1
|
Andlovic B, Wolf A, Hiltmann M, Klebl BM, Eickhoff J, Ottmann C. Development of a live cell assay for real-time monitoring the interactions between the Hippo pathway components 14-3-3 and TAZ. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100191. [PMID: 39510350 DOI: 10.1016/j.slasd.2024.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
The Hippo pathway plays an important role in organ size control and tissue homeostasis. Dysregulation is involved in many pathologies, including cancer, which has attracted interest in targeting the Hippo pathway. Since the upstream components are bona fide tumor suppressors, it is feasible to target oncogenic downstream targets such as TAZ, a key downstream effector in the Hippo pathway. Its activity is regulated by phosphorylation on multiple sites, with Ser89 playing a critical role in regulation of TAZ activity. Phosphorylation of TAZ at Ser89 promotes binding to 14-3-3 scaffolding proteins, preventing nuclear translocation and abolishing target gene transcription. Here we describe the development of a cell-based assay suitable for high-throughput screening, based on a split NanoLuc luciferase, for monitoring interactions between 14 3-3 and TAZ in living cells. We have validated the assay by screening of a kinase-biased library. The assay can be quickly adapted for higher throughput and thus offers a valuable tool to study new signal inputs involved in regulation of TAZ activity as well as for identification of molecules that modulate the Hippo pathway.
Collapse
Affiliation(s)
- Blaž Andlovic
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Alexander Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | | - Bert M Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2024:S1471-4914(24)00243-0. [PMID: 39414519 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
3
|
Pobbati AV, Burtscher A, Rajaram Siva N, Hallett A, Romigh T, Che K, Zhao B, Coker JA, Wang N, Stauffer SR, Rubin BP. CDK9 Inhibition by Dinaciclib Is a Therapeutic Vulnerability in Epithelioid Hemangioendothelioma. Clin Cancer Res 2024; 30:4179-4189. [PMID: 39052240 PMCID: PMC11398983 DOI: 10.1158/1078-0432.ccr-24-1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacologic tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. EXPERIMENTAL DESIGN TC is a transcriptional coregulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. RESULTS Basal TC remained "immobile" in the nucleus; administration of cyclin-dependent kinase (CDK) inhibitors such as CGP60474 and dinaciclib (Dina) mobilized TC. "Mobile" TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. CONCLUSIONS The CDK inhibitor Dina exhibited antitumorigenic properties both in vitro and in vivo in EHE models. Dina has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing Dina for the treatment of EHE.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Nandini Rajaram Siva
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Todd Romigh
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Bin Zhao
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Nancy Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Robert J. Tomsich Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
4
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
5
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Deichsel S, Gahr BM, Mastel H, Preiss A, Nagel AC. Numerous Serine/Threonine Kinases Affect Blood Cell Homeostasis in Drosophila melanogaster. Cells 2024; 13:576. [PMID: 38607015 PMCID: PMC11011202 DOI: 10.3390/cells13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Bernd M. Gahr
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
7
|
Chen Y, Zhang S, Li Z, Yin B, Liu Y, Zhang L. Discovery of a Dual-Target Inhibitor of CDK7 and HDAC1 That Induces Apoptosis and Inhibits Migration in Colorectal Cancer. ChemMedChem 2023; 18:e202300281. [PMID: 37821774 DOI: 10.1002/cmdc.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aberrant expression or dysfunction of cyclin-dependent kinase 7(CDK7) and histone deacetylase 1 (HDAC1) are associated with the occurrence and progression of various cancers. In this study, we developed a series of dual-target inhibitors by designing and synthesizing compounds that incorporate the pharmacophores of THZ2 and SAHA. The most potent dual-target inhibitor displayed robust inhibitory activity against several types of cancer cells and demonstrated promising inhibitory effects on both CDK7 and HDAC1. After further mechanistic studies, it was discovered that this inhibitor effectively arrested HCT-116 cells at the G2 phase and induced apoptosis. Additionally, it also significantly hindered the migration of HCT-116 cells and exhibited notable anti-tumor effects. These findings offer strong support for the development of dual-target inhibitors of CDK7 and HDAC1 and provide a promising avenue for future cancer therapy.
Collapse
Affiliation(s)
- Yao Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
8
|
Song S, Ma X. E2 enzyme Bruce negatively regulates Hippo signaling through POSH-mediated expanded degradation. Cell Death Dis 2023; 14:602. [PMID: 37699871 PMCID: PMC10497580 DOI: 10.1038/s41419-023-06130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The Hippo pathway is a master regulator of organ growth, stem cell renewal, and tumorigenesis, its activation is tightly controlled by various post-translational modifications, including ubiquitination. While several E3 ubiquitin ligases have been identified as regulators of Hippo pathway, the corresponding E2 ubiquitin-conjugating enzymes (E2s) remain unknown. Here, we performed a screen in Drosophila to identify E2s involved in regulating wing overgrowth caused by the overexpression of Crumbs (Crb) intracellular domain and identified Bruce as a critical regulator. Loss of Bruce downregulates Hippo target gene expression and suppresses Hippo signaling inactivation induced tissue growth. Unexpectedly, our genetic data indicate that Bruce acts upstream of Expanded (Ex) but in parallel with the canonical Hippo (Hpo) -Warts (Wts) cascade to regulate Yorkie (Yki), the downstream effector of Hippo pathway. Mechanistically, Bruce synergizes with E3 ligase POSH to regulate growth and ubiquitination-mediated Ex degradation. Moreover, we demonstrate that Bruce is required for Hippo-mediated malignant tumor progression. Altogether, our findings unveil Bruce as a crucial E2 enzyme that bridges the signal from the cell surface to regulate Hippo pathway activation in Drosophila.
Collapse
Affiliation(s)
- Sha Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Xianjue Ma
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
9
|
Lv M, Gong Y, Liu X, Wang Y, Wu Q, Chen J, Min Q, Zhao D, Li X, Chen D, Yang D, Yeerken D, Liu R, Li J, Zhang W, Zhan Q. CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties. Signal Transduct Target Ther 2023; 8:302. [PMID: 37582812 PMCID: PMC10427695 DOI: 10.1038/s41392-023-01555-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongyu Zhao
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Xianfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongshao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Danna Yeerken
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Rui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518036, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
10
|
Peng H, Guo D, Shan W, Tan S, Wang C, Wang H, Liu Z, Xu B, Guo X, Wang Y. Identification of the AccCDK7 and AccCDK9 genes and their involvement in the response to resist external stress in Apis cerana cerana. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104117. [PMID: 37019323 DOI: 10.1016/j.etap.2023.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
Previous studies examining the functions of cyclin-dependent kinases (CDKs) have mainly focused on the regulation of the cell cycle. Recent studies have found that cyclin-dependent kinase 7 (CDK7) and cyclin-dependent kinase 9 (CDK9) play important roles in cell stress, metabolism of toxic substances and maintaining the stability of the internal environment. Here, we found that under stress conditions, the transcription and protein expression of AccCDK7 and AccCDK9 were induced to varying degrees. Meanwhile, the silencing of AccCDK7 and AccCDK9 also affected the expression of antioxidant genes and the activity of antioxidant enzymes, and reduced the survival rate of bees under high temperature stress. Furthermore, the exogenous overexpression of AccCDK7 and AccCDK9 improved the viability of yeast under stress conditions. Therefore, AccCDK7 and AccCDK9 may play roles in A.cerana cerana resistance to oxidative stress caused by external stimuli, potentially revealing a new mechanism of the honeybee response to oxidative stress.
Collapse
Affiliation(s)
- Hongyan Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
11
|
Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 2023; 50:4565-4578. [PMID: 36877351 DOI: 10.1007/s11033-023-08329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.
Collapse
|
12
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
13
|
Desideri E, Castelli S, Dorard C, Toifl S, Grazi GL, Ciriolo MR, Baccarini M. Impaired degradation of YAP1 and IL6ST by chaperone-mediated autophagy promotes proliferation and migration of normal and hepatocellular carcinoma cells. Autophagy 2023; 19:152-162. [PMID: 35435804 PMCID: PMC9809932 DOI: 10.1080/15548627.2022.2063004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023] Open
Abstract
Impaired degradation of the transcriptional coactivator YAP1 and IL6ST (interleukin 6 cytokine family signal transducer), two proteins deregulated in liver cancer, has been shown to promote tumor growth. Here, we demonstrate that YAP1 and IL6ST are novel substrates of chaperone-mediated autophagy (CMA) in human hepatocellular carcinoma (HCC) and hepatocyte cell lines. Knockdown of the lysosomal CMA receptor LAMP2A increases protein levels of YAP1 and IL6ST, without changes in mRNA expression. Additionally, both proteins show KFERQ-dependent binding to the CMA chaperone HSPA8 and accumulate into isolated lysosomes after stimulation of CMA by prolonged starvation. We further show that LAMP2A downregulation promotes the proliferation and migration in HCC cells and a human hepatocyte cell line, and that it does so in a YAP1- and IL6ST-dependent manner. Finally, LAMP2A expression is downregulated, and YAP1 and IL6ST expression is upregulated, in human HCC biopsies. Taken together, our work reveals a novel mechanism that controls the turnover of two cancer-relevant proteins and suggests a tumor suppressor function of CMA in the liver, advocating for the exploitation of CMA activity for diagnostic and therapeutic purposes.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; CMA: chaperone-mediated autophagy; eMI: endosomal microautophagy; HCC: hepatocellular carcinoma; HSPA8: heat shock protein family A (Hsp70) member 8; IL6ST: interleukin 6 cytokine family signal transducer; JAK: Janus kinase; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; MAPK8: mitogen-activated protein kinase 8; P6: pyridine 6; SQSTM1: sequestosome 1; TUBA: tubulin alpha; VDAC1: voltage dependent anion channel 1; VP: verteporfin; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Department of Microbiology, Immunology and Genetics; Center of Molecular Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| | - Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Coralie Dorard
- Department of Microbiology, Immunology and Genetics; Center of Molecular Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| | - Stefanie Toifl
- Department of Microbiology, Immunology and Genetics; Center of Molecular Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| | - Gian Luca Grazi
- Surgery Unit, Department of Clinical and Experimental Oncology, IRCCS - Regina Elena National Cancer InstituteHepato-Pancreato-Biliary, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics; Center of Molecular Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| |
Collapse
|
14
|
The Biology and Therapeutic Potential of the Src-YAP Axis in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2022; 14:cancers14246178. [PMID: 36551659 PMCID: PMC9777266 DOI: 10.3390/cancers14246178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer type which accounts for the majority (~85%) of all lung cancer cases [...].
Collapse
|
15
|
Jin RR, Zeng C, Chen Y. MiR-22-3p regulates the proliferation, migration and invasion of colorectal cancer cells by directly targeting KDM3A through the Hippo pathway. Histol Histopathol 2022; 37:1241-1252. [PMID: 36173030 DOI: 10.14670/hh-18-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) has one of the highest incidences and mortality rates of all malignancies worldwide. microRNAs (miRNAs) have been reported to be involved in many biological processes of diseases. MiR-22-3p is considered to be involved in cancer progression, but its role in CRC remains unclear. In this study, we detected that in CRC, the level of miR-22-3p is downregulated. MiR-22-3p has antitumor effects in CRC. miR-22-3p can reduce the proliferative, invasive and migrative capacity of CRC cells. Luciferase reporter analyses confirmed that KDM3A was a target of miR-22-3p, which can directly target the 3'UTR of KDM3A and decrease the expression of KDM3A in CRC cells. Our study also confirmed that KDM3A plays a role as an oncogene in CRC. KDM3A overexpression attenuated the tumor suppressor effects of miR-22-3p in CRC cells, demonstrating that miR-22-3p exerts antitumor effects by targeting KDM3A. Overexpression of miR-22-3p in CRC reduced YAP1 expression, whereas overexpression of KDM3A restored the expression of YAP1. In summary, miR-22-3p might inhibit the progression of CRC by targeting KDM3A to regulate the HIPPO signaling pathway, which may provide an opportunity for the treatment of CRC.
Collapse
Affiliation(s)
- Rui-Ri Jin
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
16
|
Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, Kajiya M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J Pers Med 2022; 12:jpm12101544. [PMID: 36294681 PMCID: PMC9604790 DOI: 10.3390/jpm12101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5727
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
17
|
Liu Q, van der Stel W, van der Noord VE, Leegwater H, Coban B, Elbertse K, Pruijs JTM, Béquignon OJM, van Westen G, Dévédec SEL, Danen EHJ. Hypoxia Triggers TAZ Phosphorylation in Basal A Triple Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231710119. [PMID: 36077517 PMCID: PMC9456181 DOI: 10.3390/ijms231710119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia and HIF signaling drive cancer progression and therapy resistance and have been demonstrated in breast cancer. To what extent breast cancer subtypes differ in their response to hypoxia has not been resolved. Here, we show that hypoxia similarly triggers HIF1 stabilization in luminal and basal A triple negative breast cancer cells and we use high throughput targeted RNA sequencing to analyze its effects on gene expression in these subtypes. We focus on regulation of YAP/TAZ/TEAD targets and find overlapping as well as distinct target genes being modulated in luminal and basal A cells under hypoxia. We reveal a HIF1 mediated, basal A specific response to hypoxia by which TAZ, but not YAP, is phosphorylated at Ser89. While total YAP/TAZ localization is not affected by hypoxia, hypoxia drives a shift of [p-TAZ(Ser89)/p-YAP(Ser127)] from the nucleus to the cytoplasm in basal A but not luminal breast cancer cells. Cell fractionation and YAP knock-out experiments confirm cytoplasmic sequestration of TAZ(Ser89) in hypoxic basal A cells. Pharmacological and genetic interference experiments identify c-Src and CDK3 as kinases involved in such phosphorylation of TAZ at Ser89 in hypoxic basal A cells. Hypoxia attenuates growth of basal A cells and the effect of verteporfin, a disruptor of YAP/TAZ-TEAD–mediated transcription, is diminished under those conditions, while expression of a TAZ-S89A mutant does not confer basal A cells with a growth advantage under hypoxic conditions, indicating that other hypoxia regulated pathways suppressing cell growth are dominant.
Collapse
|
18
|
CDK7/GRP78 signaling axis contributes to tumor growth and metastasis in osteosarcoma. Oncogene 2022; 41:4524-4536. [PMID: 36042349 DOI: 10.1038/s41388-022-02446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Osteosarcoma derives from primitive bone-forming mesenchymal cells and is the most common primary bone malignancy. Therapeutic targeting of osteosarcoma has been unsuccessful; therefore, identifying novel osteosarcoma pathogenesis could offer new therapeutic options. CDK7 is a subunit within the general transcription factor TFIIH. We aim to explore the new mechanism by which CDK7 regulates osteosarcoma and our studies may provide new theoretical support for the use of CDK7 inhibitors in the treatment of osteosarcoma. Here, we investigate the molecular mechanism underlying the association between CDK7 and GRP78 in osteosarcoma. Specifically, we find that an E3 ubiquitin ligase TRIM21 binds and targets GRP78 for ubiquitination and degradation, whereas CDK7 phosphorylates GRP78 at T69 to inhibit TRIM21 recruitment, leading to GRP78 stabilization. Notably, a CDK7-specific inhibitor, THZ1, blunts osteosarcoma growth and metastasis. Combination treatment with CDK7 and GRP78 inhibitors yield additive effects on osteosarcoma growth and progression inhibition. Thus, simultaneous suppression of CDK7 and GRP78 activity represents a potential new approach for the treatment of osteosarcoma. In conclusion, the discovery of this previously unknown CDK7/GRP78 signaling axis provides the molecular basis and the rationale to target human osteosarcoma.
Collapse
|
19
|
The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis 2022; 13:677. [PMID: 35931679 PMCID: PMC9356134 DOI: 10.1038/s41419-022-05113-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Dysregulated abundance, location and transcriptional output of Hippo signaling effector TAZ have been increasingly linked to human cancers including head neck squamous cell carcinoma (HNSCC). TAZ is subjected to ubiquitination and degradation mediated by E3 ligase β-TRCP. However, the deubiquitinating enzymes and mechanisms responsible for its protein stability remain underexplored. Here, we exploited customized deubiquitinases siRNA and cDNA library screen strategies and identified USP7 as a bona fide TAZ deubiquitinase in HNSCC. USP7 promoted cell proliferation, migration, invasion in vitro and tumor growth by stabilizing TAZ. Mechanistically, USP7 interacted with, deubiquitinated and stabilized TAZ by selectively removing its K48-linked ubiquitination chain independent of canonical Hippo kinase cascade. USP7 potently antagonized β-TRCP-mediated ubiquitin-proteasomal degradation of TAZ and enhanced its nuclear retention and transcriptional output. Importantly, overexpression of USP7 correlated with TAZ upregulation, tumor aggressiveness and unfavorable prognosis in HNSCC patients. Pharmacological inhibition of USP7 significantly suppressed tumor growth in both xenograft and PDX models. Collectively, these findings identify USP7 as an essential regulator of TAZ and define USP7-TAZ signaling axis as a novel biomarker and potential therapeutic target for HNSCC.
Collapse
|
20
|
Wang Y, Wang K, Fu J, Zhang Y, Mao Y, Wang X, Wang X, Yu R, Zhou X. FRK inhibits glioblastoma progression via phosphorylating YAP and inducing its ubiquitylation and degradation by Siah1. Neuro Oncol 2022; 24:2107-2120. [PMID: 35723276 PMCID: PMC9713521 DOI: 10.1093/neuonc/noac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We previously report that yes-associated protein (YAP), the core downstream effector of Hippo pathway, promotes the malignant progression of glioblastoma (GBM). However, although classical regulatory mechanisms of YAP are well explored, how YAP is modulated by the Hippo-independent manner remains poorly understood. Meanwhile, the nonreceptor tyrosine kinase Fyn-related kinase (FRK), which exhibits low expression and possesses tumor suppressor effects in GBM, is reported to be involved in regulation of protein phosphorylation. Here, we examined whether FRK could impede tumor progression by modulating YAP activities. METHODS Human GBM cells and intracranial GBM model were used to assess the effects of FRK and YAP on the malignant biological behaviors of GBM. Immunoblotting and immunohistochemistry were used to detect the expression of core proteins in GBM tissues. Co-immunoprecipitation, proximity ligation assay, luciferase assay and ubiquitination assay were utilized to determine the protein-protein interactions and related molecular mechanisms. RESULTS The expression levels of FRK and YAP were inversely correlated with each other in glioma tissues. In addition, FRK promoted the ubiquitination and degradation of YAP, leading to tumor suppression in vitro and in vivo. Mechanistically, FRK interacted with and phosphorylated YAP on Tyr391/407/444, which recruited the classical E3 ubiquitin ligase Siah1 to catalyze ubiquitination and eventually degradation of YAP. Siah1 is required for YAP destabilization initiated by FRK. CONCLUSIONS We identify a novel mechanism by which FRK orchestrates tumor-suppression effect through phosphorylating YAP and inducing its ubiquitination by Siah1. FRK-Siah1-YAP signaling axis may serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Mao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Corresponding Authors: Rutong Yu, MD, PhD, Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China (); Xiuping Zhou, PhD, Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, PR China ()
| | - Xiuping Zhou
- Corresponding Authors: Rutong Yu, MD, PhD, Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China (); Xiuping Zhou, PhD, Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, PR China ()
| |
Collapse
|
21
|
YAP inhibits ERα and ER + breast cancer growth by disrupting a TEAD-ERα signaling axis. Nat Commun 2022; 13:3075. [PMID: 35654829 PMCID: PMC9163075 DOI: 10.1038/s41467-022-30831-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Hippo signaling restricts tissue growth by inhibiting the transcriptional effector YAP. Here we uncover a role of Hippo signaling and a tumor suppressor function of YAP in estrogen receptor positive (ER+) breast cancer. We find that inhibition of Hippo/MST1/2 or activation of YAP blocks the ERα transcriptional program and ER+ breast cancer growth. Mechanistically, the Hippo pathway transcription factor TEAD physically interacts with ERα to increase its promoter/enhancer occupancy whereas YAP inhibits ERα/TEAD interaction, decreases ERα occupancy on its target promoters/enhancers, and promotes ERα degradation by the proteasome. Furthermore, YAP inhibits hormone-independent transcription of ERα gene (ESR1). Consistently, high levels of YAP correlate with good prognosis of ER+ breast cancer patients. Finally, we find that pharmacological inhibition of Hippo/MST1/2 impeded tumor growth driven by hormone therapy resistant ERα mutants, suggesting that targeting the Hippo-YAP-TEAD signaling axis could be a potential therapeutical strategy to overcome endocrine therapy resistance conferred by ERα mutants.
Collapse
|
22
|
Jiao D, Chen Y, Wang Y, Sun H, Shi Q, Zhang L, Zhao X, Liu Y, He H, Lv Z, Liu C, Zhang P, Gao K, Huang Y, Li Y, Li L, Wang C. DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 2022; 41:3000-3010. [PMID: 35459779 DOI: 10.1038/s41388-022-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.
Collapse
Affiliation(s)
- Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yalan Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaying Zhao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuan Liu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Huang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Li
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
23
|
Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M, Kavianpour M. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell Int 2021; 21:705. [PMID: 34953494 PMCID: PMC8710012 DOI: 10.1186/s12935-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effective therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcinogenesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. On the other hand, interaction with other pathways like Wnt, TGF-β, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, which this process could be regulated via other signaling pathways. This review article aimed to shed light on how the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
Collapse
Affiliation(s)
| | - Bentolhoda Hayatmoghadam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Jamali
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Golmohammadi
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
25
|
Battilana G, Zanconato F, Piccolo S. Mechanisms of YAP/TAZ transcriptional control. Cell Stress 2021; 5:167-172. [PMID: 34782888 PMCID: PMC8561301 DOI: 10.15698/cst2021.11.258] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulated gene expression is intrinsic to cell transformation, tumorigenesis and metastasis. Cancer-specific gene-expression profiles stem from gene regulatory networks fueled by genetic and epigenetic defects, and by abnormal signals of the tumor microenvironment. These oncogenic signals ultimately engage the transcriptional machinery on the cis -regulatory elements of a host of effector genes, through recruitment of transcription factors (TFs), co-activators and chromatin regulators. That said, whether gene-expression in cancer cells is the chaotic product of myriad regulations or rather a relatively ordered process orchestrated by few TFs (master regulators) has long remained enigmatic. Recent work on the YAP/TAZ co-activators has been instrumental to break new ground into this outstanding issue, revealing that tumor cells hijack growth programs that are active during development and regeneration through engagement of a small set of interconnected TFs and their nuclear partners.
Collapse
Affiliation(s)
- Giusy Battilana
- Department of Molecular Medicine, University of Padua, Via G. Colombo 3, 35131, Padua, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via G. Colombo 3, 35131, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via G. Colombo 3, 35131, Padua, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
26
|
Rozengurt E, Eibl G. Crosstalk between KRAS, SRC and YAP Signaling in Pancreatic Cancer: Interactions Leading to Aggressive Disease and Drug Resistance. Cancers (Basel) 2021; 13:5126. [PMID: 34680275 PMCID: PMC8533944 DOI: 10.3390/cancers13205126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the predominant form of pancreatic cancer, remains a devastating disease. The purpose of this review is to highlight recent literature on mechanistic and translational developments that advance our understanding of a complex crosstalk between KRAS, YAP and Src tyrosine kinase family (SFK) in PDAC development and maintenance. We discuss recent studies indicating the importance of RAS dimerization in signal transduction and new findings showing that the potent pro-oncogenic members of the SFK phosphorylate and inhibit RAS function. These surprising findings imply that RAS may not play a crucial role in maintaining certain subtypes of PDAC. In support of this interpretation, current evidence indicates that the survival of the basal-like subtype of PDAC is less dependent on RAS but relies, at least in part, on the activity of YAP/TAZ. Based on current evidence, we propose that SFK propels PDAC cells to a state of high metastasis, epithelial-mesenchymal transition (EMT) and reduced dependence on KRAS signaling, salient features of the aggressive basal-like/squamous subtype of PDAC. Strategies for PDAC treatment should consider the opposite effects of tyrosine phosphorylation on KRAS and SFK/YAP in the design of drug combinations that target these novel crosstalk mechanisms and overcome drug resistance.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
27
|
Ostalé CM, Esteban N, López-Varea A, de Celis JF. Functional requirements of protein kinases and phosphatases in the development of the Drosophila melanogaster wing. G3-GENES GENOMES GENETICS 2021; 11:6380433. [PMID: 34599799 PMCID: PMC8664455 DOI: 10.1093/g3journal/jkab348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022]
Abstract
Protein kinases and phosphatases constitute a large family of conserved enzymes that control a variety of biological processes by regulating the phosphorylation state of target proteins. They play fundamental regulatory roles during cell cycle progression and signaling, among other key aspects of multicellular development. The complement of protein kinases and phosphatases includes approximately 326 members in Drosophila, and they have been the subject of several functional screens searching for novel components of signaling pathways and regulators of cell division and survival. These approaches have been carried out mostly in cell cultures using RNA interference to evaluate the contribution of each protein in different functional assays, and have contributed significantly to assign specific roles to the corresponding genes. In this work we describe the results of an evaluation of the Drosophila complement of kinases and phosphatases using the wing as a system to identify their functional requirements in vivo. We also describe the results of several modifying screens aiming to identify among the set of protein kinases and phosphatases additional components or regulators of the activities of the Epidermal Growth Factor and Insulin receptors signaling pathways.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nuria Esteban
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
28
|
Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2021; 118:2402-2414. [PMID: 34528077 DOI: 10.1093/cvr/cvab291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo pathway is an evolutionarily and functionally conserved signaling pathway that controls organ size by regulating cell proliferation, apoptosis, and differentiation. Emerging evidence has shown that the Hippo pathway plays critical roles in cardiac development, homeostasis, disease, and regeneration. Targeting the Hippo pathway has tremendous potential as a therapeutic strategy for treating intractable cardiovascular diseases such as heart failure. In this review, we summarize the function of the Hippo pathway in the heart. Particularly, we highlight the posttranslational modification of Hippo pathway components, including the core kinases LATS1/2 and their downstream effectors YAP/TAZ, in different contexts, which has provided new insights and avenues in cardiac research.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Bing Xie
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Texas Heart Institute, Houston, Texas, 77030
| |
Collapse
|
29
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
30
|
Wang M, Dai M, Wang D, Xiong W, Zeng Z, Guo C. The regulatory networks of the Hippo signaling pathway in cancer development. J Cancer 2021; 12:6216-6230. [PMID: 34539895 PMCID: PMC8425214 DOI: 10.7150/jca.62402] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
The Hippo signaling pathway is a relatively young tumor-related signaling pathway. Although it was discovered lately, research on it developed rapidly. The Hippo signaling pathway is closely relevant to the occurrence and development of tumors and the maintenance of organ size and other biological processes. This manuscript focuses on YAP, the core molecule of the Hippo signaling pathway, and discussion the upstream and downstream regulatory networks of the Hippo signaling pathway during tumorigenesis and development. It also summarizes the relevant drugs involved in this signaling pathway, which may be helpful to the development of targeted drugs for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Manli Dai
- Hunan Food and Drug Vocational College, Changsha 410036, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Lopez-Hernandez A, Sberna S, Campaner S. Emerging Principles in the Transcriptional Control by YAP and TAZ. Cancers (Basel) 2021; 13:cancers13164242. [PMID: 34439395 PMCID: PMC8391352 DOI: 10.3390/cancers13164242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary YAP and TAZ are transcriptional cofactors that integrate several upstream signals to generate context-dependent transcriptional responses. This requires extensive integration with epigenetic regulators and other transcription factors. The molecular and genomic characterization of YAP and TAZ nuclear function has broad implications both in physiological and pathological settings. Abstract Yes-associated protein (YAP) and TAZ are transcriptional cofactors that sit at the crossroad of several signaling pathways involved in cell growth and differentiation. As such, they play essential functions during embryonic development, regeneration, and, once deregulated, in cancer progression. In this review, we will revise the current literature and provide an overview of how YAP/TAZ control transcription. We will focus on data concerning the modulation of the basal transcriptional machinery, their ability to epigenetically remodel the enhancer–promoter landscape, and the mechanisms used to integrate transcriptional cues from multiple pathways. This reveals how YAP/TAZ activation in cancer cells leads to extensive transcriptional control that spans several hallmarks of cancer. The definition of the molecular mechanism of transcriptional control and the identification of the pathways regulated by YAP/TAZ may provide therapeutic opportunities for the effective treatment of YAP/TAZ-driven tumors.
Collapse
|
32
|
Xie Y, Ruan Y, Zou H, Wang Y, Wu X, Li X, Lai J, Shi M, Xiao Y, Wang Y, Zhou Y, Guo B, Zhang F. YAP1 Overexpression Is Associated with Kidney Dysfunction in Lupus Nephritis. Pathobiology 2021; 88:412-423. [PMID: 34344015 DOI: 10.1159/000517575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. METHODS C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson's trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman's analysis. RESULTS Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. CONCLUSION YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China.,School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yixin Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xin Wu
- Department of Nephrology, Guiyang First People's Hospital, Guiyang, China
| | - Xiaoying Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Nephrology, Guiyang First People's Hospital, Guiyang, China
| | - Jiao Lai
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
33
|
Cong Q, Liu Y, Zhou T, Zhou Y, Xu R, Cheng C, Chung HS, Yan M, Zhou H, Liao Z, Gao B, Bocobo GA, Covington TA, Song HJ, Su P, Yu PB, Yang Y. A self-amplifying loop of YAP and SHH drives formation and expansion of heterotopic ossification. Sci Transl Med 2021; 13:13/599/eabb2233. [PMID: 34162750 PMCID: PMC8638088 DOI: 10.1126/scitranslmed.abb2233] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/03/2020] [Accepted: 05/30/2021] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)-Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO. In mouse models of progressive osseous heteroplasia (POH), a disease caused by null mutations in GNAS, we found that Gnas-/- mesenchymal cells secreted SHH, which induced osteoblast differentiation of the surrounding wild-type cells. We further showed that loss of Gnas led to activation of YAP transcription activity, which directly drove Shh expression. Secreted SHH further induced YAP activation, Shh expression, and osteoblast differentiation in surrounding wild-type cells. This self-propagating positive feedback loop was both necessary and sufficient for HO expansion and could act independently of Gnas in fibrodysplasia ossificans progressiva (FOP), another genetic HO, and nonhereditary HO mouse models. Genetic or pharmacological inhibition of YAP or SHH abolished HO in POH and FOP and acquired HO mouse models without affecting normal bone homeostasis, providing a previously unrecognized therapeutic rationale to prevent, reduce, and shrink HO.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Caiqi Cheng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Hye Soo Chung
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Meijun Yan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hang Zhou
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Taylor A Covington
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hyeon Ju Song
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
34
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
35
|
Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, Cermak L. CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Int J Mol Sci 2021; 22:5394. [PMID: 34065512 PMCID: PMC8161014 DOI: 10.3390/ijms22105394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.
Collapse
Affiliation(s)
- Tomas Lidak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Nikol Baloghova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| | - Vladimir Korinek
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| |
Collapse
|
36
|
Casein kinase TbCK1.2 regulates division of kinetoplast DNA, and movement of basal bodies in the African trypanosome. PLoS One 2021; 16:e0249908. [PMID: 33861760 PMCID: PMC8051774 DOI: 10.1371/journal.pone.0249908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that segregate with basal bodies into daughter cells. Molecular details of kinetoplast scission and the extent to which basal body separation influences the process are unavailable. To address this topic, we followed basal body movements in bloodstream trypanosomes following depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separating from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate that current models of basal body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes containing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We conclude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor hypothesis that integrates these data into a pathway for biogenesis of two daughter mitochondrial nucleoids.
Collapse
|
37
|
Cho YS, Jiang J. Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Front Cell Dev Biol 2021; 9:658481. [PMID: 33869224 PMCID: PMC8047194 DOI: 10.3389/fcell.2021.658481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
38
|
Ma H, Dean DC, Wei R, Hornicek FJ, Duan Z. Cyclin-dependent kinase 7 (CDK7) is an emerging prognostic biomarker and therapeutic target in osteosarcoma. Ther Adv Musculoskelet Dis 2021; 13:1759720X21995069. [PMID: 34104229 PMCID: PMC8164556 DOI: 10.1177/1759720x21995069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Overexpression of cyclin-dependent kinase 7 (CDK7) is a well-known pathogenic feature of various malignancies and a sign of a more dismal prognosis. As relatively little is known about CDK7 in osteosarcoma, we elected to evaluate its expression, prognostic value, and function. Methods: We began by analyzing the publicly available data sets on CDK7 expression, including RNA sequencing data from the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) and the Gene Expression database of Normal and Tumor tissues 2 (GENT2). The correlation between patient tissue CDK7 expression and their clinicopathological features and prognosis was assessed via immunohistochemical staining of a unique tissue microarray constructed from osteosarcoma specimens. Furthermore, we analyzed CDK7 expression in osteosarcoma cell lines and tissues by Western blot. CDK7-specific siRNA and a highly-selective CDK7 inhibitor, BS-181, were applied to determine the function of CDK7 on osteosarcoma cell growth and proliferation. In addition, the effect of CDK7 inhibition on clonogenicity was evaluated using a clonogenic assay, and a 3D cell culture model was used to mimic CDK7 effects in an in vivo environment. Results: Our results demonstrate that higher CDK7 expression significantly correlates with recurrence, metastasis, and shorter overall survival in osteosarcoma patients. Therapeutically, we show that CDK7 knockdown with siRNA or selective inhibition with BS-181 decreases proliferation and induces apoptosis of osteosarcoma cells. Conclusion: This study supports CDK7 overexpression as an independent predictor of poor prognosis and promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Hangzhan Ma
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dylan C Dean
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ran Wei
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med 2021; 217:151647. [PMID: 32271880 PMCID: PMC7971137 DOI: 10.1084/jem.20191817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Min Chen
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chun Hou
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.,The School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
41
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel) 2021; 13:cancers13020353. [PMID: 33477952 PMCID: PMC7836002 DOI: 10.3390/cancers13020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| |
Collapse
|
43
|
Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:742-750. [PMID: 32981290 PMCID: PMC7641559 DOI: 10.3350/cmh.2020.0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
44
|
Hsu PC, Yang CT, Jablons DM, You L. The Crosstalk between Src and Hippo/YAP Signaling Pathways in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2020; 12:cancers12061361. [PMID: 32466572 PMCID: PMC7352956 DOI: 10.3390/cancers12061361] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
The advancement of new therapies, including targeted therapies and immunotherapies, has improved the survival of non-small-cell lung cancer (NSCLC) patients in the last decade. Some NSCLC patients still do not benefit from therapies or encounter progressive disease during the course of treatment because they have intrinsic resistance, acquired resistance, or lack a targetable driver mutation. More investigations on the molecular biology of NSCLC are needed to find useful biomarkers for current therapies and to develop novel therapeutic strategies. Src is a non-receptor tyrosine kinase protein that interacts with cell surface growth factor receptors and the intracellular signaling pathway to maintain cell survival tumorigenesis in NSCLC. The Yes-associated protein (YAP) is one of the main effectors of the Hippo pathway and has been identified as a promoter of drug resistance, cancer progression, and metastasis in NSCLC. Here, we review studies that have investigated the activation of YAP as mediated by Src kinases and demonstrate that Src regulates YAP through three main mechanisms: (1) direct phosphorylation; (2) the activation of pathways repressing Hippo kinases; and (3) Hippo-independent mechanisms. Further work should focus on the efficacy of Src inhibitors in inhibiting YAP activity in NSCLC. In addition, future efforts toward developing potentially reasonable combinations of therapy targeting the Src–YAP axis using other therapies, including targeted therapies and/or immunotherapies, are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - David M. Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Correspondence: ; Tel.: +1-415-476-6906
| |
Collapse
|
45
|
Manning SA, Kroeger B, Harvey KF. The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development 2020; 147:147/8/dev179069. [PMID: 32341025 DOI: 10.1242/dev.179069] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800 .,Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia 3000.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|
46
|
Abstract
This Outlook discusses Cho et al.’s finding showing that CDK7 directly phosphorylates YAP/TAZ/Yki in the nucleus, protecting them from ubiquitination and degradation, in a manner independent of the Hippo cascade and from CDK7 basal transcriptional effects. Inhibition of CDK7 is a promising strategy for cancer therapy. CDK7 so far has been understood mainly in the context of Pol II-driven transcription. However, how are the roles of CDK7 in the “basal” transcriptional machinery reconciled with the function of CDK7 as inducer of specific transcriptional programs in tumor cells? In this issue of Genes & Development, Cho and colleagues (pp. 53–71) advance in this direction, demonstrating that attenuation of CDK7 fosters the oncogenic activity of the YAP/TAZ/Yki coactivators. CDK7 directly phosphorylates YAP/TAZ/Yki in the nucleus, protecting them from ubiquitination and degradation, in a manner independent from the Hippo cascade and independent from CDK7 basal transcriptional functions.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy; IFOM, The FIRC Institute of Molecular Oncology, 35121 Padua, Italy
| |
Collapse
|
47
|
VanHook AM. CDK7 stabilizes Yap. Sci Signal 2020. [DOI: 10.1126/scisignal.abb0965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CDK7 promotes cell proliferation and tissue growth by protecting the transcriptional coactivator Yap from degradation.
Collapse
|