1
|
Zhang Q, Hrach H, Mangone M, Reiner DJ. Identifying the Caenorhabditis elegans vulval transcriptome. G3 (BETHESDA, MD.) 2022; 12:jkac091. [PMID: 35551383 PMCID: PMC9157107 DOI: 10.1093/g3journal/jkac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Development of the Caenorhabditis elegans vulva is a classic model of organogenesis. This system, which starts with 6 equipotent cells, encompasses diverse types of developmental event, including developmental competence, multiple signaling events to control precise and faithful patterning of three cell fates, execution and proliferation of specific cell lineages, and a series of sophisticated morphogenetic events. Early events have been subjected to extensive mutational and genetic investigations and later events to cell biological analyses. We infer the existence of dramatically changing profiles of gene expression that accompanies the observed changes in development. Yet, except from serendipitous discovery of several transcription factors expressed in dynamic patterns in vulval lineages, our knowledge of the transcriptomic landscape during vulval development is minimal. This study describes the composition of a vulva-specific transcriptome. We used tissue-specific harvesting of mRNAs via immunoprecipitation of epitope-tagged poly(A) binding protein, PAB-1, heterologously expressed by a promoter known to express GFP in vulval cells throughout their development. The identified transcriptome was small but tightly interconnected. From this data set, we identified several genes with identified functions in development of the vulva and validated more with promoter-GFP reporters of expression. For one target, lag-1, promoter-GFP expression was limited but a fluorescent tag of the endogenous protein revealed extensive expression. Thus, we have identified a transcriptome of C. elegans vulval lineages as a launching pad for exploration of functions of these genes in organogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Heather Hrach
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - David J Reiner
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
2
|
Carlston C, Weinmann R, Stec N, Abbatemarco S, Schwager F, Wang J, Ouyang H, Ewald CY, Gotta M, Hammell CM. PQN-59 antagonizes microRNA-mediated repression during post-embryonic temporal patterning and modulates translation and stress granule formation in C. elegans. PLoS Genet 2021; 17:e1009599. [PMID: 34807903 PMCID: PMC8648105 DOI: 10.1371/journal.pgen.1009599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.
Collapse
Affiliation(s)
- Colleen Carlston
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Robin Weinmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Simona Abbatemarco
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Huiwu Ouyang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Monica Gotta
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
3
|
Pecora G, Sortino V, Brafa Musicoro V, Salomone G, Pizzo F, Costanza G, Falsaperla R, Zanghì A, Praticò AD. FOXG1 Gene and Its Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFOXG1 is an important transcriptional repressor found in cell precursor of the ventricular region and in neurons in the early stage of differentiation during the development of the nervous epithelium in the cerebrum and optical formation. Mutations involving FOXG1 gene have been described first in subjects with congenital Rett syndrome. They can cause seizure, delayed psychomotor development, language disorders, and autism. FOXG1 deletions or intragenic mutations also determinate reduction in head circumference, structural defects in the corpus callosum, abnormal movements, especially choreiform, and intellectual retardation with no speech. Patients with duplications of 14q12 present infantile spasms and have subsequent intellectual disability with autistic features, head circumference in the normal range, and regular aspect of corpus callosum. Clinical characteristics of patients with FOXG1 variants include growth deficit after birth associated with microcephaly, facial dysmorphisms, important delay with no language, deficit in social interaction like autism, sleep disorders, stereotypes, including dyskinesia, and seizures. In these patients, it is not characteristic a history of loss of acquired skills.
Collapse
Affiliation(s)
- Giulia Pecora
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Sortino
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Viviana Brafa Musicoro
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Artiles KL, Fire AZ, Frøkjær-Jensen C. Assessment and Maintenance of Unigametic Germline Inheritance for C. elegans. Dev Cell 2019; 48:827-839.e9. [PMID: 30799227 PMCID: PMC6435406 DOI: 10.1016/j.devcel.2019.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
The recent work of Besseling and Bringmann (2016) identified a molecular intervention for C. elegans in which premature segregation of maternal and paternal chromosomes in the fertilized oocyte can produce viable animals exhibiting a non-Mendelian inheritance pattern. Overexpression in embryos of a single protein regulating chromosome segregation (GPR-1) provides a germline derived clonally from a single parental gamete. We present a collection of strains and cytological assays to consistently generate and track non-Mendelian inheritance. These tools allow reproducible and high-frequency (>80%) production of non-Mendelian inheritance, the facile and simultaneous homozygosis for all nuclear chromosomes in a single generation, the precise exchange of nuclear and mitochondrial genomes between strains, and the assessments of non-canonical mitosis events. We show the utility of these strains by demonstrating a rapid assessment of cell lineage requirements (AB versus P1) for a set of genes (lin-2, lin-3, lin-12, and lin-31) with roles in C. elegans vulval development.
Collapse
Affiliation(s)
- Karen L Artiles
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Abstract
Brain development is a highly regulated process that involves the precise spatio-temporal activation of cell signaling cues. Transcription factors play an integral role in this process by relaying information from external signaling cues to the genome. The transcription factor Forkhead box G1 (FOXG1) is expressed in the developing nervous system with a critical role in forebrain development. Altered dosage of FOXG1 due to deletions, duplications, or functional gain- or loss-of-function mutations, leads to a complex array of cellular effects with important consequences for human disease including neurodevelopmental disorders. Here, we review studies in multiple species and cell models where FOXG1 dose is altered. We argue against a linear, symmetrical relationship between FOXG1 dosage states, although FOXG1 levels at the right time and place need to be carefully regulated. Neurodevelopmental disease states caused by mutations in FOXG1 may therefore be regulated through different mechanisms.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Abstract
The extracellular signal-regulated kinase (ERK) pathway leads to activation of the effector molecule ERK, which controls downstream responses by phosphorylating a variety of substrates, including transcription factors. Crucial insights into the regulation and function of this pathway came from studying embryos in which specific phenotypes arise from aberrant ERK activation. Despite decades of research, several important questions remain to be addressed for deeper understanding of this highly conserved signaling system and its function. Answering these questions will require quantifying the first steps of pathway activation, elucidating the mechanisms of transcriptional interpretation and measuring the quantitative limits of ERK signaling within which the system must operate to avoid developmental defects.
Collapse
Affiliation(s)
- Aleena L Patel
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
The C. elegans hox gene lin-39 controls cell cycle progression during vulval development. Dev Biol 2016; 418:124-134. [DOI: 10.1016/j.ydbio.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
|
9
|
Lussi YC, Mariani L, Friis C, Peltonen J, Myers TR, Krag C, Wong G, Salcini AE. Impaired removal of H3K4 methylation affects cell fate determination and gene transcription. Development 2016; 143:3751-3762. [PMID: 27578789 DOI: 10.1242/dev.139139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is largely associated with promoters and enhancers of actively transcribed genes and is finely regulated during development by the action of histone methyltransferases and demethylases. H3K4me3 demethylases of the KDM5 family have been previously implicated in development, but how the regulation of H3K4me3 level controls developmental processes is not fully established. Here, we show that the H3K4 demethylase RBR-2, the unique member of the KDM5 family in C. elegans, acts cell-autonomously and in a catalytic-dependent manner to control vulva precursor cells fate acquisition, by promoting the LIN-12/Notch pathway. Using genome-wide approaches, we show that RBR-2 reduces the H3K4me3 level at transcription start sites (TSSs) and in regions upstream of the TSSs, and acts both as a transcription repressor and activator. Analysis of the lin-11 genetic locus, a direct RBR-2 target gene required for vulva precursor cell fate acquisition, shows that RBR-2 controls the epigenetic signature of the lin-11 vulva-specific enhancer and lin-11 expression, providing in vivo evidence that RBR-2 can positively regulate transcription and cell fate acquisition by controlling enhancer activity.
Collapse
Affiliation(s)
- Yvonne C Lussi
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Luca Mariani
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Carsten Friis
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Toshia R Myers
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Claudia Krag
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Garry Wong
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark .,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
10
|
Flibotte S, Kim BR, Van de Laar E, Brown L, Moghal N. The SWI/SNF chromatin remodeling complex exerts both negative and positive control over LET-23/EGFR-dependent vulval induction in Caenorhabditis elegans. Dev Biol 2016; 415:46-63. [PMID: 27207389 DOI: 10.1016/j.ydbio.2016.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022]
Abstract
Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.
Collapse
Affiliation(s)
- Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | - Bo Ram Kim
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Emily Van de Laar
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Louise Brown
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | - Nadeem Moghal
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| |
Collapse
|
11
|
The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans. Genetics 2015; 202:583-99. [PMID: 26715664 DOI: 10.1534/genetics.115.180265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.
Collapse
|
12
|
Schmid T, Hajnal A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr Opin Genet Dev 2015; 32:1-9. [DOI: 10.1016/j.gde.2015.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
|
13
|
Sharanya D, Fillis CJ, Kim J, Zitnik EM, Ward KA, Gallagher ME, Chamberlin HM, Gupta BP. Mutations in Caenorhabditis briggsae identify new genes important for limiting the response to EGF signaling during vulval development. Evol Dev 2015; 17:34-48. [PMID: 25627712 DOI: 10.1111/ede.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
LIN-3/EGF promotes the programmed cell death of specific cells in Caenorhabditis elegans by transcriptional activation of the pro-apoptotic gene egl-1. PLoS Genet 2014; 10:e1004513. [PMID: 25144461 PMCID: PMC4140636 DOI: 10.1371/journal.pgen.1004513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/05/2014] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death (PCD) is the physiological death of a cell mediated by an intracellular suicide program. Although key components of the PCD execution pathway have been identified, how PCD is regulated during development is poorly understood. Here, we report that the epidermal growth factor (EGF)-like ligand LIN-3 acts as an extrinsic signal to promote the death of specific cells in Caenorhabditis elegans. The loss of LIN-3 or its receptor, LET-23, reduced the death of these cells, while excess LIN-3 or LET-23 signaling resulted in an increase in cell deaths. Our molecular and genetic data support the model that the LIN-3 signal is transduced through LET-23 to activate the LET-60/RAS-MPK-1/ERK MAPK pathway and the downstream ETS domain-containing transcription factor LIN-1. LIN-1 binds to, and activates transcription of, the key pro-apoptotic gene egl-1, which leads to the death of specific cells. Our results provide the first evidence that EGF induces PCD at the whole organism level and reveal the molecular basis for the death-promoting function of LIN-3/EGF. In addition, the level of LIN-3/EGF signaling is important for the precise fine-tuning of the life-versus-death fate. Our data and the previous cell culture studies that say EGF triggers apoptosis in some cell lines suggest that the EGF-mediated modulation of PCD is likely conserved in C. elegans and humans. Programmed cell death (PCD) is an evolutionarily conserved cellular process that is important for metazoan development and homeostasis. The epidermal growth factor (EGF) promotes cell proliferation, differentiation and survival during animal development. Surprisingly, we found that the EGF-like ligand LIN-3 also promotes the death of specific cells in Caenorhabditis elegans. We found that the LIN-3/EGF signal can be secreted from a cell to facilitate the demise of cells at a distance by activating the transcription of the PCD-promoting gene egl-1 in the doomed cells through the transcription factor LIN-1. LIN-1 binds to the egl-1 promoter in vitro and is positively regulated by the LIN-3/EGF, LET-23/EGF receptor, and the downstream MAPK signaling pathway. To our knowledge, LIN-3/EGF is the first extrinsic signal that has been shown to regulate the intrinsic PCD machinery during C. elegans development. In addition, the transcription factor LIN-31, which binds to LIN-1 and acts downstream of LIN-3/EGF, LET-23/EGF receptor, and the MAPK signaling pathway during vulval development, is dispensable for PCD. Thus, LIN-3/EGF promotes cell proliferation, differentiation, and PCD through common downstream signaling molecules but acts via distinct sets of transcription factors for different target gene expression.
Collapse
|
15
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
16
|
Abstract
Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | |
Collapse
|
17
|
Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Dev Cell 2013; 23:494-506. [PMID: 22975323 DOI: 10.1016/j.devcel.2012.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/06/2012] [Accepted: 06/29/2012] [Indexed: 11/20/2022]
Abstract
Morphogenesis is a developmental phase during which cell fates are executed. Mechanical forces shaping individual cells play a key role during tissue morphogenesis. By investigating morphogenesis of the Caenorhabditis elegans hermaphrodite vulva, we show that the force-generating actomyosin network is differentially regulated by NOTCH and EGFR/RAS/MAPK signaling to shape the vulval tube. NOTCH signaling activates expression of the RHO kinase LET-502 in the secondary cell lineage through the ETS-family transcription factor LIN-1. LET-502 induces actomyosin-mediated contraction of the apical lumen in the secondary toroids, thereby generating a dorsal pushing force. In contrast, MAPK signaling in the primary lineage downregulates LET-502 RHO kinase expression to prevent toroid contraction and allow the gonadal anchor cell to expand the dorsal lumen of the primary toroids. The antagonistic action of the MAPK and NOTCH pathways thus controls vulval tube morphogenesis linking cell fate specification to morphogenesis.
Collapse
|
18
|
Elvin M, Snoek LB, Frejno M, Klemstein U, Kammenga JE, Poulin GB. A fitness assay for comparing RNAi effects across multiple C. elegans genotypes. BMC Genomics 2011; 12:510. [PMID: 22004469 PMCID: PMC3206879 DOI: 10.1186/1471-2164-12-510] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/17/2011] [Indexed: 02/03/2023] Open
Abstract
Background RNAi technology by feeding of E. coli containing dsRNA in C. elegans has significantly contributed to further our understanding of many different fields, including genetics, molecular biology, developmental biology and functional genomics. Most of this research has been carried out in a single genotype or genetic background. However, RNAi effects in one genotype do not reveal the allelic effects that segregate in natural populations and contribute to phenotypic variation. Results Here we present a method that allows for rapidly comparing RNAi effects among diverse genotypes at an improved high throughput rate. It is based on assessing the fitness of a population of worms by measuring the rate at which E. coli is consumed. Critically, we demonstrate the analytical power of this method by QTL mapping the loss of RNAi sensitivity (in the germline) in a recombinant inbred population derived from a cross between Bristol and a natural isolate from Hawaii. Hawaii has lost RNAi sensitivity in the germline. We found that polymorphisms in ppw-1 contribute to this loss of RNAi sensitivity, but that other loci are also likely to be important. Conclusions In summary, we have established a fast method that improves the throughput of RNAi in liquid, that generates quantitative data, that is easy to implement in most laboratories, and importantly that enables QTL mapping using RNAi.
Collapse
Affiliation(s)
- Mark Elvin
- Laboratory of Nematology, Wageningen Universiteit, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Zhang X, Greenwald I. Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans. Genetics 2011; 188:847-58. [PMID: 21596897 PMCID: PMC3176094 DOI: 10.1534/genetics.111.128389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
lag-2 encodes a ligand for LIN-12/Notch and is a component of the lateral signal that activates LIN-12/Notch during Caenorhabditis elegans vulval precursor cell (VPC) fate patterning. lag-2 is specifically transcribed in one VPC, named P6.p, in response to activation of EGFR/Ras/MAPK by the inductive signal that initiates vulval development. Here, we show that a critical molecular event linking inductive and lateral signaling is the relief of VPC-wide lag-2 repression in P6.p. We find that the lag-2 promoter contains an element, VPCrep, which mediates repression in all VPCs when the inductive signal is absent, and another promoter element, VPCact, which is required for activation when repression is relieved by the inductive signal. We show that repression through VPCrep is mediated by the Elk1 ortholog LIN-1, and that the level and subcellular accumulation of a functional LIN-1::GFP protein is similar in all six VPCs before and after vulval induction, suggesting that relief of LIN-1-mediated repression in P6.p is likely due to the known MAPK-dependent phosphorylation of LIN-1. We also provide evidence that the factor(s) acting through VPCact is present in all VPCs but is not modulated by the inductive signal, and that transcription of lag-2 requires the Hth/Meis ortholog UNC-62 and the Mediator complex component SUR-2. Relief of repression of lag-2 in P6.p offers a plausible mechanistic basis for spatial restriction of lag-2 in generating the precise spatial pattern of VPC fates.
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
20
|
Liu G, Rogers J, Murphy CT, Rongo C. EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J 2011; 30:2990-3003. [PMID: 21673654 PMCID: PMC3160178 DOI: 10.1038/emboj.2011.195] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022] Open
Abstract
Epidermal growth factor (EGF) signalling regulates growth and differentiation. Here, we examine the function of EGF signalling in Caenorhabditis elegans lifespan. We find that EGF signalling regulates lifespan via the Ras-MAPK pathway and the PLZF transcription factors EOR-1 and EOR-2. As animals enter adulthood, EGF signalling upregulates the expression of genes involved in the ubiquitin proteasome system (UPS), including the Skp1-like protein SKR-5, while downregulating the expression of HSP16-type chaperones. Using reporters for global UPS activity, protein aggregation, and oxidative stress, we find that EGF signalling alters protein homoeostasis in adults by increasing UPS activity and polyubiquitination, while decreasing protein aggregation. We show that SKR-5 and the E3/E4 ligases that comprise the ubiquitin fusion degradation (UFD) complex are required for the increase in UPS activity observed in adults, and that animals that lack SKR-5 or the UFD have reduced lifespans and indications of oxidative stress. We propose that as animals enter fertile adulthood, EGF signalling switches the mechanism for maintaining protein homoeostasis from a chaperone-based approach to an approach involving protein elimination via augmented UPS activity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Genetics, The Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Jason Rogers
- Department of Molecular Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
21
|
Florian C, Bahi-Buisson N, Bienvenu T. FOXG1-Related Disorders: From Clinical Description to Molecular Genetics. Mol Syndromol 2011; 2:153-163. [PMID: 22670136 DOI: 10.1159/000327329] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disease that affects approximately 1 in 10,000 live female births and is often caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2). Mutations in loci other than MECP2 have also been found in individuals that have been labeled as atypical RTT. Among them, a mutation in the gene forkhead box G1 (FOXG1) has been involved in the molecular aetiology of the congenital variant of RTT. The FOXG1 gene encodes a winged-helix transcriptional repressor essential for the development of the ventral telencephalon in embryonic forebrain. Later, FOXG1 continues to be expressed in neurogenetic zones of the postnatal brain. Although RTT affects quasi-exclusively girls, FOXG1 mutations have also been identified in male patients. As far as we know, about 12 point mutations and 13 cases with FOXG1 molecular abnormalities (including translocation, duplication and large deletion on the chromosome 14q12) have been described in the literature. Affected individuals with FOXG1 mutations have shown dysmorphic features and Rett-like clinical course, including normal perinatal period, postnatal microcephaly, seizures and severe mental retardation. Interestingly, the existing animal models of FOXG1 deficiency showed similar phenotype, suggesting that animal models may be a fascinating model to understand this human disease. Here, we describe the impacts of FOXG1 mutations and their associated phenotypes in human and mouse models.
Collapse
Affiliation(s)
- C Florian
- Inserm, U1016, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | |
Collapse
|
22
|
Roberts AF, Gumienny TL, Gleason RJ, Wang H, Padgett RW. Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:61. [PMID: 20529267 PMCID: PMC2894779 DOI: 10.1186/1471-213x-10-61] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 06/07/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor beta (TGFbeta superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown. RESULTS We performed a microarray analysis and compared expression profiles of animals lacking the SMA-6 DBL-1 receptor, which decreases pathway signaling, with animals that overexpress DBL-1 ligand, which increases pathway signaling. Consistent with a role for DBL-1 in control of body size, we find positive regulation by DBL-1 of genes involved in physical structure, protein synthesis and degradation, and metabolism. However, cell cycle genes were mostly absent from our results. We also identified genes in a hedgehog-related pathway, which may comprise a secondary signaling pathway downstream of DBL-1 that controls body size. In addition, DBL-1 signaling up-regulates pro-innate immunity genes. We identified a reporter for DBL-1 signaling, which is normally repressed but is up-regulated when DBL-1 signaling is reduced. CONCLUSIONS Our results indicate that body size in C. elegans is controlled in part by regulation of metabolic processes as well as protein synthesis and degradation. This supports the growing body of evidence that suggests cell size is linked to metabolism. Furthermore, this study discovered a possible role for hedgehog-related pathways in transmitting the BMP-like signal from the hypodermis, where the core DBL-1 pathway components are required, to other tissues in the animal. We also identified the up-regulation of genes involved in innate immunity, clarifying the role of DBL-1 in innate immunity. One of the highly regulated genes is expressed at very low levels in wild-type animals, but is strongly up-regulated in Sma/Mab mutants, making it a useful reporter for DBL-1/BMP-like signaling in C. elegans.
Collapse
Affiliation(s)
- Andrew F Roberts
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
- Current Address: International Life Sciences Institute (ILSI) Research Foundation, Washington D.C. 20005, USA
| | - Tina L Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
- Current Address: Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Ryan J Gleason
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Huang Wang
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
23
|
Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans. Genetics 2010; 185:1235-47. [PMID: 20479142 DOI: 10.1534/genetics.110.118406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elongator (ELP) complex consisting of Elp1-6p has been indicated to play roles in multiple cellular processes. In yeast, the ELP complex has been shown to genetically interact with Uba4p/Urm1p and Kti11-13p for a function in tRNA modification. Through a Caenorhabditis elegans genetic suppressor screen and positional cloning, we discovered that loss-of-function mutations of moc-3 and dph-3, orthologs of the yeast UBA4 and KTI11, respectively, effectively suppress the Multivulva (Muv) phenotype of the lin-1(e1275, R175Opal) mutation. These mutations do not suppress the Muv phenotype caused by other lin-1 alleles or by gain-of-function alleles of ras or raf that act upstream of lin-1. The suppression can also be reverted by RNA interference of lin-1. Furthermore, we showed that dph-3(lf) also suppressed the defect of lin-1(e1275) in promoting the expression of a downstream target (egl-17). These results indicate that suppression by the moc-3 and dph-3 mutations is due to the elevated activity of lin-1(e1275) itself rather than the altered activity of a factor downstream of lin-1. We further showed that loss-of-function mutations of urm-1 and elpc-1-4, the worm counterparts of URM1 and ELP complex components in yeast, also suppressed lin-1(e1275). We also confirmed that moc-3(lf) and dph-3(lf) have defects in tRNA modifications as do the mutants of their yeast orthologs. These results, together with the observation of a likely readthrough product from a lin-1(e1275)::gfp fusion transgene indicate that the aberrant tRNA modification led to failed recognition of a premature stop codon in lin-1(e1275). Our genetic data suggest that the functional interaction of moc-3/urm-1 and dph-3 with the ELP complex is an evolutionarily conserved mechanism involved in tRNA functions that are important for accurate translation.
Collapse
|
24
|
Seah A, Sternberg PW. The roles of EGF and Wnt signaling during patterning of the C. elegans Bgamma/delta Equivalence Group. BMC DEVELOPMENTAL BIOLOGY 2009; 9:74. [PMID: 20042118 PMCID: PMC2813230 DOI: 10.1186/1471-213x-9-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/31/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND During development, different signaling pathways interact to specify cell fate by regulating transcription factors necessary for fate specification and morphogenesis. In Caenorhabditis elegans, the EGF-Ras and Wnt signaling pathways have been shown to interact to specify cell fate in three equivalence groups: the vulval precursor cells (VPCs), the hook competence group (HCG) and P11/12. In the VPCs, HCG and P11/12 pair, EGF and Wnt signaling positively regulate different Hox genes, each of which also functions during fate specification. In the male, EGF-Ras signaling is required to specify the Bgamma fate within the Bgamma/delta equivalence pair, while Notch signaling is required for Bdelta fate specification. In addition, TGF-beta signaling by dbl-1/dpp controls ceh-13/labial/Hox1 expression in Bgamma. RESULTS We show that EGF-Ras signaling is required for Bgamma expression of ceh-13/labial/Hox1. The transcription factors lin-1/ETS and lin-31/Forkhead, functioning downstream of the EGF pathway, as well as sur-2/MED23 (a component of the Mediator complex) also control ceh-13 expression in Bgamma. In addition, our results indicate that lin-44/Wnt, mom-2/Wnt and lin-17/Fz are necessary to maintain the division of Bgamma along a longitudinal axis. We also show that dbl-1/dpp acts either in parallel or downstream of EGF pathway to regulate ceh-13/Hox1 expression in Bgamma. Lastly, we find that a dbl-1/dpp null mutation did not cause any vulval or P12 defects and did not enhance vulval and P12 defects of reduction-of-function mutations of components of the EGF pathway. CONCLUSIONS ceh-13/labial/Hox1 expression in Bgamma is regulated by the EGF pathway and downstream factors lin-1/ETS lin-31/Forkhead and sur-2/MED23. Wnt signaling is required for proper Bgamma division, perhaps to orient the Bgamma mitotic spindle. Our results suggest that dbl-1/dpp is not required for VPC and P12 specification, highlighting another difference among these EGF-dependent equivalence groups.
Collapse
Affiliation(s)
- Adeline Seah
- California Institute of Technology, Pasadena, 91125, USA.
| | | |
Collapse
|
25
|
Li C, Nagasaki M, Ueno K, Miyano S. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension. BMC SYSTEMS BIOLOGY 2009; 3:42. [PMID: 19393101 PMCID: PMC2691733 DOI: 10.1186/1752-0509-3-42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 04/27/2009] [Indexed: 11/10/2022]
Abstract
Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. Conclusion The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.
Collapse
Affiliation(s)
- Chen Li
- Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
26
|
Ouellet J, Li S, Roy R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development 2008; 135:2583-92. [PMID: 18599512 DOI: 10.1242/dev.012435] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Notch signalling pathway is conserved among higher metazoans and is used repeatedly throughout development to specify distinct cell fates among populations of equipotent cells. Mounting evidence suggests that Notch signalling may also be crucial in neuronal function in postmitotic, differentiated neurons. Here, we demonstrate a novel role for the canonical Notch signalling pathway in postmitotic neurons during a specialised ;diapause-like' post-embryonic developmental stage in C. elegans called dauer. Our data suggest that cell signalling downstream of the developmental decision to enter dauer leads to the activation of Notch-responding genes in postmitotic neurons. Consistent with this, we demonstrate that glp-1, one of the two C. elegans Notch receptors, and its ligand lag-2 are expressed in neurons during the dauer stage, and both genes are required to maintain this stage in a daf-7/TGFbeta dauer constitutive background. Our genetic data also suggest that a second Notch receptor, lin-12, functions upstream of, or in parallel with, insulin-like signalling components in response to replete growth conditions to promote dauer recovery. Based on our findings, cues associated with the onset of dauer ultimately trigger a glp-1-dependent Notch signalling cascade in neurons to maintain this developmental state. Then, as growth conditions improve, activation of the LIN-12 Notch receptor cooperates with the insulin-like signalling pathway to signal recovery from the dauer stage.
Collapse
Affiliation(s)
- Jimmy Ouellet
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
27
|
Grigsby IF, Finger FP. UNC-85, a C. elegans homolog of the histone chaperone Asf1, functions in post-embryonic neuroblast replication. Dev Biol 2008; 319:100-9. [PMID: 18490010 DOI: 10.1016/j.ydbio.2008.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 11/28/2022]
Abstract
Normal animal development requires accurate cell divisions, not only in the early stages of rapid embryonic cleavages, but also in later developmental stages. The Caenorhabditis elegans unc-85 gene is implicated only in cell divisions that occur post-embryonically, primarily in terminal neuronal lineages. Variable post-embryonic cell division failures in ventral cord motoneuron precursors result in uncoordinated locomotion of unc-85 mutant larvae by the second larval stage. These neuroblast cell division failures often result in unequally sized daughter nuclei, and sometimes in nuclear fusions. Using a combination of conventional mapping techniques and microarray analysis, we cloned the unc-85 gene, and find that it encodes one of two C. elegans homologs of the yeast Anti-silencing function 1 (Asf1) histone chaperone. The unc-85 gene is expressed in replicating cells throughout development, and the protein is localized in nuclei. Examination of null mutants confirms that embryonic neuroblast cell divisions occur normally, but post-embryonic neuroblast cell divisions fail. Analysis of the DNA content of the mutant neurons indicates that defective replication in post-embryonic neuroblasts gives rise to ventral cord neurons with an average DNA content of approximately 2.5 n. We conclude that UNC-85 functions in post-embryonic DNA replication in ventral cord motor neuron precursors.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Biology Department and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Biotech-BCHM-2, Troy, NY 12180, USA
| | | |
Collapse
|
28
|
Clayton JE, van den Heuvel SJL, Saito RM. Transcriptional control of cell-cycle quiescence during C. elegans development. Dev Biol 2008; 313:603-13. [PMID: 18082681 PMCID: PMC2386670 DOI: 10.1016/j.ydbio.2007.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 11/27/2022]
Abstract
During the development of the C. elegans reproductive system, cells that give rise to the vulva, the vulval precursor cells (VPCs), remain quiescent for two larval stages before resuming cell division in the third larval stage. We have identified several transcriptional regulators that contribute to this temporary cell-cycle arrest. Mutation of lin-1 or lin-31, two downstream targets of the Receptor Tyrosine kinase (RTK)/Ras/MAP kinase cascade that controls VPC cell fate, disrupts the temporary VPC quiescence. We found that the LIN-1/Ets and LIN-31/FoxB transcription factors promote expression of CKI-1, a member of the p27 family of cyclin-dependent kinase inhibitors (CKIs). LIN-1 and LIN-31 promote cki-1/Kip-1 transcription prior to their inhibition through RTK/Ras/MAPK activation. Another mutation identified in the screen defined the mdt-13 TRAP240 Mediator subunit. Further analysis of the multi-subunit Mediator complex revealed that a specific subset of its components act in VPC quiescence. These components substantially overlap with the CDK-8 module implicated in transcriptional repression. Taken together, strict control of cell-cycle quiescence during VPC development involves transcriptional induction of CKI-1 and transcriptional regulation through the Mediator complex. These transcriptional regulators represent potential molecular connections between development and the basic cell-cycle machinery.
Collapse
Affiliation(s)
- Joseph E Clayton
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
29
|
Abstract
The human RAS genes constitute the most frequently mutated oncogenes in human cancers, and the critical role of aberrant Ras protein function in oncogenesis is well established. Consequently, considerable effort has been devoted to the development of anti-Ras inhibitors for cancer treatment. An important facet of molecularly targeted cancer drug discovery is the validation of a target-based mechanism of action, as well as the identification of potential off-target effects. This chapter describes the use of the nematode worm Caenorhabditis elegans for simple, inexpensive pharmacogenetic analysis of candidate molecularly targeted inhibitors of mutationally activated Ras, with a focus on the Ras>Raf>MEK>ERK mitogen-activated protein kinase pathway. This protein kinase cascade is well conserved from worms to humans and is well established as a critical player in the signaling events leading to vulval formation in C. elegans. Excess activity results in the development of a multivulva (Muv) phenotype, whose inhibition by test compounds can be characterized genetically as to the specific step of the pathway that is blocked. In addition, off-target activities can also be identified and characterized further using different strains of mutant worms. This chapter presents proof-of-principle analyses using the well-characterized MEK inhibitor U0126 to block the Muv phenotype caused by the constitutively activated Ras homolog C. elegans LET-60. It also provides a detailed description of protocols and reagents that will enable researchers to analyze on- and off-target effects of other candidate anti-Ras inhibitors using this system.
Collapse
|
30
|
Voutev R, Killian DJ, Ahn JH, Hubbard EJA. Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis. Dev Biol 2006; 298:45-58. [PMID: 16876152 DOI: 10.1016/j.ydbio.2006.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 05/21/2006] [Accepted: 06/02/2006] [Indexed: 12/16/2022]
Abstract
Ribosome biogenesis is a cell-essential process that influences cell growth, proliferation, and differentiation. How ribosome biogenesis impacts development, however, is poorly understood. Here, we establish a link between ribosome biogenesis and gonadogenesis in Caenorhabditis elegans that affects germline proliferation and patterning. Previously, we determined that pro-1(+)activity is required in the soma--specifically, the sheath/spermatheca sublineage--to promote normal proliferation and prevent germline tumor formation. Here, we report that PRO-1, like its yeast ortholog IPI3, influences rRNA processing. pro-1 tumors are suppressed by mutations in ncl-1 or lin-35/Rb, both of which elevate pre-rRNA levels. Thus, in this context, lin-35/Rb acts as a soma-autonomous germline tumor promoter. We further report the characterization of two additional genes identified for their germline tumor phenotype, pro-2 and pro-3, and find that they, too, encode orthologs of proteins involved in ribosome biogenesis in yeast (NOC2 and SDA1, respectively). Finally, we demonstrate that depletion of additional C. elegans orthologs of yeast ribosome biogenesis factors display phenotypes similar to depletion of progenes. We conclude that the C. elegans distal sheath is particularly sensitive to alterations in ribosome biogenesis and that ribosome biogenesis defects in one tissue can non-autonomously influence proliferation in an adjacent tissue.
Collapse
Affiliation(s)
- Roumen Voutev
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | | | | | | |
Collapse
|
31
|
Gonzalez-Serricchio AS, Sternberg PW. Visualization of C. elegans transgenic arrays by GFP. BMC Genet 2006; 7:36. [PMID: 16759392 PMCID: PMC1539001 DOI: 10.1186/1471-2156-7-36] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/07/2006] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific DNA sequence, the lac operator (lacO), allows visualization of chromosomes in yeast and mammalian cells. In principle this method of visualization could be used for genetic mosaic analysis, which requires cell-autonomous markers that can be scored easily and at single cell resolution. The C. elegans lin-3 gene encodes an epidermal growth factor family (EGF) growth factor. lin-3 is expressed in the gonadal anchor cell and acts through LET-23 (transmembrane protein tyrosine kinase and ortholog of EGF receptor) to signal the vulval precursor cells to generate vulval tissue. lin-3 is expressed in the vulval cells later, and recent evidence raises the possibility that lin-3 acts in the vulval cells as a relay signal during vulval induction. It is thus of interest to test the site of action of lin-3 by mosaic analysis. RESULTS We visualized transgenes in living C. elegans by targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific 256 sequence repeat of the lac operator (lacO) incorporated into transgenes. We engineered animals to express a nuclear-localized GFP-LacI fusion protein. C. elegans cells having a lacO transgene result in nuclear-localized bright spots (i.e., GFP-LacI bound to lacO). Cells with diffuse nuclear fluorescence correspond to unbound nuclear localized GFP-LacI. We detected chromosomes in living animals by chromosomally integrating the array of the lacO repeat sequence and visualizing the integrated transgene with GFP-LacI. This detection system can be applied to determine polyploidy as well as investigating chromosome segregation. To assess the GFP-LacI*lacO system as a marker for mosaic analysis, we conducted genetic mosaic analysis of the epidermal growth factor lin-3, expressed in the anchor cell. We establish that lin-3 acts in the anchor cell to induce vulva development, demonstrating this method's utility in detecting the presence of a transgene. CONCLUSION The GFP-LacI*lacO transgene detection system works in C. elegans for visualization of chromosomes and extrachromosomal transgenes. It can be used as a marker for genetic mosaic analysis. The lacO repeat sequence as an extrachromosomal array becomes a valuable technique allowing rapid, accurate determination of spontaneous loss of the array, thereby allowing high-resolution mosaic analysis. The lin-3 gene is required in the anchor cell to induce the epidermal vulval precursors cells to undergo vulval development.
Collapse
Affiliation(s)
- Aidyl S Gonzalez-Serricchio
- Department of Biological Sciences, California State Polytechnic University, 3801 W Temple Avenue, Pomona, CA 91768, USA
| | - Paul W Sternberg
- Division of Biology and Howard Hughes Medical Institute, mail code 156-29, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
32
|
Wagmaister JA, Miley GR, Morris CA, Gleason JE, Miller LM, Kornfeld K, Eisenmann DM. Identification of cis-regulatory elements from the C. elegans Hox gene lin-39 required for embryonic expression and for regulation by the transcription factors LIN-1, LIN-31 and LIN-39. Dev Biol 2006; 297:550-65. [PMID: 16782085 DOI: 10.1016/j.ydbio.2006.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 12/01/2022]
Abstract
Expression of the Caenorhabditis elegans Hox gene lin-39 begins in the embryo and continues in multiple larval cells, including the P cell lineages that generate ventral cord neurons (VCNs) and vulval precursor cells (VPCs). lin-39 is regulated by several factors and by Wnt and Ras signaling pathways; however, no cis-acting sites mediating lin-39 regulation have been identified. Here, we describe three elements controlling lin-39 expression: a 338-bp upstream fragment that directs embryonic expression in P5-P8 and their descendants in the larva, a 247-bp intronic region sufficient for VCN expression, and a 1.3-kb upstream cis-regulatory module that drives expression in the VPC P6.p in a Ras-dependent manner. Three trans-acting factors regulate expression via the 1.3-kb element. A single binding site for the ETS factor LIN-1 mediates repression in VPCs other than P6.p; however, loss of LIN-1 decreases expression in P6.p. Therefore, LIN-1 acts both negatively and positively on lin-39 in different VPCs. The Forkhead domain protein LIN-31 also acts positively on lin-39 in P6.p via this module. Finally, LIN-39 itself binds to this element, suggesting that LIN-39 autoregulates its expression in P6.p. Therefore, we have begun to unravel the cis-acting sites regulating lin-39 Hox gene expression and have shown that lin-39 is a direct target of the Ras pathway acting via LIN-1 and LIN-31.
Collapse
Affiliation(s)
- Javier A Wagmaister
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wagmaister JA, Gleason JE, Eisenmann DM. Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification. Mech Dev 2006; 123:135-50. [PMID: 16412617 DOI: 10.1016/j.mod.2005.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 01/22/2023]
Abstract
Extracellular signaling pathways and transcriptional regulatory networks function during development to specify metazoan cell fates. During Caenorhabditis elegans vulval development, the specification of three vulval precursor cells (VPCs) requires the activity of Wnt, Notch, and Ras signaling pathways, and function of the Hox gene lin-39. LIN-39 protein levels are regulated in the VPCs by both Wnt and Ras signaling. In particular, activation of Ras signaling leads to an increase in LIN-39 protein in P6.p at the time of VPC fate specification. We wish to understand the regulation of lin-39 by these pathways. We first show that LIN-39 is a target for MAP kinase in vitro, suggesting that the Ras-dependent LIN-39 upregulation could be mediated post-translationally. To test this idea, we created transcriptional and translational lin-39::GFP fusions that include the entire lin-39 genomic region, allowing observation of lin-39 expression in live animals. The reporters express GFP in most, if not all, sites of expression previously observed by LIN-39 antibody staining. We used these constructs to show that at the time of vulval induction both lin-39::GFP reporters are upregulated in P6.p, indicating that the accumulation of high levels of LIN-39 protein detected previously corresponds to transcriptional upregulation of lin-39 expression. This transcriptional upregulation of lin-39 is dependent on Ras signaling. We tested the requirement for several transcription factors acting downstream of Ras signaling in the VPCs, and found that P6.p upregulation requires the transcription factors LIN-1 and LIN-25, but appears to be independent of LIN-31, SEM-4, EOR-1 and EOR-2.Finally, we found that when the Wnt pathway is over activated, expression from the transcriptional lin-39::GFP increases, suggesting that the Wnt pathway also regulates lin-39 at the transcriptional level.
Collapse
Affiliation(s)
- Javier A Wagmaister
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
34
|
Eastburn DJ, Han M. A gain-of-function allele of cbp-1, the Caenorhabditis elegans ortholog of the mammalian CBP/p300 gene, causes an increase in histone acetyltransferase activity and antagonism of activated Ras. Mol Cell Biol 2005; 25:9427-34. [PMID: 16227593 PMCID: PMC1265831 DOI: 10.1128/mcb.25.21.9427-9434.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An RTK-Ras-mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in vulval induction in Caenorhabditis elegans. We have previously carried out screens for suppressors of activated Ras to identify factors that play critical roles in the regulation of the pathway. ku258 was isolated as a semidominant allele that suppresses the Multivulva phenotype caused by activated let-60 ras. Our genetic and molecular analyses indicate that ku258 is a gain-of-function allele resulting from two point mutations in the C. elegans homolog of the transcriptional coactivator p300/CBP, cbp-1. Genetic data also suggest that cbp-1 may act downstream of the Ras signaling pathway, but not primarily downstream of the Wnt signaling pathway, to negatively regulate vulval cell fate specification. cbp-1 may function in concert with LIN-1, an Ets transcription factor family member that is one of the targets of MAPK. In vitro histone acetylation assays have revealed that together, the two point mutations cause a sevenfold increase in the histone acetyltransferase (HAT) activity of recombinant CBP-1. To our knowledge, this is the only such HAT activity mutation isolated in a CBP/p300 family protein, and this mutation may define a negative role of the HAT activity in antagonizing Ras function in a specific developmental event.
Collapse
Affiliation(s)
- Dennis J Eastburn
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
35
|
Tiensuu T, Larsen MK, Vernersson E, Tuck S. lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. Dev Biol 2005; 286:338-51. [PMID: 16140291 DOI: 10.1016/j.ydbio.2005.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/27/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022]
Abstract
lin-1 encodes an ETS domain transcription factor that functions downstream of a Ras/MAP kinase pathway mediating induction of the 1 degrees cell fate during vulval development in the C. elegans hermaphrodite. Mutants lacking lin-1 activity display a phenotype similar to that caused by mutations that constitutively activate let-60 Ras consistent with a model in which lin-1 is a repressor of the 1 degree fate whose activity is inhibited by phosphorylation by MPK-1 MAP kinase. Here, we show that, contrary the current model, lin-1 is required positively for the proper expression of several genes regulated by the pathway in cells adopting the 1 degrees cell fate. We show that the positive requirement for lin-1 is downstream of let-60 Ras and mpk-1 MAP kinase, and that it has a focus in the vulval precursor cells themselves. lin-1 alleles encoding proteins lacking a docking site for MPK-1 MAP kinase are defective in the positive function. We also show that lin-1 apparently has both positive and negative functions during the specification of the fates of other cells in the worm requiring Ras/MAP kinase signaling.
Collapse
Affiliation(s)
- Teresa Tiensuu
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
36
|
Goldstein JL, Glossip D, Nayak S, Kornfeld K. The CRAL/TRIO and GOLD domain protein CGR-1 promotes induction of vulval cell fates in Caenorhabditis elegans and interacts genetically with the Ras signaling pathway. Genetics 2005; 172:929-42. [PMID: 16219793 PMCID: PMC1456255 DOI: 10.1534/genetics.104.035550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ras-mediated signaling is necessary for the induction of vulval cell fates during Caenorhabditis elegans development. We identified cgr-1 by screening for suppressors of the ectopic vulval cell fates caused by a gain-of-function mutation of the let-60 ras gene. Analysis of two cgr-1 loss-of-function mutations indicates that cgr-1 positively regulates induction of vulval cell fates. cgr-1 is likely to function at a step in the Ras signaling pathway that is downstream of let-60, which encodes Ras, and upstream of lin-1, which encodes a transcription factor, if these genes function in a linear signaling pathway. These genetic studies are also consistent with the model that cgr-1 functions in a parallel pathway that promotes vulval cell fates. Localized expression studies suggest that cgr-1 functions cell autonomously to affect vulval cell fates. cgr-1 also functions early in development, since cgr-1 is necessary for larval viability. CGR-1 contains a CRAL/TRIO domain likely to bind a small hydrophobic ligand and a GOLD domain that may mediate interactions with proteins. A bioinformatic analysis revealed that there is a conserved family of CRAL/TRIO and GOLD domain-containing proteins that includes members from vertebrates and Drosophila. The analysis of cgr-1 identifies a novel in vivo function for a member of this family and a potential new regulator of Ras-mediated signaling.
Collapse
Affiliation(s)
- Jessica L Goldstein
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
37
|
Ding L, Spencer A, Morita K, Han M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 2005; 19:437-47. [PMID: 16109369 DOI: 10.1016/j.molcel.2005.07.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/19/2005] [Accepted: 07/22/2005] [Indexed: 11/24/2022]
Abstract
In metazoans, microRNAs (miRNAs) carry out various regulatory functions through association with multiprotein miRNA-induced silencing complexes (miRISCs) that contain Dicer and Argonaute proteins. How miRNAs regulate the expression of their mRNA targets remains a major research question. We have identified the C. elegans ain-1 gene through a genetic suppressor screen and shown that it functions with the heterochronic genetic pathway that regulates developmental timing. Biochemical analysis indicates that AIN-1 interacts with protein complexes containing an Argonaute protein, Dicer, and miRNAs. AIN-1 shares homology with the candidate human neurological disease protein GW182, shown to localize in cytoplasmic processing bodies that are sites of mRNA degradation and storage. A functional AIN-1::GFP also localizes at the likely worm processing bodies. When coexpressed from transgenes, AIN-1 targets ALG-1 to the foci. These results suggest a model where AIN-1 regulates a subset of miRISCs by localization to the processing bodies, facilitating degradation or translational inhibition of mRNA targets.
Collapse
Affiliation(s)
- Lei Ding
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The Ras and Notch signaling pathways are used over and over again during development to control many different biological processes. Frequently, these two signaling pathways intersect to influence common processes, but sometimes they cooperate and sometimes they antagonize each other. The Caenorhabditis elegans vulva and the Drosophila eye are two classic paradigms for understanding how Ras and Notch affect cell fates, and how the two pathways work together to control biological pattern. Recent advances in these systems reveal some of the mechanisms by which Ras and Notch can interact. Similar types of interactions in mammals may be important for determining whether and how alterations in Ras or Notch lead to cancer.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
39
|
Wang J, Mohler WA, Savage-Dunn C. C-terminal mutants of C. elegans Smads reveal tissue-specific requirements for protein activation by TGF-beta signaling. Development 2005; 132:3505-13. [PMID: 16000380 DOI: 10.1242/dev.01930] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TGF-beta signaling in the nematode Caenorhabditis elegans plays multiple roles in the development of the animal. The Sma/Mab pathway controls body size, male tail sensory ray identity and spicule formation. Three Smad genes, sma-2, sma-3 and sma-4, are all required for signal transduction, suggesting that the functional complex could be a heterotrimer. Because the C termini of Smads play important roles in receptor-mediated activation and heteromeric complex formation, we generated C-terminal mutations in the C. elegans Smad genes and tested their activities in vivo in each of their distinct developmental roles. We show that pseudophosphorylated SMA-3 is dominant negative in body size, but functional in sensory ray and spicule development. Somewhat differently, pseudophosphorylated SMA-2 is active in any tissue. The C-terminal mutants of SMA-4 function like wild type, suggesting that the SMA-4 C terminus is dispensable. Using a combination of different C-terminal mutations in SMA-2 and SMA-3, we found a complex set of requirements for Smad-phosphorylation state that are specific to each outcome. Finally, we detected a physical interaction of SMA-3 with the forkhead transcription factor LIN-31, which is enhanced by SMA-3 pseudophosphorylation and reduced in an unphosphorylatable mutant. We conclude that the tissue-specific requirements for Smad phosphorylation may result, in part, from the need to interact with tissue-specific transcription co-factors that have different affinities for phosphorylated and unphosphorylated Smad protein.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Biology, Queens College, and Graduate School and University Center, City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | | | | |
Collapse
|
40
|
Joshi P, Eisenmann DM. The Caenorhabditis elegans pvl-5 gene protects hypodermal cells from ced-3-dependent, ced-4-independent cell death. Genetics 2005; 167:673-85. [PMID: 15238520 PMCID: PMC1470927 DOI: 10.1534/genetics.103.020503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Programmed cell death (PCD) is regulated by multiple evolutionarily conserved mechanisms to ensure the survival of the cell. Here we describe pvl-5, a gene that likely regulates PCD in Caenorhabditis elegans. In wild-type hermaphrodites at the L2 stage there are 11 Pn.p hypodermal cells in the ventral midline arrayed along the anterior-posterior axis and 6 of these cells become the vulval precursor cells. In pvl-5(ga87) animals there are fewer Pn.p cells (average of 7.0) present at this time. Lineage analysis reveals that the missing Pn.p cells die around the time of the L1 molt in a manner that often resembles the programmed cell deaths that occur normally in C. elegans development. This Pn.p cell death is suppressed by mutations in the caspase gene ced-3 and in the bcl-2 homolog ced-9, suggesting that the Pn.p cells are dying by PCD in pvl-5 mutants. Surprisingly, the Pn.p cell death is not suppressed by loss of ced-4 function. ced-4 (Apaf-1) is required for all previously known apoptotic cell deaths in C. elegans. This suggests that loss of pvl-5 function leads to the activation of a ced-3-dependent, ced-4-independent form of PCD and that pvl-5 may normally function to protect cells from inappropriate activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Pradeep Joshi
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, 21250, USA
| | | |
Collapse
|
41
|
Gaudet J, Muttumu S, Horner M, Mango SE. Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol 2004; 2:e352. [PMID: 15492775 PMCID: PMC523228 DOI: 10.1371/journal.pbio.0020352] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/13/2004] [Indexed: 12/05/2022] Open
Abstract
We have investigated the cis-regulatory network that mediates temporal gene expression during organogenesis. Previous studies demonstrated that the organ selector gene pha-4/FoxA is critical to establish the onset of transcription of Caenorhabditis elegans foregut (pharynx) genes. Here, we discover additional cis-regulatory elements that function in combination with PHA-4. We use a computational approach to identify candidate cis-regulatory sites for genes activated either early or late during pharyngeal development. Analysis of natural or synthetic promoters reveals that six of these sites function in vivo. The newly discovered temporal elements, together with predicted PHA-4 sites, account for the onset of expression of roughly half of the pharyngeal genes examined. Moreover, combinations of temporal elements and PHA-4 sites can be used in genome-wide searches to predict pharyngeal genes, with more than 85% accuracy for their onset of expression. These findings suggest a regulatory code for temporal gene expression during foregut development and provide a means to predict gene expression patterns based solely on genomic sequence.
Collapse
Affiliation(s)
- Jeb Gaudet
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Srikanth Muttumu
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Michael Horner
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Susan E Mango
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| |
Collapse
|
42
|
Koh K, Bernstein Y, Sundaram MV. The nT1 translocation separates vulval regulatory elements from the egl-18 and elt-6 GATA factor genes. Dev Biol 2004; 267:252-63. [PMID: 14975731 DOI: 10.1016/j.ydbio.2003.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/12/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
egl-18 and elt-6 are partially redundant, adjacent genes encoding GATA factors essential for viability, seam cell development, and vulval development in Caenorhabditis elegans. The nT1 reciprocal translocation causes a strong Vulvaless phenotype, and an nT1 breakpoint was previously mapped to the left arm of LGIV, where egl-18/elt-6 are located. Here we present evidence that the nT1 vulval phenotype is due to a disruption of egl-18/elt-6 function specifically in the vulva. egl-18 mutations do not complement nT1 for vulval defects, and the nT1 breakpoint on LGIV is located within approximately 800 bp upstream of a potential transcriptional start site of egl-18. In addition, we have identified a approximately 350-bp cis-regulatory region sufficient for vulval expression just upstream of the nT1 breakpoint. By examining the fusion state and division patterns of the cells in the developing vulva of nT1 mutants, we demonstrate that egl-18/elt-6 prevent fusion and promote cell proliferation at multiple steps of vulval development.
Collapse
Affiliation(s)
- Kyunghee Koh
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Ceol CJ, Horvitz HR. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev Cell 2004; 6:563-76. [PMID: 15068795 DOI: 10.1016/s1534-5807(04)00065-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 01/09/2023]
Abstract
The class A and class B synMuv genes are functionally redundant negative regulators of a Ras signaling pathway that induces C. elegans vulval development. A number of class B synMuv genes encode components of an Rb and histone deacetylase complex that likely acts to repress transcription of genes required for vulval induction. We discovered a new class of synMuv genes that acts redundantly with both the A and B classes of genes in vulval cell-fate determination. These new class C synMuv genes encode TRRAP, MYST family histone acetyltransferase, and Enhancer of Polycomb homologs, which form a putative C. elegans Tip60/NuA4-like histone acetyltransferase complex. A fourth gene with partial class C synMuv properties encodes a homolog of the mammalian SWI/SNF family ATPase p400. Our findings indicate that the coordinated action of two chromatin-modifying complexes, one with histone deacetylase and the other with histone acetyltransferase activity, is important in regulating Ras signaling and specifying cell fates during C. elegans development.
Collapse
Affiliation(s)
- Craig J Ceol
- Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
44
|
Chen N, Greenwald I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell 2004; 6:183-92. [PMID: 14960273 DOI: 10.1016/s1534-5807(04)00021-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Revised: 12/22/2003] [Accepted: 12/30/2003] [Indexed: 11/25/2022]
Abstract
The vulval precursor cells (VPCs) are spatially patterned by a LET-23/EGF receptor-mediated inductive signal and a LIN-12/Notch-mediated lateral signal. The lateral signal has eluded identification, so the mechanism by which lateral signaling is activated has not been known. Here, we computationally identify ten genes that encode potential ligands for LIN-12, and show that three of these genes, apx-1, dsl-1, and lag-2, are functionally redundant components of the lateral signal. We also show that transcription of all three genes is initiated or upregulated in VPCs in response to inductive signaling, suggesting that direct transcriptional control of the lateral signal by the inductive signal is part of the mechanism by which these cell signaling events are coordinated. In addition, we show that DSL-1, which lacks a predicted transmembrane domain, is a natural secreted ligand and can substitute for the transmembrane ligand LAG-2 in different functional assays.
Collapse
Affiliation(s)
- Ning Chen
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, Room 720, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Smith MM, Levitan DJ. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation. Dev Biol 2004; 266:151-60. [PMID: 14729485 DOI: 10.1016/j.ydbio.2003.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer.
Collapse
Affiliation(s)
- Marsha M Smith
- Department of Functional Genomics/Discovery Technologies, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
46
|
Cui M, Han M. Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. Dev Biol 2003; 257:104-16. [PMID: 12710960 DOI: 10.1016/s0012-1606(03)00033-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Caenorhabditis elegans EGL-17/FGF protein is involved in the gonadal signaling that guides the migrations of sex myoblasts (SMs). egl-17::GFP reporter constructs are expressed dynamically in vulval cell lineages. Expression in the primary vulval cells is correlated with the precise positioning of SMs. We have investigated the cis-regulatory requirements for cell- and stage-specific expression of egl-17. Three enhancer elements that specify the expression of the egl-17::GFP reporter gene in primary or secondary vulval cells at certain stages were identified. Sequence analysis has suggested a number of potential transcription factor binding sites within the enhancer elements. egl-17 is most likely a direct target of the LIN-39 Hox protein because mutations either in the lin-39/hox gene or at the consensus HOX/PBC binding site within the distal enhancer of the egl-17 gene eliminated distal enhancer-activated egl-17 expression. Since expression of egl-17::GFP driven by the distal enhancer can no longer be turned off at late stages in lin-1 and lin-31 mutants, egl-17 may also be regulated by Ras signaling through repression of LIN-1 and LIN-31 activities. Interspecies transformation experiments showed that egl-17 cis-regulatory elements are structurally and functionally conserved between C. elegans and C. briggsae.
Collapse
Affiliation(s)
- Mingxue Cui
- Howard Hughes Medical Institute, and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 80309-0347, Boulder, CO, USA
| | | |
Collapse
|
47
|
Solomon KS, Kudoh T, Dawid IB, Fritz A. Zebrafish foxi1 mediates otic placode formation and jaw development. Development 2003; 130:929-40. [PMID: 12538519 DOI: 10.1242/dev.00308] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The otic placode is a transient embryonic structure that gives rise to the inner ear. Although inductive signals for otic placode formation have been characterized, less is known about the molecules that respond to these signals within otic primordia. Here, we identify a mutation in zebrafish, hearsay, which disrupts the initiation of placode formation. We show that hearsay disrupts foxi1, a forkhead domain-containing gene, which is expressed in otic precursor cells before placodes become visible; foxi1 appears to be the earliest marker known for the otic anlage. We provide evidence that foxi1 regulates expression of pax8, indicating a very early role for this gene in placode formation. In addition, foxi1 is expressed in the developing branchial arches, and jaw formation is disrupted in hearsay mutant embryos.
Collapse
Affiliation(s)
- Keely S Solomon
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
48
|
Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002; 250:1-23. [PMID: 12297093 DOI: 10.1006/dbio.2002.0780] [Citation(s) in RCA: 655] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Carlsson
- Department of Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden.
| | | |
Collapse
|
49
|
Howard RM, Sundaram MV. C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. Genes Dev 2002; 16:1815-27. [PMID: 12130541 PMCID: PMC186391 DOI: 10.1101/gad.998402] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Caenorhabditis elegans, Ras/ERK and Wnt/beta-catenin signaling pathways cooperate to induce P12 and vulval cell fates in a Hox-dependent manner. Here we describe eor-1 and eor-2, two new positively acting nuclear components of the Ras and Wnt pathways. eor-1 and eor-2 act downstream or in parallel to ERK and function redundantly with the Mediator complex gene sur-2 and the functionally related gene lin-25, such that removal of both eor-1/eor-2 and sur-2/lin-25 mimics the removal of a main Ras pathway component. Furthermore, the eor-1 and eor-2 mutant backgrounds reveal an essential role for the Elk1-related gene lin-1. eor-1 and eor-2 also act downstream or in parallel to pry-1 Axin and therefore act at the convergence of the Ras and Wnt pathways. eor-1 encodes the ortholog of human PLZF, a BTB/zinc-finger transcription factor that is fused to RARalpha in acute promyelocytic leukemia. eor-2 encodes a novel protein. EOR-1/PLZF and EOR-2 appear to function closely together and cooperate with Hox genes to promote the expression of Ras- and Wnt-responsive genes. Further studies of eor-1 and eor-2 may provide insight into the roles of PLZF in normal development and leukemogenesis.
Collapse
Affiliation(s)
- Robyn M Howard
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
50
|
Gupta BP, Sternberg PW. Tissue-specific regulation of the LIM homeobox gene lin-11 during development of the Caenorhabditis elegans egg-laying system. Dev Biol 2002; 247:102-15. [PMID: 12074555 DOI: 10.1006/dbio.2002.0688] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.
Collapse
Affiliation(s)
- Bhagwati P Gupta
- HHMI and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|