1
|
Xia CR, Cao ZJ, Tu XM, Gao G. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices. Nat Commun 2023; 14:7236. [PMID: 37945600 PMCID: PMC10636043 DOI: 10.1038/s41467-023-43105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Spatially resolved omics technologies reveal the spatial organization of cells in various biological systems. Here we propose SLAT (Spatially-Linked Alignment Tool), a graph-based algorithm for efficient and effective alignment of spatial slices. Adopting a graph adversarial matching strategy, SLAT is the first algorithm capable of aligning heterogenous spatial data across distinct technologies and modalities. Systematic benchmarks demonstrate SLAT's superior precision, robustness, and speed over existing state-of-the-arts. Applications to multiple real-world datasets further show SLAT's utility in enhancing cell-typing resolution, integrating multiple modalities for regulatory inference, and mapping fine-scale spatial-temporal changes during development. The full SLAT package is available at https://github.com/gao-lab/SLAT .
Collapse
Affiliation(s)
- Chen-Rui Xia
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China
- Changping Laboratory, 102206, Beijing, China
| | - Zhi-Jie Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
- Changping Laboratory, 102206, Beijing, China.
| | - Xin-Ming Tu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China
- Paul Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
- Changping Laboratory, 102206, Beijing, China.
| |
Collapse
|
2
|
Zhang H, Pei L, Ouyang Z, Wang H, Chen X, Jiang K, Huang S, Jiang R, Xiang Y, Wei K. AP-1 activation mediates postnatal cardiomyocyte maturation. Cardiovasc Res 2022; 119:536-550. [PMID: 35640820 DOI: 10.1093/cvr/cvac088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Postnatal maturation of mammalian cardiomyocytes proceeds rapidly after birth, with most of the myocytes exiting cell cycle, becoming binucleated, and adopting oxidative phosphorylation as the primary metabolic route. The triggers and transcriptional programs regulating cardiomyocyte maturation have not been fully understood yet. We performed single cell RNA-Seq in postnatal rat hearts in order to identify the important factors for this process. METHODS AND RESULTS Single cell RNA-Seq profiling was performed of postnatal day 1 and day 7 rat hearts, and we found that members of the AP-1 transcription factors showed a transient upregulation in the maturing cardiomyocytes, suggesting their functional involvement in the process. Activating members of the AP-1 family by palmitate or adrenergic stimulation inhibited cardiomyocyte cytokinesis and promoted cardiomyocyte maturation. In contrast, knocking down AP-1 members Atf3 and Jun promoted cardiomyocyte cytokinesis, reduced polyploidy and inhibited maturation. Mechanistically, RNA-Seq results and rescue experiments indicated that AP-1 members activate the expression of fatty acid metabolic genes to promote cardiomyocyte maturation. Finally, intraperitoneal injection of AP-1 inhibitor T-5224 in neonatal mice inhibits cardiomyocyte maturation in vivo. CONCLUSION Our results are the first evidence implicating AP-1 transcription factors in postnatal cardiomyocyte maturation both in vitro and in vivo, which expand our understanding of the molecular mechanism of cardiomyocyte maturation, and may lead to novel therapies to treat congenital heart diseases. TRANSLATIONAL PERSPECTIVE Postnatal cardiomyocyte maturation is a crucial process of cardiac development that determines fitness of the adult heart, and can be affected by multiple congenital heart diseases which lead to adult heart conditions. Our finding that AP-1 transcription factors transiently activated by multiple cues such as fatty acid and adrenergic signal promote cardiomyocyte maturation provided novel targets for therapeutic intervention, which may be applied during the narrow time window of postnatal cardiomyocyte maturation to treat congenital heart diseases and limit their impact on the adult heart.
Collapse
Affiliation(s)
- Hongjie Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Lijuan Pei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haocun Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Xin Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shiqi Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Rui Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
3
|
Robinson EL, Drawnel FM, Mehdi S, Archer CR, Liu W, Okkenhaug H, Alkass K, Aronsen JM, Nagaraju CK, Sjaastad I, Sipido KR, Bergmann O, Arthur JSC, Wang X, Roderick HL. MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells 2022; 11:cells11040604. [PMID: 35203255 PMCID: PMC8870627 DOI: 10.3390/cells11040604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Emma L. Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (E.L.R.); (H.L.R.)
| | - Faye M. Drawnel
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Saher Mehdi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Caroline R. Archer
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Wei Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - Hanneke Okkenhaug
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Kanar Alkass
- Department of Oncology and Pathology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- Bjørknes College, Oslo University, 0456 Oslo, Norway
| | - Chandan K. Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Olaf Bergmann
- Cell and Molecular Biology, Biomedicum, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - J. Simon C. Arthur
- Division of Immunology and Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
- Correspondence: (E.L.R.); (H.L.R.)
| |
Collapse
|
4
|
Hussain S, Khan AW, Akhmedov A, Suades R, Costantino S, Paneni F, Caidahl K, Mohammed SA, Hage C, Gkolfos C, Björck H, Pernow J, Lund LH, Lüscher TF, Cosentino F. Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circ Res 2020; 127:1261-1273. [PMID: 32815777 DOI: 10.1161/circresaha.120.317132] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Hyperglycemia -induced reactive oxygen species are key mediators of cardiac dysfunction. JunD (Jund proto-oncogene subunit), a member of the AP-1 (activator protein-1) family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to redox state and inflammation in the diabetic heart remains to be elucidated. OBJECTIVE The present study investigates the role of JunD in hyperglycemia-induced and reactive oxygen species-driven myocardial dysfunction. METHODS AND RESULTS JunD mRNA and protein expression were reduced in the myocardium of mice with streptozotocin-induced diabetes mellitus as compared to controls. JunD downregulation was associated with oxidative stress and left ventricular dysfunction assessed by electron spin resonance spectroscopy as well as conventional and 2-dimensional speckle-tracking echocardiography. Furthermore, myocardial expression of free radical scavenger superoxide dismutase 1 and aldehyde dehydrogenase 2 was reduced, whereas the NOX2 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 2) and NOX4 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 4) were upregulated. The redox changes were associated with increased NF-κB (nuclear factor kappa B) binding activity and expression of inflammatory mediators. Interestingly, mice with cardiac-specific overexpression of JunD via the α MHC (α- myosin heavy chain) promoter (α MHC JunDtg) were protected against hyperglycemia-induced cardiac dysfunction. We also showed that JunD was epigenetically regulated by promoter hypermethylation, post-translational modification of histone marks, and translational repression by miRNA (microRNA)-673/menin. Reduced JunD mRNA and protein expression were confirmed in left ventricular specimens obtained from patients with type 2 diabetes mellitus as compared to nondiabetic subjects. CONCLUSIONS Here, we show that a complex epigenetic machinery involving DNA methylation, histone modifications, and microRNAs mediates hyperglycemia-induced JunD downregulation and myocardial dysfunction in experimental and human diabetes mellitus. Our results pave the way for tissue-specific therapeutic modulation of JunD to prevent diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shafaat Hussain
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Abdul Waheed Khan
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Rosa Suades
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.).,University Heart Center and Department of Research and Education, University Hospital Zürich, Switzerland (F.P.)
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery (K.C.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden (K.C.)
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Camilla Hage
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Christos Gkolfos
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Hanna Björck
- Center for Molecular Medicine, Department of Medicine (H.B.), Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Lars H Lund
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| |
Collapse
|
5
|
Costantino S, Akhmedov A, Melina G, Mohammed SA, Othman A, Ambrosini S, Wijnen WJ, Sada L, Ciavarella GM, Liberale L, Tanner FC, Matter CM, Hornemann T, Volpe M, Mechta-Grigoriou F, Camici GG, Sinatra R, Lüscher TF, Paneni F. Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. Eur Heart J 2020; 40:997-1008. [PMID: 30629164 DOI: 10.1093/eurheartj/ehy903] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/24/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
AIMS Metabolic cardiomyopathy (MC)-characterized by intra-myocardial triglyceride (TG) accumulation and lipotoxic damage-is an emerging cause of heart failure in obese patients. Yet, its mechanisms remain poorly understood. The Activator Protein 1 (AP-1) member JunD was recently identified as a key modulator of hepatic lipid metabolism in obese mice. The present study investigates the role of JunD in obesity-induced MC. METHODS AND RESULTS JunD transcriptional activity was increased in hearts from diet-induced obese (DIO) mice and was associated with myocardial TG accumulation and left ventricular (LV) dysfunction. Obese mice lacking JunD were protected against MC. In DIO hearts, JunD directly binds PPARγ promoter thus enabling transcription of genes involved in TG synthesis, uptake, hydrolysis, and storage (i.e. Fas, Cd36, Lpl, Plin5). Cardiac-specific overexpression of JunD in lean mice led to PPARγ activation, cardiac steatosis, and dysfunction, thereby mimicking the MC phenotype. In DIO hearts as well as in neonatal rat ventricular myocytes exposed to palmitic acid, Ago2 immunoprecipitation, and luciferase assays revealed JunD as a direct target of miR-494-3p. Indeed, miR-494-3p was down-regulated in hearts from obese mice, while its overexpression prevented lipotoxic damage by suppressing JunD/PPARγ signalling. JunD and miR-494-3p were also dysregulated in myocardial specimens from obese patients as compared with non-obese controls, and correlated with myocardial TG content, expression of PPARγ-dependent genes, and echocardiographic indices of LV dysfunction. CONCLUSION miR-494-3p/JunD is a novel molecular axis involved in obesity-related MC. These results pave the way for approaches to prevent or treat LV dysfunction in obese patients.
Collapse
Affiliation(s)
- Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Giovanni Melina
- Department of Cardiac Surgery, Sant'Andrea Hospital, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Winandus J Wijnen
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Lidia Sada
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Giuseppino M Ciavarella
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, Genoa, Italy
| | - Felix C Tanner
- University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy.,IRCCS Neuromed, Pozzilli, Via Atinense, 18, Pozzilli (IS), Italy
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe Labelisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, Paris, France.,Inserm, U830, 26, rue d'Ulm, Paris, France
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Riccardo Sinatra
- Department of Cardiac Surgery, Sant'Andrea Hospital, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| |
Collapse
|
6
|
Mine Y, Fujita F, Murase T, Ito S, Takatsuki M, Ikematsu K, Eguchi S. Heat Shock Protein 70 Messenger RNA in Rat Leukocytes Elevates After Severe Intestinal Ischemia-Reperfusion. J Surg Res 2019; 242:342-348. [PMID: 31132625 DOI: 10.1016/j.jss.2019.04.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heat shock protein 70 (HSP70) confers protection against heat shock, oxidative stress, infection, and inflammation in many cell types. A recent study reported that the induction of HSP70 was associated with morphologic protection against ischemia-reperfusion injury (IRI) in the rat small intestine. This study investigated the dynamics of HSP70 in leukocytes during intestinal IRI in a rat model. MATERIALS AND METHODS Serial blood samples were collected at 60-minute intervals up to 240 min from male Wistar rats (n = 15). The rats were divided into three groups of five each: the control group, the nonlethal IRI group, and the lethal IRI group. Rats belonging to the control group underwent a sham operation, and laparotomy was performed on rats in the lethal and nonlethal IRI groups. The nonlethal group experienced a 30-minute clamping of the superior mesenteric artery, and the lethal group experienced a 75-minute clamping of the superior mesenteric artery. The expression of HSP70 messenger RNA (mRNA) in leukocytes was measured by real-time quantitative polymerase chain reaction. Mixed-effects modeling of repeated measures was used to carry out the statistical analysis. The Bonferroni correction was applied to multiple comparisons. A P value < 0.0167 was considered to indicate statistical significance. RESULTS The expression of HSP70 mRNA in leukocytes increased 60 min after reperfusion in both IRI groups, and it was 12.8 times higher in the lethal group and 3.6 times higher in the nonlethal group compared with the control group. The expression of mRNA in the lethal group was significantly increased compared with the nonlethal group and the control group at 120 and 180 min after reperfusion. At 120 min after reperfusion, the expression of HSP70 mRNA was 6.1 times higher in the lethal group than in the nonlethal group (P = 0.0075) and 17.7 times higher than in the control group (P = 0.0011). At 180 min after reperfusion, the expression of HSP70 mRNA was 6.8 times higher in the lethal group than in the nonlethal group (P = 0.0007) and 4.3 times higher than in the control group (P = 0.0032). Although the expression of HSP70 mRNA in the nonlethal group was elevated in the early stages of reperfusion, there was no difference between the nonlethal group and the control group (P = 0.0212 at 60 min). CONCLUSIONS The expression of HSP70 mRNA in leukocytes may be a clinically useful indicator for evaluating pathologic conditions in intestinal IRI.
Collapse
Affiliation(s)
- Yuka Mine
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumihiko Fujita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takehiko Murase
- Department of Forensic Pathology and Sciences, Nagasaki University Graduate School of Biochemical Sciences, Nagasaki, Japan
| | - Shinichiro Ito
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Sciences, Nagasaki University Graduate School of Biochemical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
8
|
Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal 2018; 29:257-274. [PMID: 28891325 PMCID: PMC6012980 DOI: 10.1089/ars.2017.7299] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hypertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging. CRITICAL ISSUES Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. FUTURE DIRECTIONS A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease. Antioxid. Redox Signal. 29, 257-274.
Collapse
Affiliation(s)
- Tomasz J. Guzik
- BHF Centre for Research Excellence, Institute of Cardiovascular and Medical Research (ICAMS), University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Laboratory of Translational Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 2018; 23:759-772. [DOI: 10.1007/s10741-018-9708-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Pan L, Sheng M, Huang Z, Zhu Z, Xu C, Teng L, He L, Gu C, Yi C, Li J. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis. PLoS One 2017; 12:e0186635. [PMID: 29065170 PMCID: PMC5655480 DOI: 10.1371/journal.pone.0186635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418) on cardiac hypertrophy caused by aortic banding (AB), phenylephrine (PE) or angiotensin II (Ang II) in vivo and in vitro. Methods The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting. Results ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG) mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro. Conclusion ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.
Collapse
Affiliation(s)
- Liming Pan
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Mengting Sheng
- Department of Intensive Care Unit(ICU), the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Zirui Huang
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Zhilin Zhu
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Chunli Xu
- Department of Inspection office, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Lin Teng
- Department of Cardiology, the First College of Clinical Medical Sciences of Three Gorges University/ Central People's Hospital of Yichang, Yichang, China
| | - Ling He
- Department of Geriatrics, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Chen Gu
- Department of B ultrasound room, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Cai Yi
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Junming Li
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
- * E-mail:
| |
Collapse
|
12
|
The Aging Cardiovascular System. J Am Coll Cardiol 2017; 69:1952-1967. [DOI: 10.1016/j.jacc.2017.01.064] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
|
13
|
Yariswamy M, Yoshida T, Valente AJ, Kandikattu HK, Sakamuri SSVP, Siddesha JM, Sukhanov S, Saifudeen Z, Ma L, Siebenlist U, Gardner JD, Chandrasekar B. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction. J Biol Chem 2016; 291:19425-36. [PMID: 27466370 PMCID: PMC5016681 DOI: 10.1074/jbc.m116.724138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/25/2016] [Indexed: 01/19/2023] Open
Abstract
TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction.
Collapse
Affiliation(s)
- Manjunath Yariswamy
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201
| | | | - Anthony J Valente
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | | | | | | | - Zubaida Saifudeen
- Department of Pediatric Nephrology Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Lixin Ma
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, Department of Radiology, University of Missouri, Columbia, Missouri 65211
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Bysani Chandrasekar
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201,
| |
Collapse
|
14
|
Voelkl J, Alesutan I, Primessnig U, Feger M, Mia S, Jungmann A, Castor T, Viereck R, Stöckigt F, Borst O, Gawaz M, Schrickel JW, Metzler B, Katus HA, Müller OJ, Pieske B, Heinzel FR, Lang F. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. J Mol Cell Cardiol 2016; 97:36-43. [PMID: 27106803 DOI: 10.1016/j.yjmcc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Uwe Primessnig
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martina Feger
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Tatsiana Castor
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Robert Viereck
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Florian Stöckigt
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Oliver Borst
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Jan Wilko Schrickel
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Bernhard Metzler
- Department of Medicine - Cardiology, Medical University Innsbruck, Anichstr.35, 6020 Innsbruck, Austria
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiology, University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Frank R Heinzel
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Camici GG, Savarese G, Akhmedov A, Lüscher TF. Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J 2015; 36:3392-403. [PMID: 26543043 DOI: 10.1093/eurheartj/ehv587] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Western societies are aging due to an increasing life span, decreased birth rates, and improving social and health conditions. On the other hand, the prevalence of cardiovascular (CV) and cerebrovascular (CBV) diseases rises with age. Thus, in view of the ongoing aging pandemic, it is appropriate to better understand the molecular pathways of aging as well as age-associated CV and CBV diseases. Oxidative stress contributes to aging of organs and the whole body by an accumulation of reactive oxygen species promoting oxidative damage. Indeed, increased oxidative stress produced in the mitochondria and cytosol of heart and brain is a common denominator to almost all CV and CBV diseases. The mitochondrial adaptor protein p66(Shc) and the family of deacetylase enzymes, the sirtuins, regulate the aging process, determine lifespan of many species and are involved in CV diseases. GDF11, a member of TGFβ superfamily with homology to myostatin also retards the aging process via yet unknown mechanisms. Recent evidence points towards a promising role of this novel 'rejuvenation' factor in reducing age-related heart disease. Finally, telomere length is also involved in aging and the development of age-related CV dysfunction. This review focuses on the latest scientific advances in understanding age-related changes of the CV and CBV system, as well as delineating potential novel therapeutic targets derived from aging research for CV and CBV diseases.
Collapse
Affiliation(s)
- Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Gianluigi Savarese
- Cardiology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol 2015; 594:2061-73. [PMID: 26391109 DOI: 10.1113/jp270538] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
Age is one of the major risk factors associated with cardiovascular disease (CVD). About one-fifth of the world population will be aged 65 or older by 2030, with an exponential increase in CVD prevalence. It is well established that environmental factors (overnutrition, smoking, pollution, sedentary lifestyles) may lead to premature defects in mitochondrial functionality, insulin signalling, endothelial homeostasis and redox balance, fostering early senescent features. Over the last few years, molecular investigations have unveiled common signalling networks which may link the ageing process with deterioration of cardiovascular homeostasis and metabolic disturbances, namely insulin resistance. These different processes seem to be highly interconnected and their interplay may favour adverse vascular and cardiac phenotypes responsible for myocardial infarction, stroke and heart failure. In the present review, we carefully describe novel molecular cues underpinning ageing, metabolism and CVD. In particular, we describe a dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66(Shc) , JunD and NF-kB. This overview will provide the background for attractive molecular targets to prevent age-driven pathology in the vasculature and the heart.
Collapse
Affiliation(s)
- Sarah Costantino
- Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Paneni
- Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Somanna NK, Yariswamy M, Garagliano JM, Siebenlist U, Mummidi S, Valente AJ, Chandrasekar B. Aldosterone-induced cardiomyocyte growth, and fibroblast migration and proliferation are mediated by TRAF3IP2. Cell Signal 2015; 27:1928-38. [PMID: 26148936 DOI: 10.1016/j.cellsig.2015.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/19/2023]
Abstract
Sustained activation of the Renin-Angiotensin-Aldosterone System (RAAS) contributes to the pathogenesis of heart failure. Aldosterone (Aldo) is known to induce both myocardial hypertrophy and fibrosis through oxidative stress and proinflammatory pathways. Here we have investigated whether Aldo-mediated cardiomycocyte hypertrophy is dependent on TRAF3IP2, an upstream regulator of IKK and JNK. We also investigated whether the pro-mitogenic and pro-migratory effects of Aldo on cardiac fibroblasts are also mediated by TRAF3IP2. Aldo induced both superoxide and hydrogen peroxide in isolated adult mouse cardiomyocytes (CM), and upregulated TRAF3IP2 expression in part via the mineralocorticoid receptor and oxidative stress. Silencing TRAF3IP2 blunted Aldo-induced IKKβ, p65, JNK, and c-Jun activation, IL-18, IL-6 and CT-1 upregulation, and cardiomyocyte hypertrophy. In isolated adult mouse cardiac fibroblasts (CF), Aldo stimulated TRAF3IP2-dependent IL-18 and IL-6 production, CTGF, collagen I and III expression, MMP2 activation, and proliferation and migration. These in vitro results suggest that TRAF3IP2 may play a causal role in Aldo-induced adverse cardiac remodeling in vivo, and identify TRAF3IP2 as a potential therapeutic target in hypertensive heart disease.
Collapse
Affiliation(s)
- Naveen K Somanna
- Department of Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manjunath Yariswamy
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | - Joseph M Garagliano
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ulrich Siebenlist
- University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Srinivas Mummidi
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Anthony J Valente
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Li J, Cao Y, Wu Y, Chen W, Yuan Y, Ma X, Huang G. The expression profile analysis of NKX2-5 knock-out embryonic mice to explore the pathogenesis of congenital heart disease. J Cardiol 2015; 66:527-31. [PMID: 25818641 DOI: 10.1016/j.jjcc.2014.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mutation of NKX2-5 could lead to the development of congenital heart disease (CHD) which is a common inherited disease. This study aimed to investigate the pathogenesis of CHD in NKX2-5 knock-out embryonic mice. METHODS The expression profile in the NKX2-5 knock-out embryonic mice (GSE528) was downloaded from Gene Expression Omnibus. The heart tissues from the null/heterozygous embryonic day 12.5 mice were compared with wild-type mice to identify differentially expressed genes (DEGs), and then DEGs corresponding to the transcriptional factors were filtered out based on the information in the TRANSFAC database. In addition, a transcriptional regulatory network was constructed according to transcription factor binding site information from the University of California Santa Cruz database. A pathway interaction network was constructed by latent pathways identification analysis. RESULTS The 42 DEGs corresponding to transcriptional factors from the null and heterozygous embryos were identified. The transcriptional regulatory networks included five down-regulated DEGs (SP1, SRY, JUND, STAT6, and GATA6), and six up-regulated DEGs [POU2F1, NFY (NFYA/NFYB/NFYC), USF2 and MAX]. Latent pathways analysis demonstrated that ribosome, glycolysis/gluconeogenesis, and dilated cardiomyopathy pathways significantly interacted. CONCLUSION The identified DEGs and latent pathways could provide new comprehensive view for understanding the pathogenesis of CHD.
Collapse
Affiliation(s)
- Jian Li
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China
| | - Yinyin Cao
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yao Wu
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Weicheng Chen
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yuan Yuan
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China.
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China.
| |
Collapse
|
19
|
Abstract
The incidence of stroke and myocardial infarction increases in aged patients and it is associated with an adverse outcome. Considering the aging population and the increasing incidence of cardiovascular disease, the prediction for population well-being and health economics is daunting. Accordingly, there is an unmet need to focus on fundamental processes underlying vascular aging. A better understanding of the pathways leading to arterial aging may contribute to design mechanism-based therapeutic approaches to prevent or attenuate features of vascular senescence. In the present review, we discuss advances in the pathophysiology of age-related vascular dysfunction including nitric oxide signalling, dysregulation of oxidant/inflammatory genes, epigenetic modifications and mechanisms of vascular calcification as well as insights into vascular repair. Such an overview highlights attractive molecular targets for the prevention of age-driven vascular disease.
Collapse
|
20
|
The role of oxidative stress and inflammation in cardiovascular aging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:615312. [PMID: 25143940 PMCID: PMC4131065 DOI: 10.1155/2014/615312] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors.
Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms
of age-related cardiovascular disease: oxidative stress and inflammation.
Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress
and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction,
that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction,
reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two
main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2.
Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol.
Collapse
|
21
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
22
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
23
|
Wu X, Sagave J, Rutkovskiy A, Haugen F, Baysa A, Nygård S, Czibik G, Dahl CP, Gullestad L, Vaage J, Valen G. Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci 2014; 97:145-54. [PMID: 24398041 DOI: 10.1016/j.lfs.2013.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Abstract
AIMS Heart failure is associated with activation of fetal gene programs. Bone morphogenetic proteins (BMPs) regulate embryonic development through interaction with BMP receptors (BMPRs) on the cell surface. We investigated if the expression of BMP4 and its receptors BMPR1a and BMPR2 were activated in post-infarction remodeling and heart failure. MAIN METHODS Left ventricular biopsies were taken from explanted hearts of patients with end-stage heart failure due to dilated cardiomyopathy (CMP; n=15) or ischemic heart disease (CAD; n=9), and compared with homograft control preparations from organ donors deceased due to non-cardiac causes (n=7). Other samples were taken from patients undergoing coronary artery bypass grafting (CABG; n=11). Mice were subjected to induced infarction by permanent coronary artery ligation or sham operation, and hearts were sampled serially thereafter (n=7 at each time point). KEY FINDINGS Human and mouse hearts expressed BMP4 and both receptor subtypes. CABG and CMP patients had increased expression of mRNA encoding for BMP4, but unchanged protein. Mouse hearts had increased BMP4 precursor protein 24h after infarction. BMPR1a protein decreased in CAD patients and initially in postinfarcted mouse hearts, but increased again in the latter after two weeks. Human recombinant BMP4 promoted survival after H2O2 injury in HL-1 cells, and also protected adult mouse cardiomyocytes against hypoxia-reoxygenation injury. SIGNIFICANCE Adult hearts express BMP4, the mRNA increasingly so in patients with coronary artery disease with good cardiac function. BMPRs are downregulated in cardiac remodeling and failure. Recombinant BMP4 has protective effects on cultured cardiomyocytes.
Collapse
Affiliation(s)
- Xueping Wu
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Julia Sagave
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway; Department of Emergency and Intensive Care at the Institute of Clinical Medicine, Oslo University Hospital, Ullevål, Norway.
| | - Fred Haugen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Anton Baysa
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Ståle Nygård
- Center for Heart Failure Research, University of Oslo, Norway; Bioinformatics Core Facility at the Institute for Medical Informatics, Oslo University Hospital, Ullevål, Norway
| | - Gabor Czibik
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Christen Peder Dahl
- Center for Heart Failure Research, University of Oslo, Norway; Department of Cardiology, Rikshospitalet University Hospital, Oslo, Norway
| | - Lars Gullestad
- Center for Heart Failure Research, University of Oslo, Norway; Department of Cardiology, Rikshospitalet University Hospital, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care at the Institute of Clinical Medicine, Oslo University Hospital, Ullevål, Norway
| | - Guro Valen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| |
Collapse
|
24
|
Windak R, Müller J, Felley A, Akhmedov A, Wagner EF, Pedrazzini T, Sumara G, Ricci R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One 2013; 8:e73294. [PMID: 24039904 PMCID: PMC3769267 DOI: 10.1371/journal.pone.0073294] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Collapse
Affiliation(s)
- Renata Windak
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Julius Müller
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Allison Felley
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Alexander Akhmedov
- Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erwin F. Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Grzegorz Sumara
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- * E-mail: (RR); (GS)
| | - Romeo Ricci
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (GS)
| |
Collapse
|
25
|
Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart — A critical review from definition and classification of cell death. Int J Cardiol 2013; 167:2373-86. [DOI: 10.1016/j.ijcard.2013.01.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/13/2012] [Accepted: 01/13/2013] [Indexed: 12/19/2022]
|
26
|
Sakai S, Ikematsu K, Matsuo A, Tsai CT, Nakasono I. Expression of C-fos, Fos-B, Fosl-1, Fosl-2, Dusp-1 and C-jun in the mouse heart after single and repeated chlorpromazine administrations. Leg Med (Tokyo) 2010; 12:284-8. [DOI: 10.1016/j.legalmed.2010.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 06/28/2010] [Accepted: 07/26/2010] [Indexed: 01/20/2023]
|
27
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
28
|
Meder B, Just S, Vogel B, Rudloff J, Gärtner L, Dahme T, Huttner I, Zankl A, Katus HA, Rottbauer W. JunB-CBFbeta signaling is essential to maintain sarcomeric Z-disc structure and when defective leads to heart failure. J Cell Sci 2010; 123:2613-20. [PMID: 20605922 DOI: 10.1242/jcs.067967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In muscle cells, a complex network of Z-disc proteins allows proper reception, transduction and transmission of mechanical and biochemical signals. Mutations in genes encoding different Z-disc proteins such as integrin-linked kinase (ILK) and nexilin have recently been shown to cause heart failure by distinct mechanisms such as disturbed mechanosensing, altered mechanotransduction or mechanical Z-disc destabilization. We identified core-binding factor β (CBFβ) as an essential component for maintaining sarcomeric Z-disc and myofilament organization in heart and skeletal muscle. In CBFβ-deficient cardiomyocytes and skeletal-muscle cells, myofilaments are thinned and Z-discs are misaligned, leading to progressive impairment of heart and skeletal-muscle function. Transcription of the gene encoding CBFβ mainly depends on JunB activity. In JunB-morphant zebrafish, which show a heart-failure phenotype similar to that of CBFβ-deficient zebrafish, transcript and protein levels of CBFβ are severely reduced. Accordingly, ectopic expression of CBFβ can reconstitute cardiomyocyte function and rescue heart failure in JunB morphants, demonstrating for the first time an essential role of JunB-CBFβ signaling for maintaining sarcomere architecture and function.
Collapse
Affiliation(s)
- Benjamin Meder
- Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pautz A, Rauschkolb P, Schmidt N, Art J, Oelze M, Wenzel P, Förstermann U, Daiber A, Kleinert H. Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotective effects. Physiol Genomics 2009; 38:176-85. [PMID: 19417013 DOI: 10.1152/physiolgenomics.00035.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nitroglycerin (NTG) and pentaerithrityl tetranitrate (PETN) are organic nitrates used in the treatment of angina pectoris, myocardial infarction, and congestive heart failure. Recent data show marked differences in the effects of NTG and PETN on the generation of reactive oxygen species. These differences are attributed to different effects of NTG and PETN on the expression of antioxidative proteins like the heme oxygenase-I. To analyze the expressional effects of NTG and PETN in a more comprehensive manner we performed whole genome expression profiling experiments using cardiac total RNA from NTG- or PETN-treated rats and DNA microarrays containing oligonucleotides representing 27,044 rat gene transcripts. The data obtained show that NTG and PETN together significantly modify the expression of >1,600 genes (NTG 532, PETN 1212). However, the expression of only a small group of these genes (68) was modified by both treatments, indicating marked differences in the expressional effects of NTG and PETN. NTG treatment resulted in the enhanced expression of genes that are believed to be markers for cardiotoxic processes. In addition, NTG treatment reduced the expression of genes described to code for cardioprotective proteins. In sharp contrast, PETN treatment enhanced the expression of cardioprotective genes and reduced the expression of genes believed to perform cardiotoxic effects. In conclusion, our data suggest that NTG treatment results in the induction of cardiotoxic gene expression networks leading to an activation of mechanisms that result in pathological changes in cardiomyocytes. In contrast, PETN treatment seems to activate gene expression networks that result in cardioprotective effects.
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kehat I, Hasin T, Aronheim A. The role of basic leucine zipper protein-mediated transcription in physiological and pathological myocardial hypertrophy. Ann N Y Acad Sci 2007; 1080:97-109. [PMID: 17132778 DOI: 10.1196/annals.1380.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that nuclear transcription factors from the basic leucine zipper (bZIP) family play an important role in cardiac development and function. This class includes the CREB/ATF family of transcription factors, namely CREB, cAMP response element modulator (CREM), ATF, and the related AP-1 and C/EBP families. An effort has been made to elucidate the role of specific bZIP members in the heart. Unfortunately, little insight could be gained from knockout experiments, either due to embryonic lethal phenotypes or functional compensation by other bZIP family members. Surprisingly, cardiac overexpression of several inhibitory transcription factors from the bZIP family, such as a nonphosphorylatable form of CREB (CREB(ser133)), a nonfunctional isoform of CREM, or ATF3 resulted in massive atrial dilatation. In order to try and characterize this pathway we have expressed the potent bZIP inhibitory protein, Jun dimerization protein 2 (JDP2), specifically in the mouse heart in a temporally controlled manner. Expression of JDP2 resulted in massive biatrial dilatation; loss of connexin 40 (Cx40), connexin43 (Cx43), and myosin light chain 2 (MLC2a) expression; atrioventricular defects in conduction; and a lethal phenotype. All these effects were independent of any developmental events acquired during adulthood, and were totally reversible upon abolishing the bZIP inhibition. The results of this article suggest that bZIP inhibition is sufficient to cause atrial dilation, that this dilatation is acquired postnatally, and that it is reversible upon the relief of inhibition. Thus, bZIP repressors may serve as novel drug targets for the prevention of atrial dilatation a major risk of atrial fibrillation (AF).
Collapse
Affiliation(s)
- Izhak Kehat
- Technion, Israel Institute of Technology, Rappaport Family Institute in the Medical Sciences, the B. Rappaport Faculty of Medicine, Haifa, Israel 31096.
| | | | | |
Collapse
|
31
|
Hock TD, Liby K, Wright MM, McConnell S, Schorpp-Kistner M, Ryan TM, Agarwal A. JunB and JunD Regulate Human Heme Oxygenase-1 Gene Expression in Renal Epithelial Cells. J Biol Chem 2007; 282:6875-86. [PMID: 17204476 DOI: 10.1074/jbc.m608456200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.0, -7.2, and -9.2 kb, respectively, of the heme oxygenase-1 promoter in addition to one proximal region, HS-1, which we have shown previously to be an E box. In vivo dimethyl sulfate footprinting of the HS-2 region revealed six individual protected guanines. Two mutations within HS-2 combined with a third mutation of the proximal E box abolished hemin- and cadmium-driven heme oxygenase-1 promoter activation, suggesting that these three sites synergized for maximal heme oxygenase-1 induction. Jun proteins bound to the antioxidant response element in the HS-2 region in vitro and associated with the heme oxygenase-1 promoter in vivo. JunB and JunD contribute opposing effects; JunB activated whereas JunD repressed heme oxygenase-1 expression in human renal epithelial cells, results that were corroborated in junB(-)(/)(-) and junD(-)(/)(-) cells. We propose that heme oxygenase-1 induction is controlled by a dynamic interplay of regulatory proteins, and we provide new insights into the molecular control of the human heme oxygenase-1 gene.
Collapse
Affiliation(s)
- Thomas D Hock
- Department of Medicine, Nephrology Research and Training Center, University of Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Smart DE, Green K, Oakley F, Weitzman JB, Yaniv M, Reynolds G, Mann J, Millward-Sadler H, Mann DA. JunD is a profibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. Hepatology 2006; 44:1432-40. [PMID: 17133482 DOI: 10.1002/hep.21436] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
JunD is implicated in the regulation of hepatic stellate cell (HSC) activation and liver fibrosis via its transcriptional regulation of the tissue inhibitor of metalloproteinases-1 (TIMP-1) gene. In the present study we found in vivo evidence of a role for JunD in fibrogenesis. Expression of JunD was demonstrated in alpha-SMA-positive activated HSCs of fibrotic rodents and human livers. The junD-/- mice were protected from carbon tetrachloride-induced fibrosis. The livers of injured junD-/- mice displayed significantly reduced formation of fibrotic crosslinked collagen and a smaller number of alpha-SMA-positive HSCs compared with those of wild-type (wt) mice. Hepatic TIMP-1 mRNA expression in injured junD-/- mice was 78% lower and in culture activated junD-/- HSCs was 50%-80% lower than that in wt mice. In examining the signal transduction mechanisms that regulate JunD-dependent TIMP-1 expression, we found a role for phosphorylation of the Ser100 residue of JunD but ruled out JNK as a mediator of this event, suggesting ERK1/2 is utilized. In conclusion, a signaling pathway for the development of fibrosis involves the regulation of TIMP-1 expression by phosphorylated JunD.
Collapse
Affiliation(s)
- David E Smart
- Liver Group, Division of Infection, Inflammation & Repair, University of Southampton, School of Medicine, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 2006; 70:1061-95. [PMID: 17158707 PMCID: PMC1698509 DOI: 10.1128/mmbr.00025-06] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK. There are now more than 50 proteins shown to be substrates for JNK. These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K, and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
35
|
|
36
|
Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 2006; 13:509-16. [PMID: 16680162 DOI: 10.1038/nsmb1092] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023]
Abstract
RNA helicase A (RHA) is a highly conserved DEAD-box protein that activates transcription, modulates RNA splicing and binds the nuclear pore complex. The life cycle of typical mRNA involves RNA processing and translation after ribosome scanning of a relatively unstructured 5' untranslated region (UTR). The precursor RNAs of retroviruses and selected cellular genes harbor a complex 5' UTR and use a yet-to-be-identified host post-transcriptional effector to stimulate efficient translation. Here we show that RHA recognizes a structured 5'-terminal post-transcriptional control element (PCE) of a retrovirus and the JUND growth-control gene. RHA interacts with PCE RNA in the nucleus and cytoplasm, facilitates polyribosome association and is necessary for its efficient translation. Our results reveal a previously unidentified role for RHA in translation and implicate RHA as an integrative effector in the continuum of gene expression from transcription to translation.
Collapse
Affiliation(s)
- Tiffiney Roberts Hartman
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210 USA
| | | | | | | | | | | |
Collapse
|
37
|
Gupta MK, Neelakantan TV, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, Mukhopadhyay CK, Goswami SK. An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxid Redox Signal 2006; 8:1081-93. [PMID: 16771697 DOI: 10.1089/ars.2006.8.1081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiac myocytes, upon exposure to increasing doses of norepinephrine (NE), transit from hypertrophic to apoptotic phenotype. Since reactive oxygen species (ROS) generation is attributed to both phenomena, the authors tested whether an elevation in intracellular ROS level causes such transition. H9c2 cardiac myoblasts upon treatment with hypertrophic and apoptotic doses of NE (2 and 100 microM, respectively) transiently induced intracellular ROS at a comparable level, while 200 microM H(2)O(2), another proapoptotic agonist, showed robust and sustained ROS generation. Upon analysis of a number of redox-responsive transcription factors as the downstream targets of ROS signaling, the authors observed that NE (2 and 100 microM) and H(2)O(2) (200 microM) were ineffective in inducing NF-kappaB while both the agonists upregulated AP-1 and Nrf-2. However, the extents of induction of AP-1 and Nrf-2 were not in direct correlation with the respective ROS levels. Also, AP-1 activities induced by two doses of NE were intrinsically different, since at 2 microM, it primarily induced FosB, and at 100 microM it activated Fra-1. Differential induction of FosB and Fra-1 was also reiterated in adult rat myocardium injected with increasing doses of NE. Therefore, NE induces hypertrophy and apoptosis in cardiac myocytes by distinct redox-signaling rather than a general surge of ROS.
Collapse
Affiliation(s)
- Manveen K Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|