1
|
Portillo AM, García-Velasco JA, Varela E. An in-silico approach to the dynamics of proliferation potential in stem cells and the study of different therapies in cases of ovarian dysfunction. Math Biosci 2024; 377:109305. [PMID: 39366452 DOI: 10.1016/j.mbs.2024.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
A discrete mathematical model based on ordinary differential equations and the associated continuous model formed by a partial differential equation, which simulate the generational and temporal evolution of a stem cell population, are proposed. The model parameters are the maximum proliferation potential and the rates of mitosis, death events and telomerase activity. The mean proliferation potential at each point in time is suggested as an indicator of population aging. The model is applied on hematopoietic stem cells (HSCs), with different telomerase activity rates, in a range of variation of maximum proliferation potential in healthy individuals, to study the temporal evolution of aging. HSCs express telomerase, however not at levels that are sufficient for maintaining constant telomere length with aging [1,2]. Women with primary ovarian insufficiency (POI) are known to have low telomerase activity in granulosa cells and peripheral blood mononuclear cells [3]. Extrapolating this to hematopoietic stem cells, the mathematical model shows the differences in proliferation potential of the cell populations when telomerase expression is activated using sexual steroids, though the endogenous promoter or with gene therapy using exogenous, stronger promoters within the adeno-associated virus. In the first case, proliferation potential of cells from POI condition increases, but when adeno-associated viruses are used, the proliferation potential reaches the levels of healthy cell populations.
Collapse
Affiliation(s)
- A M Portillo
- Instituto de Investigación en Matemáticas de la Universidad de Valladolid, Valladolid, Spain; Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Pso. Prado de la Magdalena 3-5, Valladolid, 47011, Spain.
| | - J A García-Velasco
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, Madrid, 28023, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| | - E Varela
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| |
Collapse
|
2
|
Wang C, Bi L, Du Y, Lu C, Zhao M, Lin X, Ding Y, Fan W. The role of telomerase in hair growth and relevant disorders: A review. J Cosmet Dermatol 2023; 22:2925-2929. [PMID: 37667425 DOI: 10.1111/jocd.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Hair diseases may present with hair loss, hirsutism, hair melanin abnormalities and other manifestations. Hair follicles are known as mini-organs that undergo periodic remodeling, and their constant regeneration in vivo reflects interesting anti-aging functions. Telomerase prevents cellular senescence by maintaining telomere length, but its excessive proliferation in cancer cells may also induce cancer. However, the effects of telomerase in hair growth have rarely been reported. METHODS In this study, we reviewed the role of telomerase in hair growth and the effects of hair disorders through literature search and analysis. RESULTS There is growing evidence that telomerase plays an important role in maintaining hair follicle function and proliferation. Changes in telomerase levels in hair follicles have also been found in a variety of hair disorders. CONCLUSION Telomerase plays a positive role in hair growth and is expected to become a new target for the treatment of alopecia or other hair diseases in the future.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingbo Bi
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yimei Du
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changpei Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuewen Lin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunbu Ding
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
4
|
Bakr M, Abd-Elmawla MA, Elimam H, Gamal El-Din H, Fawzy A, Abulsoud AI, Rizk SM. Telomerase RNA component lncRNA as potential diagnostic biomarker promotes CRC cellular migration and apoptosis evasion via modulation of β-catenin protein level. Noncoding RNA Res 2023; 8:302-314. [PMID: 37032720 PMCID: PMC10074408 DOI: 10.1016/j.ncrna.2023.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Aim Long non-coding RNA (LncRNA) telomerase RNA component (TERC) has telomerase-dependent and independent activity in numerous cancer types. The present study purposes to demonstrate the role of lncRNA TERC as a diagnostic serum biomarker in colorectal cancer (CRC) patients and the molecular mechanism of lncRNA TERC in inducing tumor in CRC cell lines. Materials and methods PCR array was performed to examine lncRNAs dysregulated in CRC. LncRNA TERC expression level was evaluated in 70 CRC patients and 35 control subjects using RT-qPCR. Then transfection was performed to build down-expression models of lncRNA TERC. ROC curve analysis was applied to assess the diagnostic value of serum LncRNA CRC. In addition, RT-qPCR was used to detect expression level of lncRNA TERC and β-catenin mRNA. Moreover, ELISA and Western blot were used to detect the level of β-catenin protein in sera of CRC patients and cell lines. The biological functions such as cell growth and migration of CRC cells were assessed using a wound healing assay. Cell cycle analysis and apoptosis analysis were performed using flow cytometry. Results The lncRNA TERC is overexpressed in the sera of CRC patients with high diagnostic and stage discrimination accuracy. Furthermore, lncRNA TERC expression was upregulated in CRC cell lines and lncRNA TERC silencing induced cell arrest and apoptosis and inhibited cell migration. Furthermore, inhibition of lncRNA TERC reduces β-catenin protein levels. Conclusion The lncRNA TERC could be considered as an early stages CRC diagnostic biomarker with a good ability to discriminate between CRC stages. lncRNA TERC induces CRC by promoting cell migration and evading apoptosis by elevating the level of β-catenin protein.
Collapse
|
5
|
Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis. J Fungi (Basel) 2023; 9:896. [PMID: 37755003 PMCID: PMC10532341 DOI: 10.3390/jof9090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
6
|
Martínez P, Sánchez-Vazquez R, Saha A, Rodriguez-Duque MS, Naranjo-Gonzalo S, Osorio-Chavez JS, Villar-Ramos AV, Blasco MA. Short telomeres in alveolar type II cells associate with lung fibrosis in post COVID-19 patients with cancer. Aging (Albany NY) 2023; 15:204755. [PMID: 37294548 DOI: 10.18632/aging.204755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. The severity of COVID-19 increases with each decade of life, a phenomenon that suggest that organismal aging contributes to the fatality of the disease. In this regard, we and others have previously shown that COVID-19 severity correlates with shorter telomeres, a molecular determinant of aging, in patient's leukocytes. Lung injury is a predominant feature of acute SARS-CoV-2 infection that can further progress to lung fibrosis in post-COVID-19 patients. Short or dysfunctional telomeres in Alveolar type II (ATII) cells are sufficient to induce pulmonary fibrosis in mouse and humans. Here, we analyze telomere length and the histopathology of lung biopsies from a cohort of alive post-COVID-19 patients and a cohort of age-matched controls with lung cancer. We found loss of ATII cellularity and shorter telomeres in ATII cells concomitant with a marked increase in fibrotic lung parenchyma remodeling in post- COVID-19 patients compared to controls. These findings reveal a link between presence of short telomeres in ATII cells and long-term lung fibrosis sequel in Post-COVID-19 patients.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Raúl Sánchez-Vazquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Arpita Saha
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Maria S Rodriguez-Duque
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander E-39011, Spain
| | - Sara Naranjo-Gonzalo
- Servicio de Cirugía Torácica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
| | - Joy S Osorio-Chavez
- Servicio de Neumología Hospital Universitario Marqués de Valdecilla, Santander E-39008, Spain
| | - Ana V Villar-Ramos
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Cantabria, Santander E-39011, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander E-39011, Spain
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander E-39011, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
7
|
Vieri M, Rolles B, Crocioni M, Schemionek-Reinders M, Isfort S, Panse J, Brümmendorf TH, Beier F. Eltrombopag Preserves the Clonogenic Potential of Hematopoietic Stem Cells During Treatment With Antithymocyte Globulin in Patients With Aplastic Anemia. Hemasphere 2023; 7:e906. [PMID: 37304936 PMCID: PMC10249716 DOI: 10.1097/hs9.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Aplastic anemia (AA) is frequently caused by a T-cell mediated autoimmune depletion of the hematopoietic stem and progenitor cell (HSPC) compartment. Immunosuppressive therapy (IST) with antithymocyte globulin (ATG) and cyclosporine represents the first-line treatment of AA. One side effect of ATG therapy is the release of proinflammatory cytokines such as interferon-gamma (IFN-γ), which is considered a major factor in the pathogenic autoimmune depletion of HSPC. Recently, eltrombopag (EPAG) was introduced for therapy of refractory AA patients due to its ability to bypass IFN-γ-mediated HSPC inhibition among other mechanisms. Clinical trials have evidenced that EPAG started simultaneously with IST leads to a higher response rate compared with its later administration schedules. We hypothesize that EPAG might protect HSPC from negative effects of ATG-induced release of cytokines. We observed a significant decrease in colony numbers when both healthy peripheral blood (PB) CD34+ cells and AA-derived bone marrow cells were cultured in the presence of serum from patients under ATG treatment, as compared with before treatment. Consistent with our hypothesis, this effect could be rescued by adding EPAG in vitro to both healthy and AA-derived cells. By employing an IFN-γ neutralizing antibody, we also demonstrated that the deleterious early ATG effects on the healthy PB CD34+ compartment were mediated at least partially by IFN-γ. Hence, we provide evidence for the hitherto unexplained clinical observation that concomitant use of EPAG in addition to IST comprising ATG leads to improved response in patients with AA.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Maria Crocioni
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
- Department of Medicine and Surgery, University of Perugia, Italy
| | - Mirle Schemionek-Reinders
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| |
Collapse
|
8
|
Polonio AM, Medrano M, Chico-Sordo L, Córdova-Oriz I, Cozzolino M, Montans J, Herraiz S, Seli E, Pellicer A, García-Velasco JA, Varela E. Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence. Aging (Albany NY) 2023; 15:4600-4624. [PMID: 37338562 DOI: 10.18632/aging.204731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023]
Abstract
Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.
Collapse
Affiliation(s)
- Alba M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Sonia Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Heaven, CT 06510, USA
| | - Antonio Pellicer
- IVIRMA Rome, Rome, Italy
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Juan A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Elisa Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
9
|
Tham CY, Poon L, Yan T, Koh JYP, Ramlee MK, Teoh VSI, Zhang S, Cai Y, Hong Z, Lee GS, Liu J, Song HW, Hwang WYK, Teh BT, Tan P, Xu L, Koh AS, Osato M, Li S. High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. Nat Commun 2023; 14:281. [PMID: 36650155 PMCID: PMC9845338 DOI: 10.1038/s41467-023-35823-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes. The progressive shortening of steady-state telomere length in normal human somatic cells is a promising biomarker for age-associated diseases. However, there remain substantial challenges in quantifying telomere length due to the lack of high-throughput method with nucleotide resolution for individual telomere. Here, we describe a workflow to capture telomeres using newly designed telobaits in human culture cell lines as well as clinical patient samples and measure their length accurately at nucleotide resolution using single-molecule real-time (SMRT) sequencing. Our results also reveal the extreme heterogeneity of telomeric variant sequences (TVSs) that are dispersed throughout the telomere repeat region. The presence of TVSs disrupts the continuity of the canonical (5'-TTAGGG-3')n telomere repeats, which affects the binding of shelterin complexes at the chromosomal ends and telomere protection. These findings may have profound implications in human aging and diseases.
Collapse
Affiliation(s)
- Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - LaiFong Poon
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - TingDong Yan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Javier Yu Peng Koh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Muhammad Khairul Ramlee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Vania Swee Imm Teoh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Suihan Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Yi Cai
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zebin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Gina S Lee
- National Heart Centre Singapore, Duke-NUS Medical School, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Hai Wei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - William Ying Khee Hwang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, 1 Hospital Drive, Singapore, 169608, Singapore
- Hematopoietic Stem Cell and Cellular Therapy Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 168752, Singapore
- Epigenetic and Epitranscriptomic Regulation Domain, Genome Institute of Singapore, Agency for Science, Technology and Research, (A*STAR), 60 Biopolis Drive, Singapore, 138672, Singapore
| | - Lifeng Xu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Angela S Koh
- National Heart Centre Singapore, Duke-NUS Medical School, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
10
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
11
|
Maggadóttir SM, Kvalheim G, Wernhoff P, Sæbøe-Larssen S, Revheim ME, Josefsen D, Wälchli S, Helland Å, Inderberg EM. A phase I/II escalation trial design T-RAD: Treatment of metastatic lung cancer with mRNA-engineered T cells expressing a T cell receptor targeting human telomerase reverse transcriptase (hTERT). Front Oncol 2022; 12:1031232. [PMID: 36439452 PMCID: PMC9685610 DOI: 10.3389/fonc.2022.1031232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background Adoptive cellular therapy (ACT) with genetically modified T cells aims to redirect T cells against resistant cancers through introduction of a T cell receptor (TCR). The Radium-4 TCR was isolated from a responding patient in a cancer vaccination study and recognizes the enzymatic component of human Telomerase Reverse Transcriptase (hTERT) presented on MHC class II (HLA-DP04). hTERT is a constitutively overexpressed tumor-associated antigen present in most human cancers, including non-small-cell lung cancer (NSCLC), which is the second most common type of cancer worldwide. Treatment alternatives for relapsing NSCLC are limited and survival is poor. To improve patient outcome we designed a TCR-based ACT study targeting hTERT. Methods T-RAD is a phase I/II study to evaluate the safety and efficacy of Radium-4 mRNA electroporated autologous T cells in the treatment of metastatic NSCLC with no other treatment option. Transient TCR expression is applied for safety considerations. Participants receive two intravenous injections with escalating doses of redirected T cells weekly for 6 consecutive weeks. Primary objectives are safety and tolerability. Secondary objectives include progression-free survival, time to progression, overall survival, patient reported outcomes and overall radiological response. Discussion Treatment for metastatic NSCLC is scarce and new personalized treatment options are in high demand. hTERT is a tumor target applicable to numerous cancer types. This proof-of-concept study will explore for the first time the safety and efficacy of TCR mRNA electroporated autologous T cells targeting hTERT. The T-RAD study will thus evaluate an attractive candidate for future immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Sólrún Melkorka Maggadóttir
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Wernhoff
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stein Sæbøe-Larssen
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | | | - Dag Josefsen
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Oncology, Section for Cellular Therapy, Oslo University Hospital, Oslo, Norway
- *Correspondence: Else Marit Inderberg,
| |
Collapse
|
12
|
Chico-Sordo L, Polonio AM, Córdova-Oriz I, Medrano M, Herraiz S, Bronet F, García-Velasco JA, Varela E. Telomeres and oocyte maturation rate are not reduced by COVID-19 except in severe cases. Reproduction 2022; 164:259-267. [PMID: 36136831 DOI: 10.1530/rep-22-0243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
In brief COVID-19 does not affect the telomeres or fertility outcomes in mild cases. However, in women with severe symptoms, telomeres of granulosa cells are shorter, and the oocyte maturation rate is decreased. Abstract The coronavirus SARS-CoV-2 causes COVID-19 disease and affects primarily the lungs and also other organs, causing accelerated cell aging. One of the main pathways involved in aging is telomere attrition, which ultimately leads to defective tissue regeneration and organ dysfunction. Indeed, short telomeres in aged people aggravate the COVID-19 symptoms, and COVID-19 survivors showed shorter telomeres in blood cells. The SARS-CoV-2 has been detected in testis, but the ovaries, which express the viral entry factors, have not been fully explored. Our objective was to analyze telomeres and reproductive outcomes in women who had COVID-19 and controls. In this prospective cohort study, granulosa cells (GCs) and blood were collected from 65 women. Telomere length (TL) was measured by high-throughput in situ hybridization. Mean TL of GCs and peripheral blood mononuclear cells (PBMCs) was alike in control and mild cases. However, mean TL of GCs was lower in severe cases compared to controls (P = 0.017). Control and COVID groups had similar ovarian reserve and number of total oocytes after puncture. However, the oocyte maturation rate was lower in severe cases (P = 0.018). Interestingly, a positive correlation between the oocyte maturation rate and TL of GCs was found in the control group (P = 0.024). Our findings point to a potential impact of the coronavirus infection on telomeres and reproductive outcomes in severe cases. This might be considered upon possible new SARS-CoV threats, to favor treatments that enhance oocyte maturation in women severely affected by coronavirus undergoing ART.
Collapse
Affiliation(s)
- L Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - A M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - I Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - M Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - S Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | | | - J A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain.,IVIRMA Madrid, Madrid, Spain.,Rey Juan Carlos University, Edificio Departamental II, Alcorcón, Madrid, Spain
| | - E Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain.,Rey Juan Carlos University, Edificio Departamental II, Alcorcón, Madrid, Spain
| |
Collapse
|
13
|
Curtis EM, Codd V, Nelson C, D'Angelo S, Wang Q, Allara E, Kaptoge S, Matthews PM, Tobias JH, Danesh J, Cooper C, Samani NJ, Harvey NC. Telomere Length and Risk of Incident Fracture and Arthroplasty: Findings From UK Biobank. J Bone Miner Res 2022; 37:1997-2004. [PMID: 35880304 PMCID: PMC9826022 DOI: 10.1002/jbmr.4664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/11/2023]
Abstract
We investigated independent associations between telomere length and risk of fracture and arthroplasty in UK Biobank participants. Leukocyte telomere length (LTL) was measured in baseline samples using a validated polymerase chain reaction (PCR) method. We used, in men and women separately, Cox proportional hazards models to calculate the hazard ratio (HR) for incident fracture (any, osteoporotic) or arthroplasty (hip or knee) over 1,186,410 person-years of follow-up. Covariates included age, white cell count, ethnicity, smoking, alcohol, physical activity, and menopause (women). In further analyses we adjusted for either estimated bone mineral density (eBMD) from heel quantitative ultrasound, handgrip strength, gait speed, total fat mass (bioimpedance), or blood biomarkers, all measured at baseline (2006-2010). We studied 59,500 women and 51,895 men, mean ± standard deviation (SD) age 56.4 ± 8.0 and 57.0 ± 8.3 years, respectively. During follow-up there were 5619 fractures; 5285 hip and 4261 knee arthroplasties. In confounder-adjusted models, longer LTL was associated with reduced risk of incident knee arthroplasty in both men (HR/SD 0.93; 95% confidence interval [CI], 0.88-0.97) and women (0.92; 95% CI, 0.88-0.96), and hip arthroplasty in men (0.91; 95% CI, 0.87-0.95), but not women (0.98; 95% CI, 0.94-1.01). Longer LTL was weakly associated with reduced risk of any incident fracture in women (HR/SD 0.96; 95% CI, 0.93-1.00) with less evidence in men (0.98; 95% CI, 0.93-1.02). Associations with incident outcomes were not materially altered by adjustment for heel eBMD, grip strength, gait speed, fat mass, or blood biomarker measures. In this, the largest study to date, longer LTL was associated with lower risk of incident knee or hip arthroplasty, but only weakly associated with lower risk of fracture. The relative risks were low at a population level, but our findings suggest that common factors acting on the myeloid and musculoskeletal systems might influence later life musculoskeletal outcomes. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Veryan Codd
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUK
| | - Christopher Nelson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUK
| | - Stefania D'Angelo
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Qingning Wang
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUK
| | - Elias Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and GenomicsUniversity of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and GenomicsUniversity of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute CentreImperial College LondonLondonUK
| | - Jonathan H. Tobias
- Musculoskeletal Research UnitUniversity of BristolBristolUK
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and GenomicsUniversity of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeCambridgeUK
- Department of Human GeneticsWellcome Sanger InstituteHinxtonUK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUK
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| |
Collapse
|
14
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
15
|
Ellis PS, Martins RR, Thompson EJ, Farhat A, Renshaw SA, Henriques CM. A subset of gut leukocytes has telomerase-dependent "hyper-long" telomeres and require telomerase for function in zebrafish. Immun Ageing 2022; 19:31. [PMID: 35820929 PMCID: PMC9277892 DOI: 10.1186/s12979-022-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.
Collapse
Affiliation(s)
- Pam S Ellis
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Raquel R Martins
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Emily J Thompson
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Asma Farhat
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Catarina M Henriques
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
16
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
17
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Balmori C, Cordova-Oriz I, De Alba G, Medrano M, Jiménez-Tormo L, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Effects of age and oligosthenozoospermia on telomeres of sperm and blood cells. Reprod Biomed Online 2021; 44:1090-1100. [DOI: 10.1016/j.rbmo.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
|
19
|
Zhang T, Ding H, Wang Y, Yuan Z, Zhang Y, Chen G, Xu Y, Chen L. Akt3-mTOR regulates hippocampal neurogenesis in adult mouse. J Neurochem 2021; 159:498-511. [PMID: 34077553 DOI: 10.1111/jnc.15441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023]
Abstract
Akt signaling has been associated with adult neurogenesis in the hippocampal dentate gyrus (DG). We reported cognitive dysfunction in Akt3 knockout (Akt3-KO) mice with the down-regulation of mTOR activation. However, little is known about the effects of Akt3 signaling on hippocampal neurogenesis. Herein, we show that progenitor cells, neuroblasts, and mature newborn neurons in hippocampal DG expressed Akt3 protein. The Akt3 phosphorylation in hippocampal DG was increased after voluntary wheel running for 7 days in wild-type mice (running WT mice), but not in Akt3-KO mice (running Akt3-KO mice). Subsequently, we observed that the proliferation of progenitor cells was suppressed in Akt3-KO mice and the mTOR inhibitor rapamycin-treated mice, whereas enhanced in running WT mice rather than running Akt3-KO mice. Neurite growth of neuroblasts was impaired in Akt3-KO mice and rapamycin-treated mice. In contrast, neither differentiation of progenitor cells nor migrating of newly generated neurons was altered in Akt3-KO mice or running WT mice. The levels of p70S6K and 4EBP1 phosphorylation were declined in Akt3-KO mice and elevated in running WT mice depending on mTOR activation. Furthermore, telomerase activity, telomere length, and expression of telomerase reverse transcriptase (TERT) were decreased in Akt3-KO mice but increased in running WT mice rather than running Akt3-KO mice, which required the mTOR activation. The study provides in vivo evidence that Akt3-mTOR signaling plays an important role in the proliferation of progenitor cells and neurite growth through positive regulated TERT expression and activation of p70S6K and 4EBP1.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hong Ding
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zihao Yuan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Sharma P, Jaiswal RK. SPERMIDINE MAINTAINS TELOMERE LENGTH AND DELAYS AGING. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2021. [DOI: 10.47316/cajmhe.2021.2.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermidine, a natural polyamine, has been noticed for its anti-aging properties. Supplementation of this drug prolongs lifespan and diminishes the incidence of age-related pathology. In the human population, spermidine levels decrease as aging progresses, and a potential link between diminished endogenous spermidine levels and age-related declination has been studied. At the cellular level, autophagy is the prime mode of action of spermidine known to decline with the progress of aging, similarly contributing to the accretion of impaired macromolecules and organelles through aging. Epidemiological statistics support the concept, suggesting that elevated uptake of polyamine delays aging. Here, we overview the effect of autophagy on cellular processes and age-associated diseases, emphasizing the importance of these events to the hallmarks of aging.
There are numerous factors like shortening telomere, oxidative stress, mitochondrial damage, and impaired intracellular calcium signaling, which are influenced by the aging process. We hypothesize that spermidine supplements in the diet increase the telomere length. The proposed hypothesis also brings to light the differentially regulated genes involved in telomere maintenance and aging after spermidine treatment. Knowing the role of spermidine in telomere maintenance would help us understand the molecular mechanism of spermidine's effect on aging.
Collapse
|
21
|
Stone RC, Aviv A, Paus R. Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. J Invest Dermatol 2021; 141:1031-1040. [PMID: 33509633 DOI: 10.1016/j.jid.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.
Collapse
Affiliation(s)
- Rivka C Stone
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Abraham Aviv
- The Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; Monasterium Laboratory, Münster, Germany
| |
Collapse
|
22
|
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2021; 219:152010. [PMID: 32777016 PMCID: PMC7659728 DOI: 10.1083/jcb.202002120] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
23
|
Abstract
The discovery of a stem cell population in human neoplasias has given a new impulse to the study of the origins of cancer. The tissue compartment in which transformation first occurs likely comprises stem cells, since these cells need to consolidate the short-term and long-term requisites of tissue renewal. Because of their unique role, stem cells have a combination of characteristics that makes them susceptible to genetic damage, transformation, and tumor initiation. One type of genetic damage in particular, chromosomal instability, might affect the stem cell compartment, because it induces an ongoing cycle of DNA damage and alters cellular programming. Here, we will discuss some of the recently described links between SC, chromosomal instability, and carcinogenesis, and outline some of the consequences for oncoimmunology.
Collapse
Affiliation(s)
- Karel H M van Wely
- Department of Immunology and Oncology; Centro Nacional de Biotecnología-CSIC; UAM Campus Cantoblanco; Madrid, Spain
| | | |
Collapse
|
24
|
Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S, Cai Z, Song S, Platt JM, Schenkel JM, Abdel-Hakeem M, Beltra JC, Greenplate AR, Ali MAA, Nzingha K, Giles JR, Harly C, Attanasio J, Pauken KE, Bengsch B, Paley MA, Tomov VT, Kurachi M, Vignali DAA, Sharpe AH, Reiner SL, Bhandoola A, Johnson FB, Wherry EJ. Inhibitory signaling sustains a distinct early memory CD8 + T cell precursor that is resistant to DNA damage. Sci Immunol 2021; 6:6/55/eabe3702. [PMID: 33452106 DOI: 10.1126/sciimmunol.abe3702] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.
Collapse
Affiliation(s)
- Jonathan B Johnnidis
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shufei Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse M Platt
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohamed Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim A Ali
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France
| | - John Attanasio
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael A Paley
- Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh PA 15232, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Sadie-Van Gijsen H. Is Adipose Tissue the Fountain of Youth? The Impact of Adipose Stem Cell Aging on Metabolic Homeostasis, Longevity, and Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:225-250. [PMID: 33725357 DOI: 10.1007/978-3-030-55035-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging is driven by four interlinked processes: (1) low-grade sterile inflammation; (2) macromolecular and organelle dysfunction, including DNA damage, telomere erosion, and mitochondrial dysfunction; (3) stem cell dysfunction; and (4) an accumulation of senescent cells in tissues. Adipose tissue is not immune to the effects of time, and all four of these processes contribute to a decline of adipose tissue function with advanced age. This decline is associated with an increase in metabolic disorders. Conversely, optimally functioning adipose tissue generates signals that promote longevity. As tissue-resident progenitor cells that actively participate in adipose tissue homeostasis and dysregulation, adipose stem cells (ASCs) have emerged as a key feature in the relationship between age and adipose tissue function. This review will give a mechanistic overview of the myriad ways in which age affects ASC function and, conversely, how ASC function contribute to healthspan and lifespan. A central mediator in this relationship is the degree of resilience of ASCs to maintain stemness into advanced age and the consequent preservation of adipose tissue function, in particular subcutaneous fat. The last sections of this review will discuss therapeutic options that target senescent ASCs to extend healthspan and lifespan, as well as ASC-based therapies that can be used to treat age-related pathologies, and collectively, these therapeutic applications may transform the way we age.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Parow, South Africa.
| |
Collapse
|
26
|
Fontán-Lozano Á, Morcuende S, Davis-López de Carrizosa MA, Benítez-Temiño B, Mejías R, Matarredona ER. To Become or Not to Become Tumorigenic: Subventricular Zone Versus Hippocampal Neural Stem Cells. Front Oncol 2020; 10:602217. [PMID: 33330101 PMCID: PMC7729188 DOI: 10.3389/fonc.2020.602217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain in two neurogenic regions: the subventricular zone lining the lateral ventricles and the dentate gyrus of the hippocampus. Compelling evidence suggests that NSCs of the subventricular zone could be the cell type of origin of glioblastoma, the most devastating brain tumor. Studies in glioblastoma patients revealed that NSCs of the tumor-free subventricular zone, harbor cancer-driver mutations that were found in the tumor cells but were not present in normal cortical tissue. Endogenous mutagenesis can also take place in hippocampal NSCs. However, to date, no conclusive studies have linked hippocampal mutations with glioblastoma development. In addition, glioblastoma cells often invade or are closely located to the subventricular zone, whereas they do not tend to infiltrate into the hippocampus. In this review we will analyze possible causes by which subventricular zone NSCs might be more susceptible to malignant transformation than their hippocampal counterparts. Cellular and molecular differences between the two neurogenic niches, as well as genotypic and phenotypic characteristics of their respective NSCs will be discussed regarding why the cell type originating glioblastoma brain tumors has been linked mainly to subventricular zone, but not to hippocampal NSCs.
Collapse
|
27
|
Li ZZ, Wang H, Jia DL, Wang JH, Xu JM, Ma L, Guo JR. Exploration on the effect of predeposit autotransfusion on bone marrow hematopoiesis after femoral shaft fracture. Transfus Clin Biol 2020; 28:25-29. [PMID: 33227454 DOI: 10.1016/j.tracli.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE By observing the changes in the number and activity of CD34+ cells in bone marrow after predeposit autotransfusion (PAT) to patients with femoral shaft fracture (FSF), to evaluate the effects of PAT on hematopoietic function and hematopoietic stem cells in bone marrow. METHODS Selected FSF patients were randomly divided into 2 groups: the control group (patients did not receive blood transfusion after surgery) and PAT group (patients received PAT after surgery). The content of RBC and Plt in blood samples were counted by blood routine. The cell cycle and proportion of CD34+ myelinated cells in blood samples was analyzed by flow cytometry. The telomere DNA length of hematopoietic stem cells (HSCs) in the control groups and PAT group at postoperation 24 was analyzed by southern blot. RESULTS The content of RBC and Plt in postoperation 6h and 24h in the control group was evidently higher compared to that in PAT group, while Hb content in control group was significantly lower compared to that in PAT group. The proportion of CD34+ myelinated cells in post-transfusion 6h and postoperation 24h in PAT group was evidently higher compared to that in the control group. In PAT group, S phase at postoperation 24h was significantly larger compared to that at post-transfusion 6h. The telomere DNA length of HSCs in PAT group was longer than that in the control group. CONCLUSION PAT can increase the number of HSC, while does not cause the abnormal aging of HSCs. PAT is suitable for postoperative blood transfusion of patients with FSF.
Collapse
Affiliation(s)
- Zhen-Zhou Li
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Huan Wang
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Dong-Lin Jia
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, PR China
| | - Jin-Huo Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jia-Ming Xu
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Li Ma
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jian-Rong Guo
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China; Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China.
| |
Collapse
|
28
|
Dillard P, Köksal H, Maggadottir SM, Winge-Main A, Pollmann S, Menard M, Myhre MR, Mælandsmo GM, Flørenes VA, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Mol Ther 2020; 29:1199-1213. [PMID: 33212301 PMCID: PMC7934585 DOI: 10.1016/j.ymthe.2020.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide. Radium-4 TCR-redirected primary CD4+ and CD8+ T cells demonstrated in vitro efficacy, producing inflammatory cytokines and killing hTERT+ melanoma cells in both 2D and 3D settings, as well as malignant, patient-derived ascites cells. Importantly, T cells expressing Radium-4 TCR displayed no toxicity against bone marrow stem cells or mature hematopoietic cells. Notably, Radium-4 TCR+ T cells also significantly reduced tumor growth and improved survival in a xenograft mouse model. Since hTERT is a universal cancer antigen, and the very frequently expressed HLA class II molecules presenting the hTERT peptide to this TCR provide a very high (>75%) population coverage, this TCR represents an attractive candidate for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Pierre Dillard
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Hakan Köksal
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | | | - Anna Winge-Main
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sylvie Pollmann
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Mathilde Menard
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
29
|
Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells Int 2020; 2020:8827038. [PMID: 33101419 PMCID: PMC7568162 DOI: 10.1155/2020/8827038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.
Collapse
|
30
|
Di Stefano AB, Grisafi F, Perez-Alea M, Castiglia M, Di Simone M, Meraviglia S, Cordova A, Moschella F, Toia F. Cell quality evaluation with gene expression analysis of spheroids (3D) and adherent (2D) adipose stem cells. Gene 2020; 768:145269. [PMID: 33148459 DOI: 10.1016/j.gene.2020.145269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
Adipose stem cells (ASCs) represent a reliable source of stem cells with a widely demonstrated potential in regenerative medicine and tissue engineering applications. New recent insights suggest that three-dimensional (3D) models may closely mimic the native tissue properties; spheroids from adipose derived stem cells (SASCs) exhibit enhanced regenerative abilities compared with those of 2D models. Stem cell therapy success is determined by "cell-quality"; for this reason, the involvement of stress signals and cellular aging need to be further investigated. Here, we performed a comparative analysis of genes connected with stemness, aging, telomeric length and oxidative stress, in 3D and 2D primary cultures. The expression levels of stemness-related markers and anti-aging Sirtuin1 were significantly up-regulated (P < 0.001) in SASCs-3D while gene expression of aging-related p16INK4a was increased in ASCs-2D (P < 0.001). The 3D and 2D cultures also had a different gene expression profile for genes related to telomere maintenance (Shelterin complex, RNA Binding proteins and DNA repair genes) (P < 0.01 and P < 0.001) and oxidative stress (aldehyde dehydrogenase class1 and 3) (P < 0.05, P < 0.01 and P < 0.001) and presented a striking large variation in their cellular redox state. Based on our findings, we propose a "cell quality" model of SASCs, highlighting a precise molecular expression of several genes involved with stemness (SOX2, POU5F1 and NANOG), anti-aging (SIRT1), oxidative stress (ALDH3) and telomeres maintenance.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Federica Grisafi
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Mileidys Perez-Alea
- Advanced BioDesign, Parc Technologique de Lyon, Woodstock - Bâtiment Cèdre 1, Saint Priest, France
| | - Marta Castiglia
- Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy; Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy; Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| |
Collapse
|
31
|
Herrmann W, Herrmann M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J Cardiovasc Dev Dis 2020; 7:jcdd7030029. [PMID: 32781553 PMCID: PMC7570376 DOI: 10.3390/jcdd7030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Telomeres are the protective end caps of chromosomes and shorten with every cell division. Short telomeres are associated with older age and adverse lifestyle factors. Leucocyte telomere length (LTL) has been proposed as a biomarker of biological age. The shortening of LTL with age is the result of the end-replication problem, environmental, and lifestyle-related factors. Epidemiologic studies have shown that LTL predicts cardiovascular disease, all-cause mortality, and death from vascular causes. Age appears to be an important co-variate that explains a substantial fraction of this effect. Although it has been proposed that short telomeres promote atherosclerosis and impair the repair of vascular lesions, existing results are inconsistent. Oxidative stress and chronic inflammation can both accelerate telomere shortening. Multiple factors, including homocysteine (HCY), vitamin B6, and vitamin B12 modulate oxidative stress and inflammation through direct and indirect mechanisms. This review provides a compact overview of telomere physiology and the utility of LTL measurements in atherosclerosis and cardiovascular disease. In addition, it summarizes existing knowledge regarding the impact of oxidative stress, inflammation, HCY, and B-vitamins on telomere function.
Collapse
Affiliation(s)
- Wolfgang Herrmann
- Department of Clinical Chemistry, Medical School of the Saarland University, 66421 Homburg, Saar, Germany;
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-385-13145; Fax: +43-316-385-13430
| |
Collapse
|
32
|
Luo Y, Viswanathan R, Hande MP, Loh AHP, Cheow LF. Massively parallel single-molecule telomere length measurement with digital real-time PCR. SCIENCE ADVANCES 2020; 6:eabb7944. [PMID: 32937369 PMCID: PMC7442360 DOI: 10.1126/sciadv.abb7944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
Telomere length is a promising biomarker for age-associated diseases and cancer, but there are still substantial challenges to routine telomere analysis in clinics because of the lack of a simple and rapid yet scalable method for measurement. We developed the single telomere absolute-length rapid (STAR) assay, a novel high-throughput digital real-time PCR approach for rapidly measuring the absolute lengths and quantities of individual telomere molecules. We show that this technique provides the accuracy and sensitivity to uncover associations between telomere length distribution and telomere maintenance mechanisms in cancer cell lines and primary tumors. The results indicate that the STAR assay is a powerful tool to enable the use of telomere length distribution as a biomarker in disease and population-wide studies.
Collapse
Affiliation(s)
- Yongqiang Luo
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Amos Hong Pheng Loh
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
33
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
34
|
Whittemore K, Derevyanko A, Martinez P, Serrano R, Pumarola M, Bosch F, Blasco MA. Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging (Albany NY) 2020; 11:2916-2948. [PMID: 31140977 PMCID: PMC6555470 DOI: 10.18632/aging.101982] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases associated with old age such as Alzheimer’s disease present major problems for society, and they currently have no cure. The telomere protective caps at the ends of chromosomes shorten with age, and when they become critically short, they can induce a persistent DNA damage response at chromosome ends, triggering secondary cellular responses such as cell death and cellular senescence. Mice and humans with very short telomeres owing to telomerase deficiencies have an earlier onset of pathologies associated with loss of the regenerative capacity of tissues. However, the effects of short telomeres in very low proliferative tissues such as the brain have not been thoroughly investigated. Here, we describe a mouse model of neurodegeneration owing to presence of short telomeres in the brain as the consequence of telomerase deficiency. Interestingly, we find similar signs of neurodegeneration in very old mice as the consequence of physiological mouse aging. Next, we demonstrate that delivery of telomerase gene therapy to the brain of these mice results in amelioration of some of these neurodegeneration phenotypes. These findings suggest that short telomeres contribute to neurodegeneration diseases with aging and that telomerase activation may have a therapeutic value in these diseases.
Collapse
Affiliation(s)
- Kurt Whittemore
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Aksinya Derevyanko
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Martí Pumarola
- Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Fàtima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.,Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
35
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
36
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Ruiz-Meana M, Bou-Teen D, Ferdinandy P, Gyongyosi M, Pesce M, Perrino C, Schulz R, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1835-1849. [DOI: 10.1093/cvr/cvaa132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Advanced age is a major predisposing risk factor for the incidence of coronary syndromes and comorbid conditions which impact the heart response to cardioprotective interventions. Advanced age also significantly increases the risk of developing post-ischaemic adverse remodelling and heart failure after ischaemia/reperfusion (IR) injury. Some of the signalling pathways become defective or attenuated during ageing, whereas others with well-known detrimental consequences, such as glycoxidation or proinflammatory pathways, are exacerbated. The causative mechanisms responsible for all these changes are yet to be elucidated and are a matter of active research. Here, we review the current knowledge about the pathophysiology of cardiac ageing that eventually impacts on the increased susceptibility of cells to IR injury and can affect the efficiency of cardioprotective strategies.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Diana Bou-Teen
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mariann Gyongyosi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
38
|
Criqui M, Qamra A, Chu TW, Sharma M, Tsao J, Henry DA, Barsyte-Lovejoy D, Arrowsmith CH, Winegarden N, Lupien M, Harrington L. Telomere dysfunction cooperates with epigenetic alterations to impair murine embryonic stem cell fate commitment. eLife 2020; 9:47333. [PMID: 32297856 PMCID: PMC7192583 DOI: 10.7554/elife.47333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
The precise relationship between epigenetic alterations and telomere dysfunction is still an extant question. Previously, we showed that eroded telomeres lead to differentiation instability in murine embryonic stem cells (mESCs) via DNA hypomethylation at pluripotency-factor promoters. Here, we uncovered that telomerase reverse transcriptase null (Tert-/-) mESCs exhibit genome-wide alterations in chromatin accessibility and gene expression during differentiation. These changes were accompanied by an increase of H3K27me3 globally, an altered chromatin landscape at the Pou5f1/Oct4 promoter, and a refractory response to differentiation cues. Inhibition of the Polycomb Repressive Complex 2 (PRC2), an H3K27 tri-methyltransferase, exacerbated the impairment in differentiation and pluripotency gene repression in Tert-/-mESCs but not wild-type mESCs, whereas inhibition of H3K27me3 demethylation led to a partial rescue of the Tert-/- phenotype. These data reveal a new interdependent relationship between H3K27me3 and telomere integrity in stem cell lineage commitment that may have implications in aging and cancer.
Collapse
Affiliation(s)
- Mélanie Criqui
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Aditi Qamra
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tsz Wai Chu
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Monika Sharma
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Julissa Tsao
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Danielle A Henry
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, Princess Margaret Cancer Centre, University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, Princess Margaret Cancer Centre, University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lea Harrington
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
39
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
González-Estévez C, Flores I. Fasting for stem cell rejuvenation. Aging (Albany NY) 2020; 12:4048-4049. [PMID: 32160590 PMCID: PMC7093158 DOI: 10.18632/aging.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022]
Affiliation(s)
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain.,Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
41
|
Ferrara-Romeo I, Martinez P, Saraswati S, Whittemore K, Graña-Castro O, Thelma Poluha L, Serrano R, Hernandez-Encinas E, Blanco-Aparicio C, Maria Flores J, Blasco MA. The mTOR pathway is necessary for survival of mice with short telomeres. Nat Commun 2020; 11:1168. [PMID: 32127537 PMCID: PMC7054554 DOI: 10.1038/s41467-020-14962-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Telomerase deficiency leads to age-related diseases and shorter lifespans. Inhibition of the mechanistic target of rapamycin (mTOR) delays aging and age-related pathologies. Here, we show that telomerase deficient mice with short telomeres (G2-Terc−/−) have an hyper-activated mTOR pathway with increased levels of phosphorylated ribosomal S6 protein in liver, skeletal muscle and heart, a target of mTORC1. Transcriptional profiling confirms mTOR activation in G2-Terc−/− livers. Treatment of G2-Terc−/− mice with rapamycin, an inhibitor of mTORC1, decreases survival, in contrast to lifespan extension in wild-type controls. Deletion of mTORC1 downstream S6 kinase 1 in G3-Terc−/− mice also decreases longevity, in contrast to lifespan extension in single S6K1−/− female mice. These findings demonstrate that mTOR is important for survival in the context of short telomeres, and that its inhibition is deleterious in this setting. These results are of clinical interest in the case of human syndromes characterized by critically short telomeres. Telomerase deficiency leads to age-related diseases and shortened lifespan, while inhibition of the mTOR pathway delays aging. Here, the authors show that inhibition of mTORC1 signaling shortens the lifespan of telomerase deficient mice.
Collapse
Affiliation(s)
- Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Sarita Saraswati
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Lydia Thelma Poluha
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Hernandez-Encinas
- Experimental Therapeutics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juana Maria Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Avenida Puerta de Hierro s/n, E-28040, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
42
|
Robin JD, Jacome Burbano M, Peng H, Croce O, Thomas JL, Laberthonniere C, Renault V, Lototska L, Pousse M, Tessier F, Bauwens S, Leong W, Sacconi S, Schaeffer L, Magdinier F, Ye J, Gilson E. Mitochondrial function in skeletal myofibers is controlled by a TRF2-SIRT3 axis over lifetime. Aging Cell 2020; 19:e13097. [PMID: 31991048 PMCID: PMC7059141 DOI: 10.1111/acel.13097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere-capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2-compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2-compromised human myotubes. Altogether, these results reveal a TRF2-SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.
Collapse
Affiliation(s)
- Jérôme D. Robin
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- Marseille Medical Genetics (MMG) U1251 Aix Marseille University Marseille France
| | - Maria‐Sol Jacome Burbano
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Han Peng
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Olivier Croce
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Jean Luc Thomas
- Neuromuscular Differentiation Group Institut NeuroMyoGene (INMG) UMR5310 Inserm U1217 Ecole Normale Supérieure de Lyon Lyon France
| | | | - Valerie Renault
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Liudmyla Lototska
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Mélanie Pousse
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Florent Tessier
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Serge Bauwens
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Waiian Leong
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Sabrina Sacconi
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- Peripheral Nervous System, Muscle and ALS Neuromuscular & ALS Center of Reference FHU Oncoage Pasteur 2 Nice University Hospital Nice France
| | - Laurent Schaeffer
- Neuromuscular Differentiation Group Institut NeuroMyoGene (INMG) UMR5310 Inserm U1217 Ecole Normale Supérieure de Lyon Lyon France
| | - Frédérique Magdinier
- Marseille Medical Genetics (MMG) U1251 Aix Marseille University Marseille France
| | - Jing Ye
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Eric Gilson
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
- Department of Medical Genetics Archet 2 Hospital FHU Oncoage CHU of Nice Nice France
| |
Collapse
|
43
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
44
|
Marín‐Aguilar F, Lechuga‐Vieco AV, Alcocer‐Gómez E, Castejón‐Vega B, Lucas J, Garrido C, Peralta‐Garcia A, Pérez‐Pulido AJ, Varela‐López A, Quiles JL, Ryffel B, Flores I, Bullón P, Ruiz‐Cabello J, Cordero MD. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 2020; 19:e13050. [PMID: 31625260 PMCID: PMC6974709 DOI: 10.1111/acel.13050] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.
Collapse
Affiliation(s)
| | - Ana V. Lechuga‐Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Elísabet Alcocer‐Gómez
- Departamento de Psicología Experimental Facultad de Psicología Universidad de Sevilla Seville Spain
| | | | - Javier Lucas
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
| | - Carlos Garrido
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
| | - Alejandro Peralta‐Garcia
- Centro Andaluz de Biología del Desarrollo (CABD) Universidad Pablo de Olavide‐CSIC‐Junta de Andalucía Sevilla Spain
| | - Antonio J. Pérez‐Pulido
- Centro Andaluz de Biología del Desarrollo (CABD) Universidad Pablo de Olavide‐CSIC‐Junta de Andalucía Sevilla Spain
| | - Alfonso Varela‐López
- Institute of Nutrition and Food Technology "José Mataix Verdú" Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - José L. Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú" Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM) UMR 7355 CNRS‐University of Orleans Orléans France
- IDM University of Cape Town Cape Town South Africa
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
| | - Pedro Bullón
- Research Laboratory Oral Medicine Department University of Sevilla Sevilla Spain
| | - Jesús Ruiz‐Cabello
- CIBER de Enfermedades Respiratorias (CIBERES) Madrid Spain
- CIC biomaGUNE San Sebastian‐Donostia Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
- Universidad Complutense Madrid Madrid Spain
| | - Mario D. Cordero
- Institute of Nutrition and Food Technology "José Mataix Verdú" Department of Physiology Biomedical Research Center University of Granada Granada Spain
| |
Collapse
|
45
|
Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. Aging (Albany NY) 2019; 10:3397-3420. [PMID: 30472697 PMCID: PMC6286833 DOI: 10.18632/aging.101655] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Replication-based telomere shortening during lifetime is species- and tissue-specific, however, its impact on healthy aging is unclear. In particular, the contribution of telomere truncation to the aging process of the CNS, where replicative senescence alone fails to explain organ aging due to low to absent mitotic activity of intrinsic populations, is undefined. Here, we assessed changes in relative telomere length in non-replicative and replicative neural brain populations and telomerase activity as a function of aging in C57BL/6 mice. Telomeres in neural cells and sub-selected neurons shortened with aging in a cell cycle-dependent and -independent manner, with preponderance in replicative moieties, implying that proliferation accelerates, but is not prerequisite for telomere shortening. Consistent with this telomere erosion, telomerase activity and nuclear TERT protein were not induced with aging. Knockdown of the Rela subunit of NF-κB, which controls both telomerase enzyme and subcellular TERT protein allocation, did also not influence telomerase activity or telomere length, in spite of its naive up-regulation selectively under aging conditions. We conclude that telomere instability is intrinsic to physiological brain aging beyond cell replication, and appears to occur independently of a functional interplay with NF-κB, but rather as a failure to induce or relocate telomerase.
Collapse
|
46
|
Zhao S, Wang F, Liu L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes (Basel) 2019; 10:genes10121030. [PMID: 31835618 PMCID: PMC6947546 DOI: 10.3390/genes10121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
47
|
Alrefaei GI, Alkarim SA, Abduljabbar HS. Impact of Mothers' Age on Telomere Length and Human Telomerase Reverse Transcriptase Expression in Human Fetal Membrane-Derived Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:1632-1645. [PMID: 31650883 DOI: 10.1089/scd.2019.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age-related cellular changes and limited replicative capacity of adult mesenchymal stem cells (MSCs) are few of the challenges confronting stem cell research. MSCs from human fetal membranes (hFM-MSCs), including placental, umbilical cord, and amniotic membrane, are considered an alternative to adult MSCs. However, the effect of mothers' age on hFM-MSC cellular properties is still not clearly established. This study aimed to evaluate the effect of mothers' age on hFM-MSC telomere length, telomerase activity, and proliferation ability in three different age groups: GI (20-29 years), GII (30-39 years), and GIII (≥40 years). hFM samples were collected from pregnant women ≤37 weeks after obtaining consent. hFM-MSCs were isolated and cultured to characterize them by flow cytometry and assess proliferation by MTT assay and doubling time. Telomere length and expression levels of human telomerase reverse transcriptase were assessed by quantitative real-time polymerase chain reaction (qRT-RCR). hFM-MSCs in the three age groups were spindle-shaped, plastic-adherent, and exhibited high proliferation rates and strong expression of hMSC markers. GI showed the longest telomere length in hMSCs in various FM regions, whereas GIII showed the highest level of telomerase expression. There was no difference in telomere length between GII and GIII, and both groups showed the same hMSC characteristics. In conclusion, although the hFM-MSCs derived from different fetal membranes maintained the MSC characteristics in all study groups, the hFM-MSCs of older mothers had shorter telomeres and higher telomerase activity and proliferation rate than did those derived from younger mothers. Thus, the hFM-MSCs of older mothers could be unsuitable for expansion in vitro or stem cell therapy. Determination of telomere length and telomerase expression level of hFM might help characterizing and understanding the biological differences of hFM-MSCs in different age groups.
Collapse
Affiliation(s)
- Ghadeer I Alrefaei
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh A Alkarim
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan S Abduljabbar
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun 2019; 10:4723. [PMID: 31624261 PMCID: PMC6797762 DOI: 10.1038/s41467-019-12664-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Short telomeres trigger age-related pathologies and shorter lifespans in mice and humans. In the past, we generated mouse embryonic (ES) cells with longer telomeres than normal (hyper-long telomeres) in the absence of genetic manipulations, which contributed to all mouse tissues. To address whether hyper-long telomeres have deleterious effects, we generated mice in which 100% of their cells are derived from hyper-long telomere ES cells. We observe that these mice have longer telomeres and less DNA damage with aging. Hyper-long telomere mice are lean and show low cholesterol and LDL levels, as well as improved glucose and insulin tolerance. Hyper-long telomere mice also have less incidence of cancer and an increased longevity. These findings demonstrate that longer telomeres than normal in a given species are not deleterious but instead, show beneficial effects.
Collapse
Affiliation(s)
- Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Alba C Cano-Martin
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
49
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Accumulation of critically short telomeres is proposed to be a primary molecular cause of aging and age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as or telomeropathies. The rate of telomere shortening throughout life is determined by endogenous (genetic) and external (nongenetic) factors. Therapeutic strategies based on telomerase activation are being developed to treat and prevent telomere-associated diseases, namely aging-related diseases and telomeropathies. Here, we review the molecular mechanisms underlying telomere driven diseases with particular emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Paula Martínez
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
50
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|