1
|
Ho DH, Kim H, Nam D, Seo MK, Park SW, Son I. Expression of G2019S LRRK2 in Rat Primary Astrocytes Mediates Neurotoxicity and Alters the Dopamine Synthesis Pathway in N27 Cells via Astrocytic Proinflammatory Cytokines and Neurotrophic Factors. Curr Issues Mol Biol 2024; 46:4324-4336. [PMID: 38785531 PMCID: PMC11119058 DOI: 10.3390/cimb46050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson's disease (PD). LRRK2 is expressed in neurons, microglia, and astrocytes and plays diverse roles in these cell types. We aimed to determine the effects of mutant human G2019S-LRRK2 (GS-hLRRK2) in rat primary astrocytes (rASTROs). Transfection with GS-hLRRK2 significantly decreased cell viability compared to transfection with the vector and wild-type human LRRK2 (WT-hLRRK2). GS-hLRRK2 expression significantly reduced the levels of nerve growth factor and increased the levels of proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) compared to the vector and WT-hLRRK2 expression. Furthermore, GS-hLRRK2 expression in rASTROs promoted astrogliosis, which was characterized by increased expression of glial fibrillary acidic protein and vimentin. Treatment with the conditioned medium of G2019S LRRK2-expressing rASTROs decreased N27 cell viability compared to treatment with that of WT-hLRRK2-expressing rASTROs. Consequently, the regulation of the dopamine synthesis pathway was affected in N27 cells, thereby leading to altered levels of tyrosine hydroxylase, dopamine transporter, Nurr1, and dopamine release. Overall, the G2019S LRRK2 mutation disrupted astrocyte function, thereby aggravating PD progression.
Collapse
Affiliation(s)
- Dong Hwan Ho
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Hyejung Kim
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan-si 47392, Republic of Korea; (M.K.S.); (S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan-si 47392, Republic of Korea; (M.K.S.); (S.W.P.)
- Department of Convergence Biomedical Science, Inje University College of Medicine, Busan-si 47392, Republic of Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea
| |
Collapse
|
2
|
Alsaadi H, Peller J, Ghasemlou N, Kawaja MD. Immunohistochemical phenotype of sensory neurons associated with sympathetic plexuses in the trigeminal ganglia of adult nerve growth factor transgenic mice. J Comp Neurol 2024; 532:e25563. [PMID: 37986234 DOI: 10.1002/cne.25563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Following peripheral nerve injury, postganglionic sympathetic axons sprout into the affected sensory ganglia and form perineuronal sympathetic plexuses with somata of sensory neurons. This sympathosensory coupling contributes to the onset and persistence of injury-induced chronic pain. We have documented the presence of similar sympathetic plexuses in the trigeminal ganglia of adult mice that ectopically overexpress nerve growth factor (NGF), in the absence of nerve injury. In this study, we sought to further define the phenotype(s) of these trigeminal sensory neurons having sympathetic plexuses in our transgenic mice. Using quantitative immunofluorescence staining analyses, we show that the invading sympathetic axons specifically target sensory somata immunopositive for several biomarkers: NGF high-affinity receptor tyrosine kinase A (trkA), calcitonin gene-related peptide (CGRP), neurofilament heavy chain (NFH), and P2X purinoceptor 3 (P2X3). Based on these phenotypic characteristics, the majority of the sensory somata surrounded by sympathetic plexuses are likely to be NGF-responsive nociceptors (i.e., trkA expressing) that are peptidergic (i.e., CGRP expressing), myelinated (i.e., NFH expressing), and ATP sensitive (i.e., P2X3 expressing). Our data also show that very few sympathetic plexuses surround sensory somata expressing other nociceptive (pain) biomarkers, including substance P and acid-sensing ion channel 3. No sympathetic plexuses are associated with sensory somata that display isolectin B4 binding. Though the cellular mechanisms that trigger the formation of sympathetic plexus (with and without nerve injury) remain unknown, our new observations yield an unexpected specificity with which invading sympathetic axons appear to target a precise subtype of nociceptors. This selectivity likely contributes to pain development and maintenance associated with sympathosensory coupling.
Collapse
Affiliation(s)
- Hanin Alsaadi
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jacob Peller
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael D Kawaja
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42. [PMID: 29901090 PMCID: PMC6089780 DOI: 10.3892/ijmm_2018.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Correspondence to: Dr Akira Ishisaki, Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan, E-mail:
| |
Collapse
|
4
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42:1484-1494. [PMID: 29901090 DOI: 10.3892/ijmm.2018.3714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 01/11/2023] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita‑ku, Sapporo 060‑0812, Japan
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| |
Collapse
|
5
|
Shinsuke K, Junya K, Tomonobu U, Yoshiko K, Izumo N, Takahiko S. Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits NGF-induced neurite extension of PC12 cells via Ca2+/calmodulin-dependent kinase II activation. JOURNAL OF RADIATION RESEARCH 2017; 58:809-815. [PMID: 29106600 PMCID: PMC5710646 DOI: 10.1093/jrr/rrx032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits the differentiation of human neural progenitor cells and influences the expression of proteins associated with several cellular functions. We aimed to determine whether such chronic irradiation influences the expression of proteins associated with PC12 cells. Chronic irradiation at 0.027 mGy/min resulted in inhibition of NGF-induced neurite extension. Furthermore, irradiation enhanced the nerve growth factor (NGF)-induced increase in the phosphorylation of extracellular signal-regulated kinase (ERK), but did not affect the phosphorylation of NGF receptors, suggesting that irradiation influences pathways unassociated with the activation of ERK. We then examined whether irradiation influenced the Akt-Rac1 pathway, which is unaffected by ERK activation. Chronic irradiation also enhanced the NGF-induced increase in Akt phosphorylation, but markedly inhibited the NGF-induced increase in Rac1 activity that is associated with neurite extension. These results suggest that the inhibitory effect of irradiation on neurite extension influences pathways unassociated with Akt activation. As Ca2+/calmodulin-dependent kinase II (CaMKII) is known to inhibit the NGF-induced neurite extension in PC12 cells, independent of ERK and Akt activation, we next examined the effects of irradiation on CaMKII activation. Chronic irradiation induced CaMKII activation, while application of KN-62 (a specific inhibitor of CaMKII), attenuated increases in CaMKII activation and recovered neurite extension and NGF-induced increases in Rac1 activity that was inhibited by irradiation. Our results suggest that chronic irradiation with low-dose-rate γ-rays inhibits Rac1 activity via CaMKII activation, thereby inhibiting NGF-induced neurite extension.
Collapse
Affiliation(s)
- Katoh Shinsuke
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kobayashi Junya
- Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Umeda Tomonobu
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kobayashi Yoshiko
- Research Center for Radiation Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Suzuki Takahiko
- Clinical Radiology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi 173-8605, Japan
| |
Collapse
|
6
|
Linz D, van Hunnik A, Hohl M, Mahfoud F, Wolf M, Neuberger HR, Casadei B, Reilly SN, Verheule S, Böhm M, Schotten U. Catheter-based renal denervation reduces atrial nerve sprouting and complexity of atrial fibrillation in goats. Circ Arrhythm Electrophysiol 2015; 8:466-74. [PMID: 25713217 DOI: 10.1161/circep.114.002453] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) leads to structural and neural remodeling in the atrium, which enhances AF complexity and perpetuation. Renal denervation (RDN) can reduce renal and whole-body sympathetic activity. Aim of this study was to determine the effect of sympathetic nervous system modulation by RDN on atrial arrhythmogenesis. METHODS AND RESULT Eighteen goats were instrumented with an atrial endocardial pacemaker lead and a burst pacemaker. Percutaneous catheter-based RDN was performed in 8 goats (RDN-AF). Ten goats undergoing a sham procedure served as control (SHAM-AF). AF was induced and maintained by burst pacing for 6 weeks. High-resolution mapping was used to record epicardial conduction patterns of the right and left atrium. RDN reduced tyrosine hydroxylase-positive sympathetic nerve staining and resulted in lower transcardiac norepinephrine levels. This was associated with reduced expression of nerve growth factor-β, indicating less atrial nerve sprouting. Atrial endomysial fibrosis content was lower and myocyte diameter was smaller in RDN-AF. Median conduction velocity was higher (75 ± 9 versus 65 ± 10 cm/s, P = 0.02), and AF cycle length was shorter in RDN-AF compared with SHAM-AF. Left atrial AF complexity (4.8 ± 0.8 fibrillation waves/AF cycle length versus 8.5 ± 0.8 waves/AF cycle length, P = 0.001) and incidence of breakthroughs (2.0 ± 0.3 versus 4.3 ± 0.5 waves/AF cycle length, P = 0.059) were lower in RDN-AF compared with SHAM-AF. Blood pressure was normal and not significantly different between the groups. CONCLUSIONS RDN reduces atrial sympathetic nerve sprouting, structural alterations, and AF complexity in goats with persistent AF, independent of changes in blood pressure.
Collapse
Affiliation(s)
- Dominik Linz
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Arne van Hunnik
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Mathias Hohl
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Felix Mahfoud
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Milan Wolf
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Hans-Ruprecht Neuberger
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Barbara Casadei
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Svetlana N Reilly
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Sander Verheule
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Michael Böhm
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.)
| | - Ulrich Schotten
- From the Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany (D.L., M.H., F.M., M.W., H.-R.N., M.B.); Department of Physiology, University Maastricht, Maastricht, The Netherlands (A.v. H., S.V., U.S.); Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (B.C., S.N.R.).
| |
Collapse
|
7
|
Jin GZ, Cho SJ, Choi EG, Lee YS, Yu XF, Choi KS, Yee ST, Jeon JT, Kim MO, Kong IK. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int 2013; 32:1433-8. [DOI: 10.1016/j.cellbi.2008.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 06/25/2008] [Accepted: 08/12/2008] [Indexed: 01/01/2023]
|
8
|
Quinn JP. Variation in the composition of the AP1 complex in PC12 cells following induction by NGF and TPA. Mol Cell Neurosci 2012; 2:253-8. [PMID: 19912806 DOI: 10.1016/1044-7431(91)90052-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1991] [Indexed: 10/26/2022] Open
Abstract
The rat pheochromocytoma cell line PC 12 differentiates in response to NGF. Exposure to NGF induces a class of genes termed immediate early that includes many transcription factors including c-jun and c-fos which can constitute the AP1 complex. Induction of such transcription factors by NGF could be a method by which the cell redirects its program of gene expression that results in differentiation. In this study, it is demonstrated that the complement of transcription factors that constitute the AP1 complex alters with the continued passage of PC12 cells. PC 12 cells from early passage contain no AP1 activity, whereas with passage the cells constitutively express an AP1 complex; however, no morphological differences are observed. The AP1 binding activity can be further induced in all PC12 cells studied by NGF or TPA. The analysis of c-jun, c-fos, and the fos-related antigens that can constitute the AP1 complex demonstrated compositional variation of this complex by passage in culture and by exposure to NGF or TPA. As these AP1 transcription complexes may mediate the action of NGF in PC12 cells it is important to correlate the changes in composition of the complex with differentiation.
Collapse
Affiliation(s)
- J P Quinn
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, United Kingdom
| |
Collapse
|
9
|
Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca2+ signals evoked via the N-methyl-d-aspartate (NMDA) receptor. Brain Res 2010; 1366:18-26. [DOI: 10.1016/j.brainres.2010.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023]
|
10
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Jin GZ, Yin XJ, Yu XF, Cho SJ, Lee HS, Lee HJ, Kong IK. Enhanced tyrosine hydroxylase expression in PC12 cells co-cultured with feline mesenchymal stem cells. J Vet Sci 2008; 8:377-82. [PMID: 17993752 PMCID: PMC2868154 DOI: 10.4142/jvs.2007.8.4.377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) secrete a variety of neuroregulatory molecules, such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor, which upregulate tyrosine hydroxylase (TH) gene expression in PC12 cells. Enhancing TH gene expression is a critical step for treatment of Parkinson's disease (PD). The objective of this study was to assess the effects of co-culturing PC12 cells with MSCs from feline bone marrow on TH protein expression. We divided the study into three groups: an MSC group, a PC12 cell group, and the combined MSC + PC12 cell group (the co-culture group). All cells were cultured in DMEM-HG medium supplemented with 10% fetal bovine serum for three days. Thereafter, the cells were examined using western blot analysis and immunocytochemistry. In western blots, the co-culture group demonstrated a stronger signal at 60 kDa than the PC12 cell group (p<0.001). TH was not expressed in the MSC group, either in western blot or immunocytochemistry. Thus, the MSCs of feline bone marrow can up-regulate TH expression in PC12 cells. This implies a new role for MSCs in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Jee YS, Ko IG, Sung YH, Lee JW, Kim YS, Kim SE, Kim BK, Seo JH, Shin MS, Lee HH, Cho HJ, Kim CJ. Effects of treadmill exercise on memory and c-Fos expression in the hippocampus of the rats with intracerebroventricular injection of streptozotocin. Neurosci Lett 2008; 443:188-92. [DOI: 10.1016/j.neulet.2008.07.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/17/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
13
|
Dagai L, Peri-Naor R, Birk RZ. Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res 2008; 34:867-75. [PMID: 18781386 DOI: 10.1007/s11064-008-9845-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022]
Abstract
Docosahexaenoic acid (22:6n - 3, DHA) is known to enhance neurogenesis. However, the immediate-early effect of DHA on neurogenesis is not fully elucidated. We studied the effect of DHA supplementation (10 and 30 microM) on morphological and molecular changes at different time points of nerve growth factor (NGF, 50 ng/ml)-induced differentiation of PC12 (pheochromocytoma) cells. Cells were analyzed throughout the differentiation process (2 h, 1, 2, 3, 4, and 10 days), for neurite outgrowth (light microscopy and computer image analysis), and for mRNA levels of the immediate molecular differentiation markers Egr1, Egr3, PC3 and PC4 (quantitative real-time PCR). DHA induced significant accelerated neurite outgrowth beginning as early as 2 h post-DHA supplementation and throughout differentiation. Transcripts of the neurogenesis immediate early biomarkers Egr3 and PC3 were significantly (P < 0.05) elevated following DHA supplementation within 0.5 and 1 h post-supplementation (respectively). In conclusion, we show that DHA significantly stimulates immediate-early neurogenesis events, as is evident by both morphological and molecular markers.
Collapse
Affiliation(s)
- L Dagai
- Ben Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
14
|
Kojima M, Suzuki T, Maekawa T, Ishii S, Sumi-Ichinose C, Nomura T, Ichinose H. Increased expression of tyrosine hydroxylase and anomalous neurites in catecholaminergic neurons of ATF-2 null mice. J Neurosci Res 2008; 86:544-52. [PMID: 17896792 DOI: 10.1002/jnr.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ATF-2/CRE-BP1 was originally identified as a cAMP-responsive element (CRE) binding protein abundant in the brain. We previously reported that phosphorylation of ATF-2 increased the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, directly acting on the CRE in the promoter region of the TH gene in PC12D cells (Suzuki et al. [2002] J. Biol. Chem. 277:40768-40774). To examine the role of ATF-2 on transcriptional control of the TH gene in the brain, we investigated the TH expression in ATF-2-/- mice. We found that TH expression was greatly increased in medulla oblongata and locus ceruleus of the ATF-2-deficient embryos. Ectopic expression of TH was observed in the raphe magnus nucleus, where serotonergic neural cell bodies are located. Interestingly, A10 dorsal neurons were lost in the embryos of ATF-2-/- mice. There was no difference in the TH immunoreactivity in the olfactory bulb. The data showed that alteration in TH expression by absence of ATF-2 gradually declined from caudal to rostral part of the brain. We also found anomalous neurite extension in catecholaminergic neurons of ATF-2 null mice, i.e., increased dendritic arborization and shortened axons. These data suggest that ATF-2 plays critical roles for proper expression of the TH gene and for neurite extension of catecholaminergic neurons, possibly through a repressor-like action.
Collapse
Affiliation(s)
- Masayo Kojima
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sim YJ, Kim H, Shin MS, Chang HK, Shin MC, Ko IG, Kim KJ, Kim TS, Kim BK, Rhim YT, Kim S, Park HY, Yi JW, Lee SJ, Kim CJ. Effect of postnatal treadmill exercise on c-Fos expression in the hippocampus of rat pups born from the alcohol-intoxicated mothers. Brain Dev 2008; 30:118-25. [PMID: 17723286 DOI: 10.1016/j.braindev.2007.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 07/04/2007] [Accepted: 07/10/2007] [Indexed: 10/22/2022]
Abstract
Maternal alcohol-intoxication during pregnancy exerts detrimental effects on fetal development and is known to influence learning ability and memory capability by altering neuronal activity in the hippocampus. c-Fos expression represents neuronal activity and plays a crucial role in the brain development. Physical exercise is known to enhance neuronal plasticity and activity. In the present study, we investigated the influence of postnatal treadmill running on the c-Fos expression in the hippocampus of rat pups born from the alcohol-intoxicated mothers. The results obtained show that maternal alcohol-intoxication suppressed c-Fos expression in the hippocampus of rat pups and that postnatal treadmill exercise enhanced c-Fos expression in the hippocampus of these rat pups. The present study suggests that exercise should be considered as a therapeutic means of countering the effects of maternal alcohol-intoxication, and that it may provide a useful strategy for enhancing the neuronal activity of children born from the mothers who abuse alcohol during pregnancy.
Collapse
Affiliation(s)
- Young-Je Sim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Andres R, Herraez-Baranda LA, Thompson J, Wyatt S, Davies AM. Regulation of sympathetic neuron differentiation by endogenous nerve growth factor and neurotrophin-3. Neurosci Lett 2007; 431:241-6. [PMID: 18162309 DOI: 10.1016/j.neulet.2007.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 11/16/2022]
Abstract
Nerve growth factor (NGF) and neurotrophin-3 (NT3) play distinctive roles in sympathetic axon growth and target field innervation and are required for sympathetic neuron survival in vivo. To ascertain if these neurotrophins selectively regulate the expression of genes that determine the functional characteristics of differentiated sympathetic neurons, we measured the mRNA levels for several such genes in the superior cervical ganglion of NGF(-/-), NT3(-/-) and wild type mouse embryos at a stage before excessive neuronal loss occurs in the absence of these neurotrophins. Despite the extensively documented ability of NGF to regulate the noradrenergic phenotype of sympathetic neurons, we found that tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DbetaH) mRNA levels were normal in NGF(-/-) embryos, but significantly reduced in NT3(-/-) embryos. In contrast, the beta2 nicotinic acetylcholine receptor and PACAP receptor 1 mRNA levels were normal in NT3(-/-) embryos, but significantly reduced in NGF(-/-) embryos. Studies of mice lacking neurotrophin receptors suggested that the effects of NGF on gene expression require TrkA whereas those of NT3 require TrkA and p75(NTR). These findings demonstrate that endogenous NGF and NT3 have distinctive and separate effects on gene expression in early sympathetic neurons and that these selective effects on gene expression require a different combination of neurotrophin receptors.
Collapse
Affiliation(s)
- Rosa Andres
- Life Sciences Building, School of Biosciences, Museum Avenue, Cardiff CF10 3US, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Teh CHL, Loh CC, Lam KKY, Loo JM, Yan T, Lim TM. Neuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons. J Neurosci Res 2007; 85:1762-73. [PMID: 17457889 DOI: 10.1002/jnr.21312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamines (dopamine, norepinephrine, and epinephrine) are all synthesized from a common pathway in which tyrosine hydroxylase (TH) is the rate-limiting enzyme. Dopamine is the main neurotransmitter present in dopaminergic neurons of the ventral midbrain, where dysfunction of these neurons can lead to Parkinson's disease and schizophrenia. Neuronal PAS domain protein 1 (NPAS1) was identified as one of the genes up-regulated during dopaminergic MN9D cell differentiation. We found that there was a corresponding decrease in TH level during MN9D differentiation. Overexpression and siRNA experiments revealed that NPAS1, in concert with ARNT, negatively regulates the expression of TH and that this regulation is mediated by a direct binding of NPAS1 on the TH promoter. Expression studies also confirmed a decrease in TH level in the ventral midbrain during mouse development, concomitant with an increase in NPAS1 level. These results suggest that NPAS1 plays a novel and important role in regulating TH level of dopaminergic neurons in the ventral midbrain during development.
Collapse
Affiliation(s)
- Christina H L Teh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Nakagawasai O, Yamadera F, Iwasaki K, Asao T, Tan-No K, Niijima F, Arai H, Tadano T. Preventive effect of kami-untan-to on performance in the forced swimming test in thiamine-deficient mice: Relationship to functions of catecholaminergic neurons. Behav Brain Res 2007; 177:315-21. [PMID: 17207867 DOI: 10.1016/j.bbr.2006.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022]
Abstract
The kampo (Japanese herbal) medicine "kami-untan-to" (KUT) has been used for a long time in the treatment of neuropsychiatric disorders. We have recently reported that mice put on a thiamine-deficient (TD) diet exhibit a depressive behavior and impairment in avoidance learning after 20 days, and that this impairment was reversed by the chronic administration of KUT. In the present study, we investigated the effect of KUT on the depressive behavior observed in TD mice by using the forced swimming test. Our results show that oral administration of KUT from the 1st day of TD feeding prevented the increased duration of immobility in TD mice. Administration of KUT from the 10th day of TD feeding also had a beneficial effect on depressive behavior. To examine the relationship between the potential effects of KUT on monoaminergic neuronal functions and the depressive behavior observed in TD mice, we measured the immunohistochemical distribution of tyrosine hydroxylase (TH) in the brain using microphotometry. The fluorescence intensity of TH decreased in the limbic cortex and brainstem in TD mice compared with pair-fed mice as the control group, while KUT treatment protected against these decreases. These results suggest that KUT treatment may prevent a sign of depressive behavior, the animal immobility time, induced by TD feeding through a mechanism that involves the decrease of TH in some brain areas of TD mice.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao Q, Sun M, Wang X, Geller AI. Isolation of an enhancer from the rat tyrosine hydroxylase promoter that supports long-term, neuronal-specific expression from a neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Res 2007; 1130:1-16. [PMID: 17169349 PMCID: PMC2694737 DOI: 10.1016/j.brainres.2006.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 12/13/2022]
Abstract
Direct gene transfer into neurons, using a virus vector, has been used to study neuronal physiology and learning, and has potential for supporting gene therapy treatments for specific neurological diseases. Many of these applications require high-level, long-term recombinant gene expression, in forebrain neurons. We previously showed that addition of upstream sequences from the rat tyrosine hydroxylase (TH) promoter to a neurofilament heavy gene (NF-H) promoter supports long-term expression in forebrain neurons, from helper virus-free Herpes Simplex Virus (HSV-1) vectors. This element in the TH promoter satisfied the definition of an enhancer; it displayed activity at a distance from the basal promoter, and in both orientations. This enhancer supported physiological studies that required long-term expression; a modified neurofilament promoter, containing an insulator upstream of the TH-NFH promoter, supported expression in approximately 11,400 striatal neurons at 6 months after gene transfer, and expression for 7, 8, or 14 months, the longest times tested. In contrast, the NF-H promoter alone does not support long-term expression, indicating that the critical sequences are in the 6.3 kb fragment of the TH promoter. In this study, we performed a deletion analysis to identify the critical sequences in the TH promoter that support long-term expression. We localized these critical sequences to an approximately 320 bp fragment, and two subfragments of approximately 100 bp each. Vectors that contained each of these small fragments supported levels of long-term, neuronal-specific expression that were similar to the levels supported by a vector that contained the initial 6.3 kb fragment of the TH promoter. These small fragments of the TH promoter may benefit construction of vectors for physiological studies, and may support studies on the mechanism by which this enhancer supports long-term expression.
Collapse
Affiliation(s)
- Qingshen Gao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Mei Sun
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Xiaodan Wang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| | - Alfred I. Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA, 02132
| |
Collapse
|
20
|
Kaufman S. Tyrosine hydroxylase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 70:103-220. [PMID: 8638482 DOI: 10.1002/9780470123164.ch3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S Kaufman
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
McMahon A, Sabban EL. Regulation of Expression of Dopamine β-Hydroxylase in PC12 Cells by Glucocorticoids and Cyclic AMP Analogues. J Neurochem 2006; 59:2040-7. [PMID: 1359011 DOI: 10.1111/j.1471-4159.1992.tb10092.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of catecholamine biosynthesis is crucial in the adaptation to various physiological conditions, such as stress, and in several disorders, including hypertension and depression. In this study we have found that in PC12 cells, the mRNA levels of dopamine beta-hydroxylase (DBH), the enzyme that catalyzes the formation of norepinephrine from dopamine, can be regulated by glucocorticoids and cyclic AMP (cAMP) analogues. Treatment with dexamethasone increased DBH mRNA levels by 6 h. with maximal elevation (four- to fivefold) obtained after 1 day of exposure, and these levels were maintained for up to 4 days. DBH mRNA levels were also elevated on treatment of PC12 cells with 8-bromo cAMP for 8 h to 1 day. The response to 8-bromo cAMP, however, was bimodal, because DBH mRNA levels declined below control values on treatment for > 1 day. In combined treatments with 8-bromo cAMP and dexamethasone, the cAMP effect was dominant. To begin to characterize the regulation of DBH mRNA, genomic clones for rat DBH were isolated, and 1 kb of the 5' flanking region was sequenced. Several putative regulatory elements, which may be involved in cAMP and glucocorticoid regulation, were identified, including two adjacent cAMP response elements, another element that can also bind members of the ATF/CREB family of transcription factors, a NF-kappa B-like sequence, several AP-2 sites, and three core glucocorticoid receptor binding sequences.
Collapse
Affiliation(s)
- A McMahon
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| | | |
Collapse
|
22
|
Craviso GL, Hemelt VB, Waymire JC. Nicotinic Cholinergic Regulation of Tyrosine Hydroxylase Gene Expression and Catecholamine Synthesis in Isolated Bovine Adrenal Chromaffin Cells. J Neurochem 2006; 59:2285-96. [PMID: 1359019 DOI: 10.1111/j.1471-4159.1992.tb10122.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isolated bovine adrenal chromaffin cells were used to study the nicotinic regulation of tyrosine hydroxylase (TH) gene expression. Continuous exposure of the cells to carbachol or the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) produces a time- and concentration-dependent increase in TH enzyme activity, whereas muscarine has no effect. DMPP at 1 microM (EC50 = 0.3 microM) elicits a two- to threefold elevation of both TH activity and TH immunoreactive protein level after 3-5 days in the presence of 2.5 mM calcium; the increase in enzyme levels is significantly less at lower extracellular calcium levels. The rate of hydroxylation of tyrosine to dopamine (DA) in intact cells, an index of endogenous TH activity, increases in parallel with the rise in TH levels. The TH mRNA level is elevated before the increase in protein levels. As determined by nuclear run-on assays, TH gene transcription is stimulated two- to threefold within 30 min of addition of 1 microM DMPP to the cells; transcription returns to basal levels by 2 h. Nitrendipine (20 microM) blocks the stimulation of transcription by DMPP. Pretreatment of the cells with cycloheximide (5 microM) does not prevent the DMPP stimulation of transcription. Forskolin (10 microM) also increases TH transcription (fourfold in 15 min) by a mechanism that is not blocked by cycloheximide. These results show that nicotinic receptor stimulation increases TH mRNA synthesis, TH protein levels, and TH activity in a calcium-dependent manner. Furthermore, the nicotinic influence on TH gene expression does not appear to require the synthesis of a protein factor for its effects. That in situ DA synthesis rates are elevated consequent to the rise in TH levels demonstrates that TH induction serves as a mechanism for enhancing the catecholamine-synthesizing capacity of the chromaffin cell on a long-term basis.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Calcium/pharmacology
- Catecholamines/metabolism
- Cattle
- Cells, Cultured
- Chromaffin System/cytology
- Chromaffin System/enzymology
- Chromaffin System/metabolism
- Colforsin/pharmacology
- Cycloheximide/pharmacology
- Dimethylphenylpiperazinium Iodide/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Induction/drug effects
- Ganglionic Stimulants/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Microscopy, Electron
- Parasympathomimetics/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Time Factors
- Transcription, Genetic
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- G L Craviso
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston
| | | | | |
Collapse
|
23
|
KELLY BB, HEDLUND E, KIM C, ISHIGURO H, ISACSON O, CHIKARAISHI DM, KIM KS, FENG G. A tyrosine hydroxylase-yellow fluorescent protein knock-in reporter system labeling dopaminergic neurons reveals potential regulatory role for the first intron of the rodent tyrosine hydroxylase gene. Neuroscience 2006; 142:343-54. [PMID: 16876957 PMCID: PMC2610443 DOI: 10.1016/j.neuroscience.2006.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 11/20/2022]
Abstract
Degeneration of the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease. To facilitate the study of the differentiation and maintenance of this population of dopaminergic neurons both in vivo and in vitro, we generated a knock-in reporter line in which the yellow fluorescent protein (YFP) replaced the first exon and the first intron of the tyrosine hydroxylase (TH) gene in one allele by homologous recombination. Expression of YFP under the direct control of the entire endogenous 5' upstream region of the TH gene was predicted to closely match expression of TH from the wild type allele, thus marking functional dopaminergic neurons. We found that YFP was expressed in dopaminergic neurons differentiated in vitro from the knock-in mouse embryonic stem cell line and in dopaminergic brain regions in knock-in mice. Surprisingly, however, YFP expression did not overlap completely with TH expression, and the degree of overlap varied in different TH-expressing brain regions. Thus, the reporter gene did not identify functional TH-expressing cells with complete accuracy. A DNaseI hypersensitivity assay revealed a cluster of hypersensitivity sites in the first intron of the TH gene, which was deleted by insertion of the reporter gene, suggesting that this region may contain cis-acting regulatory sequences. Our results suggest that the first intron of the rodent TH gene may be important for accurate expression of TH.
Collapse
Affiliation(s)
- B. B. KELLY
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - E. HEDLUND
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
- Neuroregeneration Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - C. KIM
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - H. ISHIGURO
- Carna Bioscience, KIBC 511, 5-5-2, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - O. ISACSON
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Neuroregeneration Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - D. M. CHIKARAISHI
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - K.-S. KIM
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - G. FENG
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence to: G. Feng, Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA. Tel: +1-919-668-1657; fax: +1-919-668-1891. E-mail address: (G. Feng)
| |
Collapse
|
24
|
Gueven N, Fukao T, Luff J, Paterson C, Kay G, Kondo N, Lavin MF. Regulation of the Atm promoter in vivo. Genes Chromosomes Cancer 2006; 45:61-71. [PMID: 16180236 DOI: 10.1002/gcc.20267] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While ATM, the protein defective in the human genetic disorder ataxia-telangiectasia (A-T), is primarily activated as a preexisting protein by radiation, there is also evidence that expression of the protein can be regulated at the transcriptional level. Activation of the ATM promoter by ionizing radiation has been reported only in quiescent cells in culture. To investigate how the Atm promoter is regulated in vivo, we generated transgenic mice that express the luciferase reporter gene under the control of the murine Atm promoter. Using a biophotonic imaging system luciferase activity was monitored in vivo. Strong promoter activity was detected throughout the transgenic animals with particularly high signals from the thymus, abdominal region, and reproductive organs. This activity further increased in response to both ionizing radiation and heat stress in a time dependent manner. Luciferase activity, measured in vitro in extracts from different tissues, showed highest activities in testes, ovaries, and cerebellum. Subjecting these mice to a single dose of 4 Gy total body radiation led to a time-dependent activation of the promoter with the strongest response observed in the peritoneal membrane, skin, and spleen. For most tissues tested, maximal promoter activity was reached 8 hr after radiation. The observed changes in promoter activity largely correlated with levels and activity of Atm protein in tissue extracts. These results demonstrate that, in addition to activation by autophosphorylation, Atm can also be regulated in vivo at the transcriptional level possibly ensuring a more sustained response to radiation and other stimuli.
Collapse
Affiliation(s)
- Nuri Gueven
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Maharjan S, Serova L, Sabban EL. Transcriptional regulation of tyrosine hydroxylase by estrogen: opposite effects with estrogen receptors alpha and beta and interactions with cyclic AMP. J Neurochem 2005; 93:1502-14. [PMID: 15935066 DOI: 10.1111/j.1471-4159.2005.03142.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reported effects of estrogen administration on tyrosine hydroxylase (TH) gene expression are confusing. Therefore, we studied the mechanism of regulation of TH transcription by estrogen with different estradiol receptor (ER) subtypes. PC12 cells, transiently co-transfected with expression vector for ERalpha or ERbeta, and luciferase gene under control of the TH promoter, were treated with 17 beta-estradiol (E2). E2 doubled luciferase activity with ERalpha; however, it was decreased with ERbeta. Mapping the TH promoter showed that the putative half estrogen response element (ERE) motif at - 675, as well as the activation protein 1 motif at - 205, were not required for response to E2 with either ER. The specificity protein 1/early growth response gene 1 (Egr 1) motif was required for the E2-elicited response with ERbeta, but not with ERalpha. Deletion of the cyclic AMP/Ca2+ response element (CRE/CaRE) nearly abolished E2-triggered responses with either ER. Further analysis revealed an imperfect canonical putative ERE overlapping with CRE/CaRE and Nurr1 response element. Oligonucleotides spanning this ERE displayed binding to ER, Cyclic AMP Response Element Binding Protein (CREB) and other proteins. Moreover, E2 attenuated the increase in TH transcription seen with cyclic AMP analogs. Thus, TH is transcriptionally regulated by estradiol in opposite directions depending on ER subtype. The overlapping ERE and CRE/CaRE may integrate interactions elicited by various regulators of TH transcription including cAMP and estrogens.
Collapse
Affiliation(s)
- Shreekrishna Maharjan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
26
|
Roux P, Menguy I, Soubigou S, Chinn J, Ricard S, Williams S, Guitton JD, Tian T, Singh S, Grépin C. Direct measurement of multiple mRNAs in nerve growth factor-induced PC12 cells using electrophoretic tags to monitor biomarkers of neuronal differentiation in 96-well format. Assay Drug Dev Technol 2005; 2:637-46. [PMID: 15674022 DOI: 10.1089/adt.2004.2.637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Pheochromocytoma-12 (PC12) cells recapitulate the program of neuronal differentiation by developing neurites after about 12 days of nerve growth factor (NGF) treatment. This model can be used to evaluate the neuroprotective/neurotrophic effect of compounds. Specific mRNAs such as cfos and c-jun are early biomarkers of the irreversible commitment into the differentiation program as they appear after only 30-40 min of NGF treatment. Monitoring the level of these mRNAs instead of the neurite outgrowth dramatically reduces the time needed to identify the drug potential of compounds. The electrophoretic tags, or eTag reporters (ACLARA Biosciences, Inc., Mountain View, CA), are a new class of fluorescent reporters that have unique migration properties in capillary electrophoresis, which allows for their separation and identification. (The eTag Multiplex Invader Assay and products incorporate Invader technology and Cleavase enzyme licensed for use from Third Wave Technologies, Inc. [Madison, WI] for multiplexed gene expression applications.) Each eTag molecule used begins as a phosphoramidite that is incorporated into a specific oligonucleotide using standard oligonucleotide synthesis procedures. A set of distinct probes labeled with different eTag molecules can then be mixed together to simultaneously quantify the levels of different mRNAs from the same sample. When compared to existing methods for measuring multiplexed gene expression from the same sample, the eTag assay allows a direct quantification of the mRNA from cells without any extraction/purification and still provides multiplexing capability, high sensitivity, miniaturization, and reproducibility compatible with medium-throughput screening methods. The eTag technology was used to simultaneously measure the level of expression of four mRNAs-c-fos, c-jun, c-myc, and gapdh-in NGF-treated PC12 cells in a standard 96-well format. The experimental data shown here demonstrate the use of eTag technology as a new screening tool, which uniquely combines robustness, sensitivity, multiplexing capability, and direct measurement of mRNA without any sample preparation steps, such as RNA extraction/purification or a reverse transcription step.
Collapse
|
27
|
Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL. Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 2005; 369:203-7. [PMID: 15464265 DOI: 10.1016/j.neulet.2004.07.052] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
Testes determining factor Sry is encoded by the Sry locus on the Y chromosome and may be involved in the regulation of blood pressure. Here we tested the hypothesis that Sry regulates transcription of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines. Sry was found to be expressed in catecholaminergic regions, in male but not female rats. Co-transfection of PC12 cells with expression vector for Sry and the reporter construct [p5'TH(-773/+27)/Luc], containing 773 of the proximal nucleotides of the TH promoter directing luciferase reporter activity, led to elevation of reporter activity. The reporter activity of a shorter construct [p5'TH(-272/+27)/Luc] lacking putative Sry sites also responded to Sry. However, mutation of the AP1 site in the TH promoter greatly reduced induction by Sry, indicating that the regulation is primarily at this motif. The remaining, significantly increased expression with the mutated TH promoter construct may reflect Sry function at other sites in addition to the AP1 motif. These results reveal that Sry can regulate TH transcription and suggest that this may be one of the mechanisms of Sry mediated regulation of catecholamine biosynthesis in catecholaminergic neurons in males.
Collapse
Affiliation(s)
- Amy Milsted
- Department of Biology, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kawano H, Nakatani T, Mori T, Ueno S, Fukaya M, Abe A, Kobayashi M, Toda F, Watanabe M, Matsuoka I. Identification and characterization of novel developmentally regulated neural-specific proteins, BRINP family. ACTA ACUST UNITED AC 2004; 125:60-75. [PMID: 15193423 DOI: 10.1016/j.molbrainres.2004.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2004] [Indexed: 11/25/2022]
Abstract
Processes of neuronal differentiation involve activation of a set of neuronal specific genes and cessation of cell proliferation in postmitotic neurons. Previous studies revealed that bone morphogenetic protein (BMP) and retinoic acid (RA) play important roles in the differentiation of peripheral sympathetic neurons such as the synergistic induction of responsiveness to specific neurotrophic factors. In the present study, while trying to clarify the mechanism of the BMP/RA-actions, we identified a novel neural-specific protein, BMP/RA-inducible neural-specific protein-1 (BRINP1) which shows no similarity to other known proteins. Subsequently, two homologous proteins, BRINP2 and BRINP3, making up the BRINP family, are identified. Individual BRINP genes have distinct regulatory mechanisms of expression within the nervous system. In rodent brain, BRINP1 is expressed from earlier developmental stage, i.e. E9.5, and widely expressed in various neuronal layers and nuclei of the adult animal, while BRINP2 and BRINP3 were detectable from E11.5 and expressed in rather limited regions in a complementary manner. During the course of perinatal development of sympathetic neurons, BRINP1 is induced from earlier embryonic stage and further increased toward adult stage, while BRINP3 expressed from earlier stage is replaced by BRINP2 expression which increases postnatally in accordance with the action of BMP2 and RA. Furthermore, when expressed in nonneuronal cells, all three BRINP family proteins suppressed the cell cycle progression. Possible physiological functions of BRINP family members in the development of the nervous system are discussed.
Collapse
Affiliation(s)
- H Kawano
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki T, Kurahashi H, Ichinose H. Ras/MEK pathway is required for NGF-induced expression of tyrosine hydroxylase gene. Biochem Biophys Res Commun 2004; 315:389-96. [PMID: 14766220 DOI: 10.1016/j.bbrc.2004.01.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 12/31/2022]
Abstract
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | |
Collapse
|
30
|
Beaujean D, Rosenbaum C, Müller HW, Willemsen JJ, Lenders J, Bornstein SR. Combinatorial code of growth factors and neuropeptides define neuroendocrine differentiation in PC12 cells. Exp Neurol 2004; 184:348-58. [PMID: 14637105 DOI: 10.1016/j.expneurol.2003.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adrenal chromaffin cells constitute one of the first cell types to have been defined as a neuroendocrine cell type. Since they produce dopamine, these cells have been proposed for the treatment of neuronal deficits in human Parkinson's disease. However, the factors involved in the development of chromaffin cells are still poorly understood. Based on recent insights from stem cell research, we decided to study the role of extracellular matrices, growth factors and neuropeptides on the neuroendocrine differentiation in a serum-free medium of PC12 cells. Employing immunohistochemistry, quantitative PCR and HPLC analysis, neuroendocrine differentiation was determined by evaluating neurite outgrowth, catecholamine biosynthesis and release as well as neuropeptide and vesicular protein mRNA expression. The combination of bFGF, NGF and PACAP could prevent the inhibition of neurite process development induced by dexamethasone in PC12 cells cultured on ECM. Whereas glucocorticoids were essential in the regulation of enzymes of catecholamine biosynthesis and metabolism, growth factors and PACAP were more efficient in inducing neuropeptide and chromogranin B expression as well as release of dopamine and 3-methoxytyramine. Therefore, in addition to glucocorticoids, chromaffin cells need a gradient of matrix, growth factors, and neuropeptides to develop the full functional phenotype of a neuroendocrine cell.
Collapse
Affiliation(s)
- Delphine Beaujean
- Department of Endocrinology, University of Düsseldorf, 40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Gueven N, Keating K, Fukao T, Loeffler H, Kondo N, Rodemann HP, Lavin MF. Site-directed mutagenesis of the ATM promoter: consequences for response to proliferation and ionizing radiation. Genes Chromosomes Cancer 2003; 38:157-67. [PMID: 12939743 DOI: 10.1002/gcc.10261] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins
- Binding Sites/genetics
- Binding Sites/radiation effects
- Cell Cycle Proteins
- Cell Division/genetics
- Cell Division/radiation effects
- Cell Line
- Cell Line, Transformed
- Chlorocebus aethiops
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/radiation effects
- Gamma Rays
- Humans
- Infant, Newborn
- Male
- Mutagenesis, Site-Directed/genetics
- Mutagenesis, Site-Directed/radiation effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/radiation effects
- Protein Binding/genetics
- Protein Binding/radiation effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/radiation effects
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/radiation effects
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/radiation effects
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/radiation effects
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Vero Cells
Collapse
Affiliation(s)
- Nuri Gueven
- Queensland Cancer Fund Research Laboratory, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Nakashima A, Ota A, Sabban EL. Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:61-9. [PMID: 12670703 DOI: 10.1016/s0169-328x(03)00047-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several treatments which regulate tyrosine hydroxylase (TH) transcription, such as stress in vivo, or 12-O-tetradecanoylphorbol-13-acetate (TPA) in cell culture, induce both Egr1 and AP1 factors. Previously, we identified a functional Egr1 motif overlapping with Sp1 site in the rat TH promoter. Its response to Egr1 also required the presence of an AP1/Ebox motif. Here, we further examined the cross-talk between these sites. Insertion of 10- or 20-bp between the Sp1/Egr1 and AP1/Ebox elements, reduced the ability of Egr1 to upregulate luciferase reporter activity controlled by the proximal 272 nucleotides of the rat TH promoter in PC12 cells. Electrophoretic mobility shift assays with nuclear extracts from TPA treated cells were used to identify the composition of the factors which bound the AP1/Ebox motif and whether there is competition with factors which bind the Sp1/Egr1 motif. The complexes formed with labeled AP1/E box oligonucleotide were reduced or supershifted with antisera to Fos family, c-Fos, Fra-2, and Jun D. Excess Sp1/Egr1 oligonucleotide or anti Egr1 antisera did not compete. Fra-2 was a major component of the complex after 2-4 h TPA. Transfection of PC12 cells with Fra-2 induced reporter activity requiring the AP1, but not the Egr1 motif. However, when cotransfected with Fra-2, Egr1 expression plasmids elicited lower induction of luciferase activity than observed with Egr1 alone. Our results suggest that although it does not compete for binding to the promoter, Egr1 can modulate the regulation of TH transcription by AP1 factors.
Collapse
Affiliation(s)
- Akira Nakashima
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
33
|
Pompeiano M, d'Ascanio P, Centini C, Pompeiano O, Balaban E. Short-term (Fos) and long-term (FRA) protein expression in rat locus coeruleus neurons during the neurolab mission: contribution of altered gravitational fields, stress, and other factors. Neuroscience 2003; 115:111-23. [PMID: 12401326 DOI: 10.1016/s0306-4522(02)00402-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in immediate-early gene (IEG) expression during and after space flight were studied in the rat locus coeruleus (LC) during the NASA Neurolab mission. The LC sends widespread projections throughout the brain and releases the neuromodulator norepinephrine. LC neurons respond to natural vestibular stimulation; their firing rate also increases during waking and decreases or ceases during sleep. LC neurons express IEGs such as c-fos after activation. Adult male albino Fisher 344 rats were killed at four mission time points, and the number of Fos- and Fos-related antigen (FRA)-positive LC cells were counted in flight and ground-based control rats. Half of the subjects at each time point were exposed to light for 60 min prior to killing to standardize their sleep-waking state. FRA-expressing cells were more numerous than Fos-expressing cells in both flight- and ground-based subjects. The difference between FRA- and Fos-expressing cells within individuals was significantly larger 24 h after landing in subjects exposed to both space flight and light pulse than in all other subjects at any mission time point. Fos and FRA responses scaled in proportion to the maximum response observed in any single individual showed similar patterns of variation. Analysis of the scaled and combined responses showed that LC IEG levels responded to both gravity changes and light pulses. Subjects exposed to either single stimulus had equivalent responses, significantly greater than those of control subjects maintained in dim light. The combination of gravity change and light pulse gave significantly higher LC responses than either stimulus alone 24 h after takeoff, and to a lesser extent after 12 days in space; the highest responses were obtained 24 h after landing. By 14 days after landing, animals exposed to space flight and light pulse responded no differently than ground-based subjects. No difference in LC IEG expression was clearly attributable to changes in the sleep-waking state of subjects. Activity of noradrenergic LC neurons has been previously shown to modulate IEG expression in target structures. The increased IEG LC activity (seen most especially 24 h after landing) may reflect large-scale activation of noradrenergic neurons that may serve as a trigger for molecular changes in target structures, and be critical for adaptation to gravity changes.
Collapse
Affiliation(s)
- M Pompeiano
- Dipartimento di Scienze dell'Uomo e dell'Ambiente, Universitá di Pisa, Scuola Medica, Via Roma 55, I-56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
34
|
Suzuki T, Yamakuni T, Hagiwara M, Ichinose H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem 2002; 277:40768-74. [PMID: 12196528 DOI: 10.1074/jbc.m206043200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of catecholamine-synthesizing genes is important for the determination of neurotransmitters during brain development. We found that three catecholamine-synthesizing genes were transcriptionally up-regulated in cloned PC12D cells overexpressing V-1, a protein that is highly expressed during postnatal brain development (1). To reveal the molecular mechanism to regulate the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, we analyzed the transcription factors responsible for TH induction in the V-1 clonal cells. First, by using reporter constructs, we found that the transcription mediated by cAMP-responsive element (CRE) was selectively enhanced in the V-1 cells, and TH promoter activity was totally dependent on the CRE in the promoter region of the TH gene. Next, immunoblot analyses and a transactivation assay using a GAL4 reporter system revealed that ATF-2, but not cAMP-responsive element-binding protein (CREB), was highly phosphorylated and activated in the V-1 cells, while both CREB and ATF-2 were bound to the TH-CRE. Finally, the enhanced TH promoter activity was competitively attenuated by expression of a plasmid containing the ATF-2 transactivation domain. These data demonstrated that activation of ATF-2 resulted in the increased transcription of the TH gene and suggest that ATF-2 may be deeply involved in the transcriptional regulation of catecholamine-synthesizing genes during neural development.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | |
Collapse
|
35
|
Cicale M, Ambesi-Impiombato A, Cimini V, Fiore G, Muscettola G, Abbott LC, de Bartolomeis A. Decreased gene expression of calretinin and ryanodine receptor type 1 in tottering mice. Brain Res Bull 2002; 59:53-8. [PMID: 12372549 DOI: 10.1016/s0361-9230(02)00841-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tottering mice are a spontaneously occurring animal model of human absence epilepsy. They carry a mutation in the P/Q-type calcium channel alpha1A subunit gene which is highly expressed by cerebellar Purkinje cells. In this study, we investigated the role of calretinin and ryanodine receptor type 1 (RyR1) gene expression in the cerebellum of tottering mice. Cerebellar tissue specimens from four experimental groups were processed for in situ hybridization histochemistry (ISHH): (1) wild-type (+/+); (2) heterozygous (tg/+) and two homozygous groups; either (3) without occurrence of an episode of paroxysmal dyskinesia (tg/tg-N); or (4) after an episode of paroxysmal dyskinesia (tg/tg-P) that lasted about 45 min on average. Quantitative analysis showed a statistically significant decrease (p = 0.0001, ANOVA) of calretinin gene expression at the level of the simple lobule of the cerebellum in both homozygous groups compared to the wild-type and heterozygous groups. RyR1 was decreased in the flocculus of the cerebellum in both the tg/tg-N and tg/tg-P groups compared to wild type (p = 0.0174, ANOVA). These results suggest that calretinin gene expression, as well as other genes involved in regulation of calcium homeostasis, such as RyR1, may play a role in the biochemical functional alterations present in tottering mice.
Collapse
Affiliation(s)
- M Cicale
- Department of Neuroscience and Behavioral Sciences, Unit of Molecular Psychiatry, Section of Psychiatry, University School of Medicine Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Hodgkin J. The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude? Genes Dev 2002; 16:2322-6. [PMID: 12231620 DOI: 10.1101/gad.1025502] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jonathan Hodgkin
- Genetics Unit, Department of Biochemistry, University of Oxford, OX1 3QU, UK.
| |
Collapse
|
37
|
Xiao H, Hirata Y, Isobe KI, Kiuchi K. Glial cell line-derived neurotrophic factor up-regulates the expression of tyrosine hydroxylase gene in human neuroblastoma cell lines. J Neurochem 2002; 82:801-8. [PMID: 12358785 DOI: 10.1046/j.1471-4159.2002.00993.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of glial cell line-derived neurotrophic factor (GDNF) in the survival of dopaminergic neurons has been well documented, but its effect on dopamine biosynthesis remains to be elucidated. In this study, the effect of GDNF on the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis, was investigated. We found that GDNF elevated the expression of the TH gene at both mRNA and protein levels in TGW cells, a human neuroblastoma cell line. GDNF significantly enhances the transcription rate of the TH gene as actinomycin D prevented the induction of TH mRNA and GDNF increased the activity of the TH promoter. In addition, GDNF exerts a relatively weak but significant effect on the stability of TH mRNA, because GDNF delayed the degradation of TH mRNA and strengthened a special TH mRNA/protein interaction known to be relevant with TH mRNA stability. By comparing several human neurogenic cell lines, we found that GDNF-induced TH expression was only observed in the cells possessing Ret protein and coincided with the expression levels. Taken together, these results indicate that GDNF up-regulates the expression of the TH gene by promoting the transcription of the TH gene and the stability of TH mRNA with the Ret receptor dependency in some neuroblastoma cell lines. Thus, GDNF exerts its neurotrophic role not only in promoting cells survival, but also in affecting dopamine biosynthesis.
Collapse
Affiliation(s)
- Hengyi Xiao
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Center, RIKEN, Nagoya, Japan
| | | | | | | |
Collapse
|
38
|
Ibáñez CF, Persson H. Localization of Sequences Determining Cell Type Specificity and NGF Responsiveness in the Promoter Region of the Rat Choline Acetyltransferase Gene. Eur J Neurosci 2002; 3:1309-1315. [PMID: 12106228 DOI: 10.1111/j.1460-9568.1991.tb00063.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A genomic clone containing 7 kb of 5' flanking sequences from the rat choline acetyltransferase (ChAT) gene was isolated and shown to contain a TATA box-like sequence and several consensus binding sites for the transcription factor AP1. Two constructs containing 450 and 1450 base pairs (bp), respectively, of 5' flanking sequences promoted expression of a fused chloramphenicol acetyltransfersase (CAT) gene when transfected into fibroblast FR3T3, Sertoli TM4, phaeochromocytoma PC12 and cholinergic neuronal SN6 cell lines. In contrast, a longer construct containing 3850 bp of 5' flanking sequence allowed CAT activity only in the cholinergic cell line SN6. CAT activity with this construct was suppressed in the three other cell lines, indicating that the distal region of the ChAT promoter contains a cell type-specific silencer-like element that restricts ChAT gene expression to cholinergic cells. Treatment of PC12 cells with nerve growth factor (NGF) increased the promoter activity of the -450 and -1450 constructs approximately four-fold and allowed promoter activity from the -3850 construct, indicating that elements involved in NGF responsiveness of the ChAT promoter are contained in the first 450 bp of upstream sequence. These results support a model in which gene transcription controlled by cell-type specific regulatory elements contribute to the establishment, maintenance and plasticity of the cholinergic transmitter phenotype in the nervous system.
Collapse
Affiliation(s)
- Carlos F. Ibáñez
- Laboratory of Molecular Neurobiology, Department of Medical Chemistry, Karolinska Institute, 104 01 Stockholm, Sweden
| | | |
Collapse
|
39
|
Bournat JC, Allen JM. Regulation of the Y1 neuropeptide Y receptor gene expression in PC12 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:149-64. [PMID: 11406293 DOI: 10.1016/s0169-328x(01)00097-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Y1 receptor for neuropeptide Y (NPY-Y1) is constitutively expressed in PC12 cells. In this study, we examined the role of nerve growth factor (NGF), pituitary adenylyl cyclase activating polypeptide (PACAP) and dexamethasone on the expression of the gene encoding the rat NPY-Y1 receptor in PC12 cells. A fusion gene (pY1-Luc) was constructed where the reporter enzyme firefly luciferase was placed under the control of 700 bp of the promoter region of the rat NPY-Y1 receptor gene. This promoter region contains recognition consensus sequences for various transcription factors, including one activation protein-1 (AP-1) site, two cyclic AMP responsive element sites, one estrogen receptor element site and four glucocorticoid receptor element sites. NGF increased luciferase activity in a concentration dependent manner. This increase was inhibited by K-252a, a trk A receptor inhibitor, and calphostin C, a PKC inhibitor. PACAP-38 increased luciferase activity in a concentration dependent manner. This activation was inhibited by H-89. Dexamethasone increased transcription of NPY-Y1 gene in PC12 cells. These results indicate that differentiation of PC12 cells into endocrine-like phenotype by dexamethasone and into a neuronal-like phenotype by either NGF or PACAP-38 increases the transcriptional activity of the NPY-Y1 receptor gene in PC12 cells.
Collapse
Affiliation(s)
- J C Bournat
- Division of Biochemistry and Molecular Biology and Department of Medicine and Therapeutics, University of Glasgow, G12 8QQ, Glasgow, UK
| | | |
Collapse
|
40
|
Abstract
Rocker (gene symbol rkr), a new neurological mutant phenotype, was found in descendents of a chemically mutagenized male mouse. Mutant mice display an ataxic, unstable gait accompanied by an intention tremor, typical of cerebellar dysfunction. These mice are fertile and appear to have a normal life span. Segregation analysis reveals rocker to be an autosomal recessive trait. The overall cytoarchitecture of the young adult brain appears normal, including its gross cerebellar morphology. Golgi-Cox staining, however, reveals dendritic abnormalities in the mature cerebellar cortex characterized by a reduction of branching in the Purkinje cell dendritic arbor and a "weeping willow" appearance of the secondary branches. Using simple sequence length polymorphism markers, the rocker locus was mapped to mouse chromosome 8 within 2 centimorgans of the calcium channel alpha1a subunit (Cacna1a, formerly known as tottering) locus. Complementation tests with the leaner mutant allele (Cacna1a(la)) produced mutant animals, thus identifying rocker as a new allele of Cacna1a (Cacna1a(rkr)). Sequence analysis of the cDNA revealed rocker to be a point mutation resulting in an amino acid exchange: T1310K between transmembrane regions 5 and 6 in the third homologous domain. Important distinctions between rocker and the previously characterized alleles of this locus include the absence of aberrant tyrosine hydroxylase expression in Purkinje cells and the separation of the absence seizures (spike/wave type discharges) from the paroxysmal dyskinesia phenotype. Overall these findings point to an important dissociation between the seizure phenotypes and the abnormalities in catecholamine metabolism, and they emphasize the value of allelic series in the study of gene function.
Collapse
|
41
|
Dent GW, Smith MA, Levine S. Stress-induced alterations in locus coeruleus gene expression during ontogeny. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:23-30. [PMID: 11287061 DOI: 10.1016/s0165-3806(01)00108-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brainstem noradrenergic neurons, particularly the locus-coeruleus (LC), play a pivotal role in modulating the central stress response and have been implicated in regulating the hypothalamic-pituitary-adrenal (HPA) axis. In adult rats, acute stress causes an increase in LC firing and tyrosine hydroxylase (TH) gene expression. While the role of the LC-norepinephrine (LC-NE) system in the adult stress response has been well characterized, there is limited evidence for its participation during development. Previous studies described the neonatal HPA axis as hyporeactive because of stimulus-selective pituitary activation. However, maternal deprivation does reinstate stress-induced endocrine activity and can amplify the neural stress response. Considering that LC neurons can modulate neuroendocrine activity, we hypothesized that the LC-NE system would be stress-responsive during development. Because maternal deprivation (DEP) can alter the central stress response, we examined the LC-NE stress response in both DEP and non-deprived (NDEP) pups. Following an isotonic saline injection (stressor) the time course of TH, c-fos and glucocorticoid receptor (GR) mRNA was examined. Stress-induced TH mRNA was increased in DEP pups at postnatal day (pnd) 12 and in both NDEP and DEP pups at pnd 18. At 15, 30 and 240 min c-fos mRNA was markedly increased in all groups examined. GR mRNA was not altered at pnd 12; however, at pnd 18 NDEP pups showed reduced GR mRNA expression. These data indicate that during ontogeny the LC-NE system is stress-responsive to an acute mild challenge. Activation of LC-NE neurons suggests that this system may participate in modulating the neuroendocrine stress response during development.
Collapse
Affiliation(s)
- G W Dent
- Department of Biology, University of Delaware, 19716-2577, Newark, DE, USA
| | | | | |
Collapse
|
42
|
Nerve growth factor, but not epidermal growth factor, increases Fra-2 expression and alters Fra-2/JunD binding to AP-1 and CREB binding elements in pheochromocytoma (PC12) cells. J Neurosci 2001. [PMID: 11150315 DOI: 10.1523/jneurosci.21-01-00018.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In pheochromocytoma (PC12) cells nerve growth factor (NGF) and epidermal growth factor (EGF) activate similar receptor tyrosine kinase signaling pathways but evoke strikingly different biological outcomes: NGF induces differentiation and EGF acts as a mitogen. A novel approach was developed for identifying transcription factor activities associated with NGF-activated, but not EGF-activated, signaling, using random oligonucleotide clones from a DNA recognition library to isolate specific DNA binding proteins from PC12 nuclear extracts. A protein complex from NGF-treated, but not EGF-treated, cells was identified that exhibits increased mobility and DNA binding activity in gel mobility shift assays. The binding complex was identified in supershift assays as Fra-2/JunD. The clones used as probes contain either AP-1 or cAMP response element binding (CREB) recognition elements. Time course experiments revealed further differences in NGF and EGF signaling in PC12 cells. NGF elicits a more delayed and sustained ERK phosphorylation than EGF, consistent with previous reports. Both growth factors transiently induce c-fos, but NGF evokes a greater response than EGF. NGF specifically increases Fra-1 and Fra-2 levels at 4 and 24 hr. The latter is represented in Western blots by bands in the 40-46 kDa range. NGF, but not EGF, enhances the upper bands, corresponding to phosphorylated Fra-2. These findings suggest that prolonged alterations in Fra-2 and subsequent increases in Fra-2/JunD binding to AP-1 and CREB response elements common among many gene promoters could serve to trigger broadly an NGF-specific program of gene expression.
Collapse
|
43
|
Sabban EL, Kvetnanský R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 2001; 24:91-8. [PMID: 11164939 DOI: 10.1016/s0166-2236(00)01687-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress triggers important adaptive responses that enable an organism to cope with a changing environment. However, when prolonged or repeated, stress can be extremely harmful. The release of catecholamines is a key initial event in responses to stressors and is followed by an increase in the expression of genes that encode catecholamine-synthesizing enzymes. This process is mediated by transcriptional mechanisms in the adrenal medulla and the locus coeruleus. The persistence of transcriptional activation depends on the duration and repetition of the stress. Recent work has begun to identify the various transcription factors that are associated with brief or intermediate duration of a single or repeated stress. These studies suggest that dynamic interplay is involved in converting the transient increases in the rate of transcription into prolonged (potentially adaptive or maladaptive) changes in gene expression.
Collapse
Affiliation(s)
- E L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
44
|
Abstract
Neurons compute in part by integrating, on a time scale of milliseconds, many synaptic inputs and generating a digital output-the "action potential" of classic electrophysiology. Recent discoveries indicate that neurons also perform a second, much slower, integration operating on a time scale of minutes or even hours. The output of this slower integration involves a pulse of gene expression which may be likened to the electrophysiological action potential. Its function, however, is not directed toward immediate transmission of a synaptic signal but rather toward the experience-dependent modification of the underlying synaptic circuitry. Commonly termed the "immediate early gene" (IEG) response, this phenomenon is often assumed to be a necessary component of a linear, deterministic cascade of memory consolidation. Critical review of the large literature describing the phenomenon, however, leads to an alternative model of IEG function in the brain. In this alternative, IEG activation is not directed at the consolidation of memories of a specific inducing event; instead, it sets the overall gain or efficiency of memory formation and directs it to circuits engaged by behaviorally significant contexts. The net result is a sharpening of the selectivity of memory formation, a recruitment of temporally correlated associations, and an ultimate enhancement of long-term memory retrieval.
Collapse
Affiliation(s)
- D F Clayton
- Beckman Institute Neuronal Pattern Analysis Group, Department of Cell & Structural Biology and Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
45
|
Papanikolaou NA, Sabban EL. Ability of Egr1 to Activate Tyrosine Hydroxylase Transcription in PC12 Cells. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61430-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Nanmoku T, Isobe K, Sakurai T, Yamanaka A, Takekoshi K, Kawakami Y, Ishii K, Goto K, Nakai T. Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem Biophys Res Commun 2000; 274:310-5. [PMID: 10913336 DOI: 10.1006/bbrc.2000.3137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
New orexigenic peptides called orexin-A and -B have recently been described in neurons of the lateral hypothalamus and perifornical area. No orexins have been found in adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin-receptor 2 (OX2R) in the rat adrenal gland has been reported. To test the effects of orexins on peripheral organs, we investigated their effects on catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. Orexin-A and -B (100 nM) significantly reduced basal and PACAP-induced tyrosine hydroxylase (TH) (the rate-limiting enzyme in the biosynthesis of catecholamines) mRNA levels. Orexin-A and -B (100 nM) also significantly inhibited the PACAP-induced increase in the cAMP level, suggesting that the suppressive effect on TH mRNA is mediated, at least in part, by the cAMP/protein kinase A pathway. Furthermore, orexin-A and -B (100 nM) significantly suppressed basal and PACAP-induced dopamine secretion from PC12 cells. Next, we examined whether orexin receptors (OX1R, OX2R) were present in the rat adrenal gland and PC12 cells. In the adrenal glands, OX2R was as strongly expressed as in the hypothalamus, but OX1R was not detected. On the other hand, neither OX1R nor OX2R was expressed in PC12 cells. However, binding assays showed equal binding of orexin-A and -B to PC12 cells, suggesting the existence in these cells of some receptors for orexins. These results indicate that orexins suppress catecholamine release and synthesis, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway.
Collapse
Affiliation(s)
- T Nanmoku
- Department of Clinical Pathology, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1750] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex determination is regulated by diverse pathways. Although upstream signals vary, a cysteine-rich DNA-binding domain (the DM motif) is conserved within downstream transcription factors ofDrosophila melanogaster (Doublesex) and Caenorhabditis elegans (MAB-3). Vertebrate DM genes have likewise been identified and, remarkably, are associated with human sex reversal (46, XY gonadal dysgenesis). Here we demonstrate that the structure of the Doublesex domain contains a novel zinc module and disordered tail. The module consists of intertwined CCHC and HCCC Zn2+-binding sites; the tail functions as a nascent recognition α-helix. Mutations in either Zn2+-binding site or tail can lead to an intersex phenotype. The motif binds in the DNA minor groove without sharp DNA bending. These molecular features, unusual among zinc fingers and zinc modules, underlie the organization of a Drosophila enhancer that integrates sex- and tissue-specific signals. The structure provides a foundation for analysis of DM mutations affecting sexual dimorphism and courtship behavior.
Collapse
|
48
|
Wu J, Fang L, Lin Q, Willis WD. Fos expression is induced by increased nitric oxide release in rat spinal cord dorsal horn. Neuroscience 2000; 96:351-7. [PMID: 10683575 DOI: 10.1016/s0306-4522(99)00534-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The relationship between exogenous or endogenous nitric oxide and c-fos, an immediate-early gene which can further activate the production of other substances in the central nervous system, was investigated in this study. We found that Fos expression is increased after intradermal capsaicin injection, which also leads to endogenous nitric oxide release in the spinal cord. The increased Fos expression is distributed in neurons of the superficial layers and lamina V of the dorsal horn on the side ipsilateral to the injection. The increased Fos expression is blocked by N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, but not by its inactive isomer N(G)-nitro-D-arginine methyl ester. Fos expression was also increased following the perfusion of 3-morpholino-sydnonimine, a nitric oxide donor, into the dorsal horn through a microdialysis fiber. The increased Fos was distributed within 400 microm from the edge of the microdialysis fiber. Although Fos expression was increased with 3-morpholino-sydnonimine perfusion compared to that seen with artificial cerebrospinal fluid perfusion, there was still some Fos immunostaining in the control sections. Following perfusion of artificial cerebrospinal fluid in the spinal cord of rats pretreated with N(G)-nitro-L-arginine methyl ester, it was found that Fos staining was reduced significantly compared to the control sections from animals without N(G)-nitro-L-arginine methyl ester pretreatment. These results suggest that nitric oxide helps mediate Fos expression induced by an intradermal capsaicin injection. We conclude that both endogenous and exogenous nitric oxide induce Fos expression. Involvement of nitric oxide in the development of central sensitization may affect nociceptive processing by increasing Fos expression. Since many other substances which are related to pain mechanisms can be induced by Fos, it is suggested that nitric oxide may regulate production of these substances through activation of Fos. Nitric oxide is not only involved in the development of central sensitization, but is also involved in the activation of control mechanisms affecting nociception.
Collapse
Affiliation(s)
- J Wu
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, The University of Texas Medical Branch, Galveston 77555-1069, USA
| | | | | | | |
Collapse
|
49
|
Activation of extracellular signal-regulated protein kinases is associated with a sensitized locomotor response to D(2) dopamine receptor stimulation in unilateral 6-hydroxydopamine-lesioned rats. J Neurosci 2000. [PMID: 10684886 DOI: 10.1523/jneurosci.20-05-01849.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence indicates that mitogen-activated protein kinase (MAPK) pathways play a crucial role in the neurobiology of the nervous system. In the present study, dopamine receptor-mediated regulation of extracellular signal-regulated kinases (ERKs) was examined in rats in which the nigrostriatal dopaminergic pathway was unilaterally lesioned by 6-hydroxydopamine (6-OHDA). Subcutaneous injections of the D(2) receptor agonist quinpirole significantly increased tyrosine-phosphorylated ERK1/2 in lesioned striatum, whereas the D(1) receptor agonist SKF38393 failed to activate ERKs. Quinpirole-induced phosphorylation of ERK1/2 was seen as early as 3 min and peaked at 15 min after the challenge. In parallel, striatal ERK kinase activity, measured by the in vitro kinase assay, was increased 2.5-fold on the lesioned side after the administration of quinpirole. Immunohistochemical examination of brain sections after quinpirole administration revealed significant increases in ERK1/2 immunostaining in perinuclear and intranuclear areas of striatal neurons. This increase was much more pronounced on the lesioned than the intact side. Furthermore, quinpirole-induced contralateral rotation was decreased by 48.7 and 50.7%, respectively, when the striatal ERK pathway was selectively inhibited by a single intrastriatal injection of the MAPK/ERK kinase inhibitor PD098059 or after a continuous 7 d intrastriatal infusion of ERK1/2 antisense oligodeoxynucleotide. The results demonstrate, for the first time, that the ERK signaling pathway is activated in denervated striatum in response to stimulation of D(2) dopamine receptors and that the resulting imbalance in striatal ERK activity contributes, at least in part, to neuronal plasticity that underlies D(2) dopamine receptor-mediated contralateral rotation in unilateral 6-OHDA denervated rats.
Collapse
|
50
|
Rife TK, Xie J, Redman C, Young AP. The 5'2 promoter of the neuronal nitric oxide synthase dual promoter complex mediates inducibility by nerve growth factor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:225-36. [PMID: 10686343 DOI: 10.1016/s0169-328x(99)00293-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is induced by nerve growth factor (NGF) in pheochromocytoma PC12 cells. Previous studies from our laboratory identified two closely linked promoters (designated 5'1 and 5'2) that mediate transcription of the human nNOS gene in the brain [J. Xie, P. Roddy, T.K. Rife, F. Murad, A.P. Young, Two closely linked but separable promoters for human neuronal nitric oxide synthase gene transcription, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 1242-1246]. In this report, we demonstrate that luciferase fusion genes under transcriptional control by the 5'1 and 5'2 dual promoter complex are inducible by NGF in stably transformed PC12 cells. In sharp contrast, neither epidermal growth factor (EGF) nor fibroblast growth factor 2 (FGF2) are able to significantly enhance the expression of NOS-luciferase fusion genes. Deletion studies indicate that the 5'2 promoter plays a major role in mediating NGF inducibility. The 5'2 promoter contains six potential Ets binding sites as well as four potential AP1 binding sites. Thus, it is possible that activation of Ets and/or AP1 transcription factors by the Ras-Raf-MAP kinase cascade contributes to the NGF-mediated induction of nNOS.
Collapse
Affiliation(s)
- T K Rife
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|