing maximal expression of the reporter protein, whole brains were processed, lipid cleared, and imaged with confocal microscopy. Whole-brain reconstruction and analysis of active neurons (colocalized tdTomato/NeuN) were performed. RESULTS HI resulted in seizure behaviors that were bilateral or unilateral tonic-clonic and nonconvulsive in this model. Mice exhibited characteristic EEG background patterns such as burst suppression and suppression. Neuronal activity mapping revealed bilateral motor cortex and unilateral, ischemic somatosensory cortex, lateral thalamus, and hippocampal circuit activation. Immunohistochemical analysis revealed regional differences in myelination, which coincide with these activity patterns. Astrocytes and blood vessel endothelial cells also expressed cfos during HI. INTERPRETATION Using a combination of EEG, seizure semiology analysis, and whole-brain neuronal activity mapping, we suggest that this rodent model of neonatal HI results in EEG patterns similar to those observed in human neonates. Activation patterns revealed in this study help explain complex seizure behaviors and EEG patterns observed in neonatal HI injury. This pattern may be, in part, secondary to regional differences in development in the neonatal brain. ANN NEUROL 2019;86:927-938.
Collapse
Affiliation(s)
- Jennifer Burnsed
- Department of Pediatrics, University of Virginia, Charlottesville, VA.,Department of Neurology, University of Virginia, Charlottesville, VA
| | - Daria Skwarzyńska
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Laura Isbell
- College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA.,University of Virginia Brain Institute, University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| |
Collapse
|
14
|
Brigidi GS, Hayes MGB, Delos Santos NP, Hartzell AL, Texari L, Lin PA, Bartlett A, Ecker JR, Benner C, Heinz S, Bloodgood BL. Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell 2019; 179:373-391.e27. [PMID: 31585079 PMCID: PMC6800120 DOI: 10.1016/j.cell.2019.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.
Collapse
Affiliation(s)
- G Stefano Brigidi
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Michael G B Hayes
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Department of Biomedical Informatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Andrea L Hartzell
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Lorane Texari
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Pei-Ann Lin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Brenda L Bloodgood
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
15
|
Rapid and active stabilization of visual cortical firing rates across light-dark transitions. Proc Natl Acad Sci U S A 2019; 116:18068-18077. [PMID: 31366632 DOI: 10.1073/pnas.1906595116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The dynamics of neuronal firing during natural vision are poorly understood. Surprisingly, mean firing rates of neurons in primary visual cortex (V1) of freely behaving rodents are similar during prolonged periods of light and darkness, but it is unknown whether this reflects a slow adaptation to changes in natural visual input or insensitivity to rapid changes in visual drive. Here, we use chronic electrophysiology in freely behaving rats to follow individual V1 neurons across many dark-light (D-L) and light-dark (L-D) transitions. We show that, even on rapid timescales (1 s to 10 min), neuronal activity was only weakly modulated by transitions that coincided with the expected 12-/12-h L-D cycle. In contrast, a larger subset of V1 neurons consistently responded to unexpected L-D and D-L transitions, and disruption of the regular L-D cycle with 60 h of complete darkness induced a robust increase in V1 firing on reintroduction of visual input. Thus, V1 neurons fire at similar rates in the presence or absence of natural stimuli, and significant changes in activity arise only transiently in response to unexpected changes in the visual environment. Furthermore, although mean rates were similar in light and darkness, pairwise correlations were significantly stronger during natural vision, suggesting that information about natural scenes in V1 may be more strongly reflected in correlations than individual firing rates. Together, our findings show that V1 firing rates are rapidly and actively stabilized during expected changes in visual input and are remarkably stable at both short and long timescales.
Collapse
|
16
|
Epstein I, Finkbeiner S. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease. Semin Cell Dev Biol 2018; 77:63-72. [PMID: 29559111 DOI: 10.1016/j.semcdb.2017.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene is implicated in numerous synaptic plasticity paradigms, including long-term potentiation and depression and homeostatic plasticity, and is critical for consolidating memory. How Arc facilitates these forms of plasticity is not fully understood. Unlike other neuronal immediate-early genes, Arc encodes a protein that shuttles between the somatodendritic and nuclear compartments to regulate synaptic plasticity. Little attention has been paid to Arc's role in the nucleus. Here, we highlight the regulatory elements and signaling cascades required to induce Arc transcription and discuss the significance of Arc nuclear localization for synaptic plasticity and scaling. We integrate these findings into the context of cognitive function and disease and propose a model in which Arc mediates an effect on memory as a "chaser" of synaptic activity through homeostatic scaling.
Collapse
Affiliation(s)
- Irina Epstein
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA.
| | - Steven Finkbeiner
- Gladstone Institutes,1650 Owens Street, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
He Q, Wang J, Hu H. Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neurosci Bull 2018; 35:369-377. [PMID: 30255458 DOI: 10.1007/s12264-018-0291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.
Collapse
Affiliation(s)
- Qiye He
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| | - Jihua Wang
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hailan Hu
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
18
|
A Functional Role for the Epigenetic Regulator ING1 in Activity-induced Gene Expression in Primary Cortical Neurons. Neuroscience 2017; 369:248-260. [PMID: 29158107 DOI: 10.1016/j.neuroscience.2017.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1. In addition, ING1 binding at a site upstream of the transcription start site (TSS) of Ppp3r1 depends on yet another group of neuroepigenetic regulatory proteins, the Piwi-like family, which are also involved in DNA repair. These findings provide new insight into a novel mode of activity-induced gene expression, which involves the interaction between different epigenetic regulatory mechanisms traditionally associated with gene repression and DNA repair.
Collapse
|
19
|
Lin JYS, Wu CL, Liao CN, Higuchi A, Ling QD. Chemogenomic analysis of neuronal differentiation with pathway changes in PC12 cells. MOLECULAR BIOSYSTEMS 2016; 12:283-94. [PMID: 26595144 DOI: 10.1039/c5mb00338e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database creates networks from interrelations between molecular biology and underlying chemical elements. This allows for analysis of biologic networks, genomic information, and higher-order functional information at a system level. Through high throughput experiments and system biology analysis, we investigated the genes and pathways associated with NGF induced neuronal differentiation. We performed microarray experiments and used the KEGG database, system biology analysis, and annotation of pathway functions to study NGF-induced differentiation in PC12 cells. We identified 2020 NGF-induced genes with altered expressions over time. Cross-matching with the KEGG database revealed 830 genes; among which, 395 altered genes were found to have a 2-fold increase in gene expression over a two-hour period. We then identified 191 associated biologic pathways in the KEGG database; the top 15 pathways showed correlation with neural differentiation. These included the neurotrophin pathways, mitogen-activated protein kinase (MAPK) pathways, genes associated with axonal guidance and the Wnt pathways. The activation of these pathways synchronized with nerve growth factor (NGF)-induced differentiation in PC12 cells. In summary, we have established a model system that allows one to systematically characterize the functional pathway changes in a group of neuronal population after an external stimulus.
Collapse
Affiliation(s)
- Jack Yu-Shih Lin
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China. and Taipei Medical University Municipal Wan-Fang Hospital, Taipei, Taiwan, Republic of China
| | - Chien Liang Wu
- Taipei Medical University Municipal Wan-Fang Hospital, Taipei, Taiwan, Republic of China
| | - Chia Nan Liao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China.
| | - Akon Higuchi
- Department of Chemical & Materials Engineering, National Central University, Chungli, Taiwan, Republic of China and Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qing-Dong Ling
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China. and Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Shi-Zhi, Taipei, Taiwan, Republic of China.
| |
Collapse
|
20
|
Gore F, Schwartz EC, Salzman CD. Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140216. [PMID: 26240431 DOI: 10.1098/rstb.2014.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour.
Collapse
Affiliation(s)
- Felicity Gore
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Edmund C Schwartz
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - C Daniel Salzman
- Department of Psychiatry, Columbia University, New York, NY 10032, USA WM. Keck Center on Brain Plasticity and Cognition, Columbia University, New York, NY 10032, USA Mahoney Center for Brain Behavior, Columbia University, New York, NY 10032, USA New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
21
|
Calefi AS, da Silva Fonseca JG, Cohn DWH, Honda BTB, Costola-de-Souza C, Tsugiyama LE, Quinteiro-Filho WM, Piantino Ferreira AJ, Palermo-Neto J. The gut-brain axis interactions during heat stress and avian necrotic enteritis. Poult Sci 2016; 95:1005-14. [DOI: 10.3382/ps/pew021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023] Open
|
22
|
Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 2016; 7:11022. [PMID: 27090946 PMCID: PMC4838832 DOI: 10.1038/ncomms11022] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. The molecular dynamics associated with neuronal activation patterns in vivo are unclear. Lacar et al. perform single-nuclei RNA-sequencing of hippocampal neurons from mice exposed to a novel environment, and identify large-scale transcriptome changes in individual neurons associated with the experience.
Collapse
|
23
|
Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci 2015; 19:75-83. [PMID: 26595656 PMCID: PMC4696896 DOI: 10.1038/nn.4170] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
The c-fos gene is induced by a broad range of stimuli, and has been commonly used as a reliable marker for neural activity. Its induction mechanism and available reporter mouse lines are exclusively based on the c-fos promoter activity. Here, we demonstrate that multiple enhancers surrounding the c-fos gene are critical for ensuring robust c-fos response to various stimuli. Membrane depolarization, brain-derived neurotrophic factor (BDNF), and Forskolin activate distinct subsets of the enhancers to induce c-fos transcription in neurons, suggesting that stimulus-specific combinatorial activation of multiple enhancers underlies the broad inducibility of the c-fos gene. Accordingly, the functional requirement of key transcription factors varies depending on the type of stimulation. Combinatorial enhancer activation also occurs in the brain. Providing a comprehensive picture of the c-fos induction mechanism beyond the minimal promoter, our study should help in understanding the physiological nature of c-fos induction in relation to neural activity and plasticity.
Collapse
Affiliation(s)
- Jae-Yeol Joo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Katie Schaukowitch
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lukas Farbiak
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gokhul Kilaru
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2015; 25:3835-50. [PMID: 25425556 PMCID: PMC4244194 DOI: 10.1091/mbc.e13-12-0708] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243
| |
Collapse
|
25
|
Wei S, Huang Y, Huang X, Qin Q. Characterization of c-Jun from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:230-240. [PMID: 25555808 DOI: 10.1016/j.fsi.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The nuclear phosphoprotein c-Jun is a member of the AP1 family of transcription activating complex, can be induced by various extracellular stimuli such as virus infection. In this study, the c-Jun gene (Ec-c-Jun) was cloned from orange-spotted grouper, Epinephelus coioides. The full-length Ec-c-Jun cDNA is composed of 2046 bp and encodes a polypeptide of 328 amino acids with 81% identity of zebrafish. Amino acid alignment analysis indicated that Ec-c-Jun contained three conserved domains including a transactivation domain (TAD), a DNA-binding domain (DBD) and leucine zipper domain (LZD). RT-PCR results showed that Ec-c-Jun transcript was most abundant in spleen, kidney, heart and gill. The expression of Ec-c-Jun was up-regulated after challenged with Singapore grouper iridovirus (SGIV). To investigate the roles of Ec-c-Jun during SGIV infection, we constructed its dominant-negative mutant (DN-Ec-c-Jun) by deleting the major TAD that lacks amino acids 3-122. Fluorescence microscopy observation revealed that Ec-c-Jun and DN-Ec-c-Jun were expressed predominantly in the nucleus in transfected cells. Interestingly, the green fluorescence of Ec-c-Jun was congregated and co-localized with virus assembly sites at the late stage of SGIV infection. However, in DN-Ec-c-Jun transfected cells, no virus assembly sites were observed, and the distribution of fluorescence remained unchanged. Moreover, overexpression of DN-Ec-c-Jun in vitro delayed the occurrence of CPE induced by SGIV infection and inhibited the virus gene transcription. In addition, ectopic expression of DN-Ec-c-Jun was able to inhibit SGIV induced c-Jun/AP1 promoter activity in GS cells. Thus, we proposed that c-Jun transcription factor was essential for SGIV replication in vitro. Our results will contribute to understanding the crucial roles of JNK signaling pathway in fish virus infection.
Collapse
Affiliation(s)
- Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Lee JO, Park SH, Kim HJ, Kim MS, Park BR, Kim JS. Vulnerability of the vestibular organs to transient ischemia: Implications for isolated vascular vertigo. Neurosci Lett 2014; 558:180-5. [DOI: 10.1016/j.neulet.2013.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
27
|
Quinn JP. Variation in the composition of the AP1 complex in PC12 cells following induction by NGF and TPA. Mol Cell Neurosci 2012; 2:253-8. [PMID: 19912806 DOI: 10.1016/1044-7431(91)90052-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1991] [Indexed: 10/26/2022] Open
Abstract
The rat pheochromocytoma cell line PC 12 differentiates in response to NGF. Exposure to NGF induces a class of genes termed immediate early that includes many transcription factors including c-jun and c-fos which can constitute the AP1 complex. Induction of such transcription factors by NGF could be a method by which the cell redirects its program of gene expression that results in differentiation. In this study, it is demonstrated that the complement of transcription factors that constitute the AP1 complex alters with the continued passage of PC12 cells. PC 12 cells from early passage contain no AP1 activity, whereas with passage the cells constitutively express an AP1 complex; however, no morphological differences are observed. The AP1 binding activity can be further induced in all PC12 cells studied by NGF or TPA. The analysis of c-jun, c-fos, and the fos-related antigens that can constitute the AP1 complex demonstrated compositional variation of this complex by passage in culture and by exposure to NGF or TPA. As these AP1 transcription complexes may mediate the action of NGF in PC12 cells it is important to correlate the changes in composition of the complex with differentiation.
Collapse
Affiliation(s)
- J P Quinn
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, United Kingdom
| |
Collapse
|
28
|
Boyce VS, Park J, Gage FH, Mendell LM. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci 2011; 35:221-32. [PMID: 22211901 PMCID: PMC3509221 DOI: 10.1111/j.1460-9568.2011.07950.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV–BDNF was significantly more effective than AAV–NT-3 in eliciting locomotion. In fact, AAV–BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV–NT-3 or AAV–GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV–NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV–BDNF-treated rats were sensitized to noxious heat, whereas AAV–NT-3-treated and AAV–GFP-treated rats were not. Notably, AAV–BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV–BDNF significantly reduced motoneuron rheobase, suggesting that AAV–BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV–BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV–NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Behavior, Life Sciences Building, Room 532, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | | | |
Collapse
|
29
|
Myers MV, Manning HC, Coffey RJ, Liebler DC. Protein expression signatures for inhibition of epidermal growth factor receptor-mediated signaling. Mol Cell Proteomics 2011; 11:M111.015222. [PMID: 22147731 PMCID: PMC3277773 DOI: 10.1074/mcp.m111.015222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. We asked whether changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. We employed this approach to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells, and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple reaction monitoring analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. We then tested these 12 proteins by multiple reaction monitoring analysis in three other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétrier's disease who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, Jagged-1, and Claudin 4, were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically useful EGFR inhibition signature, the results confirm the hypothesis that clinically used EGFR inhibitors generate characteristic protein expression changes. This work further outlines a prototypical approach to derive and test protein expression signatures for drug action on signaling networks.
Collapse
Affiliation(s)
- Matthew V Myers
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
30
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
D'Onofrio M, Paoletti F, Arisi I, Brandi R, Malerba F, Fasulo L, Cattaneo A. NGF and proNGF regulate functionally distinct mRNAs in PC12 cells: an early gene expression profiling. PLoS One 2011; 6:e20839. [PMID: 21677785 PMCID: PMC3109000 DOI: 10.1371/journal.pone.0020839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/12/2011] [Indexed: 01/10/2023] Open
Abstract
The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs.
Collapse
Affiliation(s)
- Mara D'Onofrio
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
- Neurogenomics IIT Unit, EBRI-European Brain Research Institute, Rome, Italy
| | - Francesca Paoletti
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
| | - Ivan Arisi
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
- Neurogenomics IIT Unit, EBRI-European Brain Research Institute, Rome, Italy
| | - Rossella Brandi
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
- Neurogenomics IIT Unit, EBRI-European Brain Research Institute, Rome, Italy
| | - Francesca Malerba
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Luisa Fasulo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
| | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, EBRI-European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
- * E-mail:
| |
Collapse
|
32
|
Sugo N, Oshiro H, Takemura M, Kobayashi T, Kohno Y, Uesaka N, Song WJ, Yamamoto N. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 2010; 31:1521-32. [PMID: 20525066 DOI: 10.1111/j.1460-9568.2010.07218.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcriptional regulation of gene expression is thought to play a pivotal role in activity-dependent neuronal differentiation and circuit formation. Here, we investigated the role of histone deacetylase 9 (HDAC9), which regulates transcription by histone modification, in the development of neocortical neurons. The translocation of HDAC9 from nucleus to cytoplasm was induced by an increase of spontaneous firing activity in cultured mouse cortical neurons. This nucleocytoplasmic translocation was also observed in postnatal development in vivo. The translocation-induced gene expression and cellular morphology was further examined by introducing an HDAC9 mutant that disrupts the nucleocytoplasmic translocation. Expression of c-fos, an immediately-early gene, was suppressed in the mutant-transfected cells regardless of neural activity. Moreover, the introduction of the mutant decreased the total length of dendritic branches, whereas knockdown of HDAC9 promoted dendritic growth. These findings indicate that chromatin remodeling with nucleocytoplasmic translocation of HDAC9 regulates activity-dependent gene expression and dendritic growth in developing cortical neurons.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu SH, Arévalo JC, Neubrand VE, Zhang H, Arancio O, Chao MV. The ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein is regulated by activity-dependent calpain proteolysis and modulates synaptic plasticity. J Biol Chem 2010; 285:40472-8. [PMID: 20943655 DOI: 10.1074/jbc.m110.171371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The expression of forms of synaptic plasticity, such as the phenomenon of long-term potentiation, requires the activity-dependent regulation of synaptic proteins and synapse composition. Here we show that ARMS (ankyrin repeat-rich membrane spanning protein)/Kidins220, a transmembrane scaffold molecule and BDNF TrkB substrate, is significantly reduced in hippocampal neurons after potassium chloride depolarization. The activity-dependent proteolysis of ARMS/Kidins220 was found to occur through calpain, a calcium-activated protease. Moreover, hippocampal long-term potentiation in ARMS/Kidins220(+/-) mice was enhanced, and inhibition of calpain in these mice reversed these effects. These results provide an explanation for a role for the ARMS/Kidins220 protein in synaptic plasticity events and suggest that the levels of ARMS/Kidins220 can be regulated by neuronal activity and calpain action to influence synaptic function.
Collapse
Affiliation(s)
- Synphen H Wu
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, and Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Kenney JW, Florian C, Portugal GS, Abel T, Gould TJ. Involvement of hippocampal jun-N terminal kinase pathway in the enhancement of learning and memory by nicotine. Neuropsychopharmacology 2010; 35:483-92. [PMID: 19776730 PMCID: PMC2794924 DOI: 10.1038/npp.2009.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite intense scrutiny over the past 20 years, the reasons for the high addictive liability of nicotine and extreme rates of relapse in smokers have remained elusive. One factor that contributes to the development and maintenance of nicotine addiction is the ability of nicotine to produce long-lasting modifications of behavior, yet little is known about the mechanisms by which nicotine alters the underlying synaptic plasticity responsible for behavioral changes. This study is the first to explore how nicotine interacts with learning to alter gene transcription, which is a process necessary for long-term memory consolidation. Transcriptional upregulation of hippocampal jun-N terminal kinase 1 (JNK1) mRNA was found in mice that learned contextual fear conditioning (FC) in the presence of nicotine, whereas neither learning alone nor nicotine administration alone exerted an effect. Furthermore, the upregulation of JNK1 was absent in beta2 nicotinic receptor subunit knockout mice, which are mice that do not show enhanced learning by nicotine. Finally, hippocampal JNK activation was increased in mice that were administered nicotine before conditioning, and the inhibition of JNK during consolidation prevented the nicotine-induced enhancement of contextual FC. These data suggest that nicotine and learning interact to alter hippocampal JNK1 gene expression and related signaling processes, thus resulting in strengthened contextual memories.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Cédrick Florian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA,Department of Psychology, Weiss Hall, Temple University, Philadelphia, PA 19122, USA, Tel: +1 (215) 204-7495, Fax: +1 (215) 204-5539, E-mail:
| |
Collapse
|
35
|
Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy. Neurochem Int 2009; 55:129-35. [PMID: 19428817 DOI: 10.1016/j.neuint.2009.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
Thiamine deficiency (TD) is the underlying cause, and an established model, of Wernicke's encephalopathy (WE). Although the neurologic dysfunction and brain damage that results from TD has been well-described, the precise mechanisms that lead to the selective histological lesions characteristic of this disorder remain a mystery. Over the course of many years, various processes have been proposed that could lead to focal neuronal cell death in this disorder. But despite a concerted effort to relate these processes to a clear sequelae of events culminating in development of the focal neuropathology, little success has resulted. In recent years, however, a role for astrocytes in the pathophysiology of TD has been emerging. Here, alterations in glutamate uptake, and levels of the astrocytic glutamate transporters EAAT1 and EAAT2 in TD and WE, are discussed in terms of an excitotoxic event, along with the GABA transporter subtype GAT-3, and changes in other astrocytic proteins including GFAP and glutamine synthetase. Lactic acidosis, changes in the water channel protein AQP-4 and brain edema are also a focus of attention in relation to astrocyte dysfunction, while involvement of oxidative stress and inflammatory processes, along with white matter injury in terms of excitotoxicity are other key issues considered. In summary, a new appraisal of the extent of involvement of astrocytes in TD and WE is presented, with the evidence suggesting these cells represent a major target for damage during the disease process.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 2009; 60:610-24. [PMID: 19038219 DOI: 10.1016/j.neuron.2008.09.024] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/20/2008] [Accepted: 09/12/2008] [Indexed: 12/16/2022]
Abstract
Neuronal activity-regulated gene expression has been suggested to be an important mediator of long-lasting, experience-dependent changes in the nervous system, but the activity-dependent component of gene transcription has never been selectively isolated and tested for its functional significance. Here, we demonstrate that introduction of a subtle knockin mutation into the mouse Bdnf gene that blocks the ability of the activity-regulated factor CREB to bind Bdnf promoter IV results in an animal in which the sensory experience-dependent induction of Bdnf expression is disrupted in the cortex. Neurons from these animals form fewer inhibitory synapses, have fewer spontaneous inhibitory quantal events, and exhibit reduced expression of inhibitory presynaptic markers in the cortex. These results indicate a specific requirement for activity-dependent Bdnf expression in the development of inhibition in the cortex and demonstrate that the activation of gene expression in response to experience-driven neuronal activity has important biological consequences in the nervous system.
Collapse
Affiliation(s)
- Elizabeth J Hong
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Hazell AS, Butterworth RF. Update of Cell Damage Mechanisms in Thiamine Deficiency: Focus on Oxidative Stress, Excitotoxicity and Inflammation. Alcohol Alcohol 2009; 44:141-7. [DOI: 10.1093/alcalc/agn120] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Dijkmans T, van Hooijdonk L, Schouten T, Kamphorst J, Fitzsimons C, Vreugdenhil E. Identification of new Nerve Growth Factor-responsive immediate-early genes. Brain Res 2009; 1249:19-33. [DOI: 10.1016/j.brainres.2008.10.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/16/2008] [Accepted: 10/11/2008] [Indexed: 12/16/2022]
|
39
|
Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 2008; 31:563-90. [PMID: 18558867 DOI: 10.1146/annurev.neuro.31.060407.125631] [Citation(s) in RCA: 639] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory experience and the resulting synaptic activity within the brain are critical for the proper development of neural circuits. Experience-driven synaptic activity causes membrane depolarization and calcium influx into select neurons within a neural circuit, which in turn trigger a wide variety of cellular changes that alter the synaptic connectivity within the neural circuit. One way in which calcium influx leads to the remodeling of synapses made by neurons is through the activation of new gene transcription. Recent studies have identified many of the signaling pathways that link neuronal activity to transcription, revealing both the transcription factors that mediate this process and the neuronal activity-regulated genes. These studies indicate that neuronal activity regulates a complex program of gene expression involved in many aspects of neuronal development, including dendritic branching, synapse maturation, and synapse elimination. Genetic mutations in several key regulators of activity-dependent transcription give rise to neurological disorders in humans, suggesting that future studies of this gene expression program will likely provide insight into the mechanisms by which the disruption of proper synapse development can give rise to a variety of neurological disorders.
Collapse
Affiliation(s)
- Steven W Flavell
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, and Departments of Neurology and Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
40
|
Machado HB, Vician LJ, Herschman HR. The MAPK pathway is required for depolarization-induced "promiscuous" immediate-early gene expression but not for depolarization-restricted immediate-early gene expression in neurons. J Neurosci Res 2008; 86:593-602. [PMID: 17941051 DOI: 10.1002/jnr.21529] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Depolarization, growth factors, neurotrophins, and other stimuli induce expression of immediate early genes (IEGs) in neurons. We identified a subset of IEGs, IPD-IEGs, which are induced preferentially by depolarization, but not by neurotrophins or growth factors, in PC12 cells. The "promiscuous" IEGs Egr1 and c-fos, induced by growth factors and neurotrophins, in addition to depolarization, require activation of the MAP kinase signaling pathway for induction in response to KCl depolarization in PC12 cells; MEK1/2 inhibitors block KCl-induced Egr1 and c-fos expression. In contrast, MEK1/2 inhibition has no effect on KCl-induced expression of the known IPD-IEGs in PC12 cells. Additional "candidate" IDP-IEGs were identified by a microarray comparison of genes induced by KCl in the presence vs. the absence of an MEK1/2 inhibitor in PC12 cells. Northern blot analyses demonstrated that representative newly identified candidate IPD-IEGs, as with the known IPD-IEGs, are also induced by a MAP kinase- independent pathway in response to depolarization, both in PC12 cells and in rat primary cortical neurons. Nerve growth factor and epidermal growth factor are unable to induce the expression of the Crem/Icer, Nur77, Nor1, Rgs2, Dusp1 (Mkp1), and Dscr1 genes in PC12 cells, validating their identification as IPD-IEGs. Inhibiting calcium/calmodulin-dependent kinase II (CaMKII), calcineurin, or protein kinase A (PKA) activity prevents KCl-induced IPD-IEG mRNA accumulation, suggesting that the IPD-IEG genes are induced by depolarization in neurons via a combination of calcineurin/PKA- and CaMKII-dependent pathways.
Collapse
Affiliation(s)
- Hidevaldo B Machado
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
41
|
Timing differences of signaling response in neuron cultures activated by glutamate analogue or free radicals. Brain Res 2008; 1191:20-9. [DOI: 10.1016/j.brainres.2007.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 11/19/2022]
|
42
|
Loyd DR, Morgan MM, Murphy AZ. Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception. Neuroscience 2007; 147:456-68. [PMID: 17540508 PMCID: PMC1949345 DOI: 10.1016/j.neuroscience.2007.03.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 01/06/2023]
Abstract
The midbrain periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla (RVM), provide an essential neural circuit for opioid-produced antinociception. Recent anatomical studies have reported that the projections from the PAG to the RVM are sexually dimorphic and that systemic administration of morphine significantly suppresses pain-induced activation of the PAG in male but not female rats. Given that morphine antinociception is produced in part by disinhibition of PAG output neurons, it is hypothesized that a differential activation of PAG output neurons mediates the sexually dimorphic actions of morphine. The present study examined systemic morphine-induced activation of PAG-RVM neurons in the absence of pain. The retrograde tracer Fluorogold (FG) was injected into the RVM to label PAG-RVM output neurons. Activation of PAG neurons was determined by quantifying the number of Fos-positive neurons 1 h following systemic morphine administration (4.5 mg/kg). Morphine produced comparable activation of the PAG in both male and female rats, with no significant differences in either the quantitative or qualitative distribution of Fos. While microinjection of FG into the RVM labeled significantly more PAG output neurons in female rats than male rats, very few of these neurons (20%) were activated by systemic morphine administration in comparison to males (50%). The absolute number of PAG-RVM neurons activated by morphine was also greater in males. These data demonstrate widespread disinhibition of PAG neurons following morphine administration. The greater morphine-induced activation of PAG output neurons in male compared with female rats is consistent with the greater morphine-induced antinociception observed in males.
Collapse
Affiliation(s)
- Dayna R. Loyd
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
| | - Michael M. Morgan
- Department of Psychology, Washington State University, Vancouver, Washington 98686-9600
| | - Anne Z. Murphy
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
| |
Collapse
|
43
|
Keilhoff G, Prell T, Langnaese K, Mawrin C, Simon M, Fansa H, Nicholas AP. Expression pattern of peptidylarginine deiminase in rat and human Schwann cells. Dev Neurobiol 2007; 68:101-14. [DOI: 10.1002/dneu.20578] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Wheeler DG, Barrett CF, Tsien RW. L-type calcium channel ligands block nicotine-induced signaling to CREB by inhibiting nicotinic receptors. Neuropharmacology 2006; 51:27-36. [PMID: 16631827 DOI: 10.1016/j.neuropharm.2006.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are inhibited by several drugs that are commonly thought to be specific for L-type calcium channels (LTCCs). In neurons, LTCCs are activated by nicotine-induced depolarization to engage downstream signaling events; however, the role of LTCC drug interactions with nAChRs in signaling has not been examined in detail. We investigated the effects of LTCC ligands on nAChR currents and downstream signaling in rat superior cervical ganglion (SCG) neurons. We found that 10microM nicotine and 40mM K(+) both reversibly depolarize SCG neurons to -20mV, sufficient to activate LTCCs and downstream signaling, including induction of nuclear phospho-CREB (pCREB); this induction was blocked by LTCC antagonists. Interestingly, the effects of LTCC antagonists on nicotine-induced signaling to CREB are not mediated by their actions on LTCCs, but rather via inhibition of nAChRs, which prevents nicotine-induced depolarization. We show that this effect is sufficient to block pCREB induction in neurons expressing an antagonist-insensitive LTCC. Taken together, our data show that, at concentrations typically used to block LTCCs, these antagonists inhibit nAChR currents and downstream signaling. These findings serve as a caution in attributing a role for LTCCs when using these drugs experimentally or therapeutically.
Collapse
Affiliation(s)
- Damian G Wheeler
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | |
Collapse
|
45
|
Eriksson M, Taskinen M, Leppä S. Mitogen activated protein kinase-dependent activation of c-Jun and c-Fos is required for neuronal differentiation but not for growth and stress response in PC12 cells. J Cell Physiol 2006; 210:538-48. [PMID: 17111371 DOI: 10.1002/jcp.20907] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.
Collapse
Affiliation(s)
- Minna Eriksson
- Department of Oncology, Helsinki University Central Hospital, HUCH, Finland
| | | | | |
Collapse
|
46
|
Omori T, Kawashima H, Kizuka T, Ohiwa N, Tateoka M, Soya H. Increased c-fos gene expression in alpha motoneurons in rat loaded hindlimb muscles with inclined locomotion. Neurosci Lett 2005; 389:25-9. [PMID: 16055265 DOI: 10.1016/j.neulet.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/17/2005] [Accepted: 07/01/2005] [Indexed: 11/22/2022]
Abstract
The potential usefulness of c-fos gene expression as an indicator of the activity level of spinal alpha motoneurons was examined in loaded locomotive rats. The motor pools of the plantaris (PL) and soleus muscles (SOL), mainly composed respectively of fast- and slow-twitch muscle fibers, were investigated in rats under locomotion at 25 m/min on a 20% incline. We first labeled motoneurons with a retrograde tracer, Nuclear Yellow (NY), and then quantified the c-fos mRNA expression level in the NY-labeled alpha motoneurons by means of in situ hybridization. Electromyographic (EMG) activities were also recorded. The c-fos expression level per alpha motoneuron showed a greater increase in the PL (75%) than in the SOL motor pool (38%). EMG activities also showed a greater increase in the PL (159%) than in the SOL (43%). Taken together, these results suggest that c-fos expression levels in alpha motoneurons are associated with the activity levels of their corresponding muscle. This cytochemical method for identifying the c-fos expression level has potential for use as a tool for estimating the activity level of large populations of alpha motoneurons in unrestricted animals.
Collapse
Affiliation(s)
- Takenori Omori
- Laboratory of Exercise Biochemistry, University of Tsukuba Graduate School of Comprehensive Human Sciences, 1-1-1 Tennôdai, Tsukuba, Ibaraki 305-8574, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Bastlund JF, Berry D, Watson WP. Pharmacological and histological characterisation of nicotine-kindled seizures in mice. Neuropharmacology 2005; 48:975-83. [PMID: 15857624 DOI: 10.1016/j.neuropharm.2005.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/13/2004] [Accepted: 01/20/2005] [Indexed: 11/28/2022]
Abstract
The present study reports that it is possible to induce kindling by repeated injections of nicotine. The newly characterised nicotine-kindling model was compared with that of pentylenetetrazole (PTZ) kindling. Mice were kindled by repeated injection of PTZ (37 mg/kg), or nicotine (2.3 mg/kg), and the effect of the anti-epileptic drugs (AED) levetiracetam (LEV), tiagabine (TGB) and phenytoin (PHT) on seizures in kindled and naive mice were investigated. C-Fos immunoreactivity (Fos IR) was used to investigate differences in neuronal activity pattern between PTZ-, nicotine kindled and naive animals. PTZ kindled animals mainly showed increased Fos IR in limbic regions, whereas Fos IR in nicotine kindled animals was increased in the entorhinal cortex, medial habenula and the compact part of substantia nigra. Fully kindled PTZ-induced seizures were inhibited by LEV (ED50=13.6+/-7.8 mg/kg), TGB (ED50=0.3+/-0.04 mg/kg) but not PHT (ED50>40 mg/kg) whereas fully kindled nicotine-induced seizures were inhibited by LEV (ED50=1.4+/-0.4 mg/kg), TGB (ED50=0.3+/-0.06 mg/kg) and PHT (ED50=9.2+/-2.4 mg/kg). These differences in efficacy of AEDs were not due to changes in plasma levels in the various models. In conclusion, repeated administration of nicotine can induce a kindling-like phenomenon and the model showed significantly different Fos IR pattern and pharmacology to that of PTZ kindling.
Collapse
Affiliation(s)
- Jesper F Bastlund
- Department of Neuropharmacology, H. Lundbeck A/S, Copenhagen, Denmark.
| | | | | |
Collapse
|
48
|
Jacobs CM, Boldingh KA, Slagsvold HH, Thoresen GH, Paulsen RE. ERK2 Prohibits Apoptosis-induced Subcellular Translocation of Orphan Nuclear Receptor NGFI-B/TR3. J Biol Chem 2004; 279:50097-101. [PMID: 15448159 DOI: 10.1074/jbc.m409145200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor NGFI-B (neuronal growth factor-induced clone B), also called Nur77 or TR3, is an immediate early gene and an orphan member of the nuclear receptor family. The NGFI-B protein also has a function distinct from that of a transcription factor; it translocates to mitochondria to initiate apoptosis. Recently, it was demonstrated that NGFI-B interacts with Bcl-2 by inducing a conformational change in Bcl-2, converting it from protector to a killer. After exposing rat cerebellar granule neurons to glutamate (100 mum, 15 min), NGFI-B translocated to the mitochondria. Growth factors such as the epidermal growth factor activate the MAP kinase ERK, the activity of which may determine whether a cell survives or undergoes apoptosis. In the present study we found that the epidermal growth factor activated ERK2 in cerebellar granule neurons and that this activation prohibited glutamate-induced subcellular translocation of NGFI-B. Likewise, overexpressed active ERK2 resulted in a predominant nuclear localization of green fluorescent protein-tagged NGFI-B. Thus, activation of ERK2 may overcome apoptosis-induced subcellular translocation of NGFI-B. This finding represents a novel and rapid growth factor survival pathway that is independent of gene regulation.
Collapse
Affiliation(s)
- Chris M Jacobs
- Institute of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
49
|
Qiao D, Seidler FJ, Violin JD, Slotkin TA. Nicotine is a developmental neurotoxicant and neuroprotectant: stage-selective inhibition of DNA synthesis coincident with shielding from effects of chlorpyrifos. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:183-90. [PMID: 14741763 DOI: 10.1016/s0165-3806(03)00222-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although nicotine is now well recognized as a developmental neurotoxicant, it also may have neuroprotectant properties. In the current study, we used PC12 cells to characterize the specific developmental phases in which these effects are expressed. In undifferentiated cells, nicotine had a modest effect on DNA synthesis (10% reduction), which was nevertheless selective, as no significant reductions were seen for RNA or protein synthesis. The effects were blocked by mecamylamine, indicating mediation by nicotinic acetylcholine receptors. Initiation of differentiation with nerve growth factor, which greatly increases the receptor concentration, produced a commensurate increase in the sensitivity of DNA synthesis to nicotine, while RNA and protein synthesis again remained unaffected. The organophosphate insecticide, chlorpyrifos, also interferes with DNA synthesis in undifferentiated PC12 cells, but by mechanisms independent of nicotinic receptors. Accordingly, the effects of a combination of nicotine and chlorpyrifos should be additive. However, simultaneous exposure of undifferentiated cells to both agents produced less-than-additive effects at low concentrations of chlorpyrifos, and at high chlorpyrifos concentrations, nicotine produced outright protection: the combination of nicotine and chlorpyrifos had lesser effects than chlorpyrifos alone. The same neuroprotection was seen when cells were exposed to nicotine for 24 h, washed free of the drug for 24 h, and then exposed to chlorpyrifos. The results indicate that nicotine interferes with neural cell replication, with peak effects in early stages of differentiation. At the same time, nicotine promotes trophic actions that protect against neurotoxicants that work through other mechanisms.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J 2003; 17:1508-10. [PMID: 12824287 DOI: 10.1096/fj.02-1183fje] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies indicate a key role of aquaporin (AQP) 4 in astrocyte swelling and brain edema and suggest that AQP4 inhibition may be a new therapeutic way for reducing cerebral water accumulation. To understand the physiological role of AQP4-mediated astroglial swelling, we used 21-nucleotide small interfering RNA duplexes (siRNA) to specifically suppress AQP4 expression in astrocyte primary cultures. Semiquantitative RT-PCR experiments and Western blot analysis showed that AQP4 silencing determined a progressive and parallel reduction in AQP4 mRNA and protein. AQP4 gene suppression determined the appearance of a new morphological cell phenotype associated with a strong reduction in cell growth. Water transport measurements showed that the rate of shrinkage of AQP4 knockdown astrocytes was one-half of that of controls. Finally, cDNA microarray analysis revealed that the gene expression pattern perturbed by AQP4 gene silencing concerned ischemia-related genes, such as GLUT1 and hexokinase. Taken together, these results indicate that 1) AQP4 seems to be the major factor responsible for the fast water transport of cultured astrocytes; 2) as in skeletal muscle, AQP4 is a protein involved in cell plasticity; 3) AQP4 alteration may be a primary factor in ischemia-induced cerebral edema; and 4) RNA interference could be a new potent tool for studying AQP pathophysiology in those organs and tissues where they are expressed.
Collapse
Affiliation(s)
- Grazia Paola Nicchia
- Department of General and Environmental Physiology and Center of Excellence in Comparative Genomics (CEGBA), University of Bari, I-70126 Bari, Italy
| | | | | | | |
Collapse
|