1
|
Abstract
In mammals, parthenogenesis is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized eggs. This was achieved by the targeted DNA methylation rewriting of seven imprinting control regions. By designing guide RNAs with protospacer adjacent motif (PAM) sequences matching one allele but not the other, dCas9-Dnmt3a or dCpf1-Tet1 enables targeted DNA methylation editing in an allele-specific manner. The success of parthenogenesis in mammals opens many opportunities in agriculture, research, and medicine. In mammals, a new life starts with the fusion of an oocyte and a sperm cell. Parthenogenesis, a way of generating offspring solely from female gametes, is limited because of problems arising from genomic imprinting. Here, we report live mammalian offspring derived from single unfertilized oocytes, which was achieved by targeted DNA methylation rewriting of seven imprinting control regions. Oocyte coinjection of catalytically inactive Cas9 (dCas9)-Dnmt3a or dCpf1-Tet1 messenger RNA (mRNA) with single-guide RNAs (sgRNAs) targeting specific regions induced de novo methylation or demethylation, respectively, of the targeted region. Following parthenogenetic activation, these edited regions showed maintenance of methylation as naturally established regions during early preimplantation development. The transfer of modified parthenogenetic embryos into foster mothers resulted in significantly extended development and finally in the generation of viable full-term offspring. These data demonstrate that parthenogenesis can be achieved by targeted epigenetic rewriting of multiple critical imprinting control regions.
Collapse
|
2
|
Yin M, Yu W, Li W, Zhu Q, Long H, Kong P, Lyu Q. DNA methylation and gene expression changes in mouse pre- and post-implantation embryos generated by intracytoplasmic sperm injection with artificial oocyte activation. Reprod Biol Endocrinol 2021; 19:163. [PMID: 34732215 PMCID: PMC8567642 DOI: 10.1186/s12958-021-00845-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The application of artificial oocyte activation (AOA) after intracytoplasmic sperm injection (ICSI) is successful in mitigating fertilization failure problems in assisted reproductive technology (ART). Nevertheless, there is no relevant study to investigate whether AOA procedures increase developmental risk by disturbing subsequent gene expression at different embryonic development stages. METHODS We used a mouse model to explore the influence of AOA treatment on pre- and post-implantation events. Firstly, the developmental potential of embryos with or without AOA treatment were assessed by the rates of fertilization and blastocyst formation. Secondly, transcriptome high-throughput sequencing was performed among the three groups (ICSI, ICSI-AOA and dICSI-AOA groups). The hierarchical clustering and Principal Component Analysis (PCA) analysis were used. Subsequently, Igf2r/Airn methylation analysis were detected using methylation-specific PCR sequencing following bisulfite treatment. Finally, birth rate and birth weight were examined following mouse embryo transfer. RESULTS The rates of fertilization and blastocyst formation were significantly lower in oocyte activation-deficient sperm injection group (dICSI group) when compared with the ICSI group (30.8 % vs. 84.4 %, 10.0 % vs. 41.5 %). There were 133 differentially expressed genes (DEGs) between the ICSI-AOA group and ICSI group, and 266 DEGs between the dICSI-AOA group and ICSI group. In addition, the imprinted gene, Igf2r is up regulated in AOA treatment group compared to control group. The Igf2r/Airn imprinted expression model demonstrates that AOA treatment stimulates maternal allele-specific mehtylation spreads at differentially methylated region 2, followed by the initiation of paternal imprinted Airn long non-coding (lnc) RNA, resulting in the up regulated expression of Igf2r. Furthermore, the birth weight of newborn mice originating from AOA group was significantly lower compared to that of ICSI group. The pups born following AOA treatment did not show any other abnormalities during early development. All offspring mated successfully with fertile controls. CONCLUSIONS AOA treatment affects imprinted gene Igf2r expression and mehtylation states in mouse pre- and post-implantation embryo, which is regulated by the imprinted Airn. Nevertheless, no significant differences were found in post-natal growth of the pups in the present study. It is hoped that this study could provide valuable insights of AOA technology in assisted reproduction biology.
Collapse
Affiliation(s)
- Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Weina Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Pengcheng Kong
- Department of Assisted Reproduction, First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
3
|
Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci 2021; 22:1346. [PMID: 33572862 PMCID: PMC7866243 DOI: 10.3390/ijms22031346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.
Collapse
Affiliation(s)
- Natalia Baulina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
| | - Olga Favorova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
4
|
Moradi MT, Rahimi Z, Vaisi-Raygani A. New insight into the role of long non-coding RNAs in the pathogenesis of preeclampsia. Hypertens Pregnancy 2019; 38:41-51. [PMID: 30707634 DOI: 10.1080/10641955.2019.1573252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Dysregulation of lncRNAs and the absence of coordination between them could affect the normal placentation, uteroplacental circulation, and endothelial cell function. All these misfunctions can finally lead to preeclampsia. METHODS In the present review, we discuss current literature (till May 2018) about lncRNAs expression and function in the placenta, trophoblast cells, and decidua. RESULTS AND CONCLUSION It is explained how altered expression of the lncRNAs and abnormal regulation of them affect the risk of preeclampsia. However, the interaction between various lncRNAs and coordinate regulation of them in health and failure of such coordinative mechanisms in diseases such as preeclampsia need to be elucidated.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Zohreh Rahimi
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Department of Clinical Biochemistry , Medical School, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Asad Vaisi-Raygani
- c Fertility and Infertility Research Center , Medical School, Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
5
|
Kim JS, Hong YJ, Choi HW, Song H, Byun SJ, Do JT. Generation of in vivo neural stem cells using partially reprogrammed cells defective in in vitro differentiation potential. Oncotarget 2017; 8:16456-16462. [PMID: 28147316 PMCID: PMC5369976 DOI: 10.18632/oncotarget.14861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Pluripotent stem cells can be easily differentiated in vitro into a certain lineage through embryoid body formation. Recently, however, we reported partially reprogrammed cells showing some pluripotent characteristics, which failed to differentiate in vitro. Here, we attempted to generate neural stem cells (NSCs) from partially reprogrammed cells using an in vivo differentiation system involving teratoma formation. Partially reprogrammed cells formed teratomas after injection into immunocompromised mice, and NSCs could be isolated from these teratomas. These in vivo NSCs expressed NSC markers and terminally differentiated into neurons and glial cells. Moreover, these NSCs exhibited molecular profiles very similar to those of brain-derived NSCs. These results suggest that partially reprogrammed cells defective in in vitro differentiation ability can differentiate into pure populations of NSCs through an in vivo system.
Collapse
Affiliation(s)
- Jong Soo Kim
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyun Woo Choi
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Alexander KA, Wang X, Shibata M, Clark AG, García-García MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep 2015; 13:1194-1205. [PMID: 26527006 DOI: 10.1016/j.celrep.2015.09.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Collapse
Affiliation(s)
- Katherine A Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Marcho C, Bevilacqua A, Tremblay KD, Mager J. Tissue-specific regulation of Igf2r/Airn imprinting during gastrulation. Epigenetics Chromatin 2015; 8:10. [PMID: 25918552 PMCID: PMC4410455 DOI: 10.1186/s13072-015-0003-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Appropriate epigenetic regulation of gene expression during lineage allocation and tissue differentiation is required for normal development. One example is genomic imprinting, which is defined as parent-of-origin mono-allelic gene expression. Imprinting is established largely due to epigenetic differences arriving in the zygote from sperm and egg haploid genomes. In the mouse, there are approximately 150 known imprinted genes, many of which occur in imprinted gene clusters that are regulated together. One imprinted cluster includes the maternally expressed Igf2r, Slc22a2, and Slc22a3 genes and the paternally expressed long non-coding RNA (lncRNA) Airn. Although it is known that Igf2r and Airn are reciprocally imprinted, the timing of imprinted expression and accompanying epigenetic changes have not been well characterized in vivo. RESULTS Here we show lineage- and temporal-specific regulation of DNA methylation and histone modifications at the Igf2r/Airn locus correlating with differential establishment of imprinted expression during gastrulation. Our results show that Igf2r is expressed from both alleles in the E6.5 epiblast. After gastrulation commences, the locus becomes imprinted in the embryonic lineage with the lncRNA Airn expressed from the paternal allele and Igf2r restricted to maternal allele expression. We document differentially enriched allele-specific histone modifications in extraembryonic and embryonic tissues. We also document for the first time allele-specific spreading of DNA methylation during gastrulation concurrent with establishment of imprinted expression of Igf2r. Importantly, we show that imprinted expression does not change in the extraembryonic lineage even though maternal DMR2 methylation spreading does occur, suggesting distinct mechanisms at play in embryonic and extraembryonic lineages. CONCLUSIONS These results indicate that similar to preimplantation, gastrulation represents a window of dynamic lineage-specific epigenetic regulation in vivo.
Collapse
Affiliation(s)
- Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Ariana Bevilacqua
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| |
Collapse
|
8
|
Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci 2015; 128:804-14. [PMID: 25609710 DOI: 10.1242/jcs.164004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful implantation requires the synchronization of viable embryonic development with endometrial receptivity. The mechanisms allowing for the initiation of crosstalk between the embryo and the endometrium remain elusive; however, recent studies have revealed that there are alterations in endometrial microRNAs (miRs) in women suffering repeated implantation failure and that one of the altered miRs is miR-145. We assessed the role of miR-145 and its target IGF1R, in early implantation. miR-145 overexpression and IGF1R knockdown were achieved in Ishikawa endometrial cells. Quantitative PCR, western blotting and 3'UTR luciferase reporter assays confirmed that IGF1R is a direct target of miR-145 in the endometrium. Attachment of mouse embryos or IGF1-coated beads to endometrial epithelial cells was used to study the effects of altered miR-145 and/or IGF1R expression on early implantation events. miR-145 overexpression or specific reduction of IGF1R impaired attachment in both cases. An IGF1R target protector prevented the miR-145-mediated reduction in IGF1R and reversed the effect of miR-145 overexpression on attachment. The data demonstrate that miR-145 influences embryo attachment by reducing the level of IGF1R in endometrium.
Collapse
Affiliation(s)
- Youn-Jung Kang
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Miranda Lees
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Laura C Matthews
- Centre for Endocrinology & Diabetes, Institute of Human Development, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
9
|
Lu L, Hou Z, Li L, Yang Y, Wang X, Zhang B, Ren M, Zhao D, Miao Z, Yu L, Yao Y. Methylation pattern of H19 exon 1 is closely related to preeclampsia and trophoblast abnormalities. Int J Mol Med 2014; 34:765-71. [PMID: 24969494 DOI: 10.3892/ijmm.2014.1816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/06/2014] [Indexed: 11/05/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-induced disorder characterized by the overproliferation of trophoblasts. Hydatidiform moles, which are associated with a high risk of developing PE, are characterized by the excessive proliferation of trophoblastic tissue. H19 is highly expressed in placental tissue; however, its biological function remains unclear. A fundamental modification of the H19 gene is DNA methylation, which typically occurs in CG-rich regions at the promoter or the first exon region. In this study, in order to investigate the DNA methylation pattern of the H19 exon 1 region in placental tissues and trophoblast cells, placental specimens were collected from women in the first trimester of pregrancy (FTP) and the third trimester of pregnancy (TTP), as well as from from women with severe preeclampsia (sPE). We found that the DNA methylation levels of H19 exon 1 were significantly higher in the tissues obtained from women in TTP than from those obtained from women in FFP. The methylation status of CpG 1 sites within exon 1 of H19 was markedly higher in the placental tissues obtained from women with sPE than in the tissues obtained from women in TTP. In addition, we used the human choriocarcinoma cell line, JEG-3, and treated the cells with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza‑Dc). Following treatment with 5-Aza-Dc, the methylation levels at this CpG site showed marked hypomethylation. In addtion, the cell proliferative, migratory and invasive capacities of the cells were remarkably inhibited. Our data suggest that hypermethylation at individual CpG sites within exon 1 of H19 may be involved in the dysfunction of trophoblasts and the pathogenesis of PE.
Collapse
Affiliation(s)
- Linshan Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Li Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, Sichuan, P.R. China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Beilei Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Mo Ren
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Dan Zhao
- Department of Obstetrics and Gynecology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, Sichuan, P.R. China
| | - Zhuo Miao
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, Sichuan, P.R. China
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
10
|
Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 2013; 140:1184-95. [PMID: 23444351 DOI: 10.1242/dev.088849] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The imprinted Airn macro long non-coding (lnc) RNA is an established example of a cis-silencing lncRNA. Airn expression is necessary to initiate paternal-specific silencing of the Igf2r gene, which is followed by gain of a somatic DNA methylation imprint on the silent Igf2r promoter. However, the developmental requirements for Airn initiation of Igf2r silencing and the role of Airn or DNA methylation in maintaining stable Igf2r repression have not been investigated. Here, we use inducible systems to control Airn expression during mouse embryonic stem cell (ESC) differentiation. By turning Airn expression off during ESC differentiation, we show that continuous Airn expression is needed to maintain Igf2r silencing, but only until the paternal Igf2r promoter is methylated. By conditionally turning Airn expression on, we show that Airn initiation of Igf2r silencing is not limited to one developmental 'window of opportunity' and can be maintained in the absence of DNA methylation. Together, this study shows that Airn expression is both necessary and sufficient to silence Igf2r throughout ESC differentiation and that the somatic methylation imprint, although not required to initiate or maintain silencing, adds a secondary layer of repressive epigenetic information.
Collapse
Affiliation(s)
- Federica Santoro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Bebbere D, Bauersachs S, Fürst RW, Reichenbach HD, Reichenbach M, Medugorac I, Ulbrich SE, Wolf E, Ledda S, Hiendleder S. Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight. PLoS One 2013; 8:e59564. [PMID: 23593146 PMCID: PMC3620161 DOI: 10.1371/journal.pone.0059564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) is essential for prenatal growth regulation and shows gene dosage effects on fetal weight that can be affected by in-vitro embryo culture. Imprinted maternal expression of murine Igf2r is well documented for all fetal tissues excluding brain, but polymorphic imprinting and biallelic expression were reported for IGF2R in human. These differences have been attributed to evolutionary changes correlated with specific reproductive strategies. However, data from species suitable for testing this hypothesis are lacking. The domestic cow (Bos taurus) carries a single conceptus with a similar gestation length as human. We identified 12 heterozygous concepti informative for imprinting studies among 68 Bos taurus fetuses at Day 80 of gestation (28% term) and found predominantly maternal IGF2R expression in all fetal tissues but brain, which escapes imprinting. Inter-individual variation in allelic expression bias, i.e. expression of the repressed paternal allele relative to the maternal allele, ranged from 4.6−8.9% in heart, 4.3−10.2% in kidney, 6.1−11.2% in liver, 4.6−15.8% in lung and 3.2−12.2% in skeletal muscle. Allelic bias for mesodermal tissues (heart, skeletal muscle) differed significantly (P<0.05) from endodermal tissues (liver, lung). The placenta showed partial imprinting with allelic bias of 22.9−34.7% and differed significantly (P<0.001) from all other tissues. Four informative fetuses were generated by in-vitro fertilization (IVF) with embryo culture and two individuals displayed fetal overgrowth. However, there was no evidence for changes in imprinting or DNA methylation after IVF, or correlations between allelic bias and fetal weight. In conclusion, imprinting of Bos taurus IGF2R is similar to mouse except in placenta, which could indicate an effect of reproductive strategy. Common minor inter-individual variation in allelic bias and absence of imprinting abnormalities in IVF fetuses suggest changes in IGF2R expression in overgrown fetuses could be modulated through other mechanisms than changes in imprinting.
Collapse
Affiliation(s)
- Daniela Bebbere
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Bauersachs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer W. Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne E. Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Hiendleder
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- JS Davies Non-Mendelian Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- Research Centre for Reproductive Health, Robinson Institute, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- * E-mail:
| |
Collapse
|
12
|
Expression of antisense of insulin-like growth factor-2 receptor RNA non-coding (AIRN) during early gestation in cattle. Anim Reprod Sci 2013; 138:64-73. [PMID: 23473694 DOI: 10.1016/j.anireprosci.2013.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/02/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022]
Abstract
The insulin-like growth factor type 2 receptor (IGF2R) regulates fetal growth by removing IGF2 from circulation. In mice, expression of the Igf2r gene is only imprinted after implantation and is associated with expression of the antisense non-coding (nc)RNA, Airn. The objectives of this study were, first, to determine if bovine AIRN was expressed during developmentally important stages of gestation, and second, to determine if expression of bAIRN was affected by method of embryo production. Control reactions confirmed that sequence verified bAIRN PCR amplicons resulted from RNA within the sample and not from genomic DNA contamination. IGF2R mRNA was expressed in all fetal liver samples at Days 35-55 and 70 of gestation as well as in 8 of 9 Day 15 conceptuses, 10 of 10 Day 18 conceptuses, and in all day 7 blastocyst pools. bAIRN was expressed in all samples of fetal liver at Days 35-55 and 70 of gestation. The proportion of conceptuses that expressed bAIRN increased from 1 of 9 at Day 15 of gestation to 8 of 10 at Day 18 of gestation. No bAIRN was expressed in any blastocyst pools. The relative level of bAIRN was greater (P<0.05) in fetal liver from embryos produced in vivo compared to that from embryos produced in vitro. In summary bAIRN was not expressed in blastocyst-stage embryos, was expressed in an increasing proportion of embryos around the time of maternal recognition of pregnancy and was expressed following implantation. Furthermore, relative levels of bAIRN in bovine fetal liver can be altered by method of embryo production.
Collapse
|
13
|
Abstract
RNA transcription, processing and translation are fundamental molecular processes required for development, growth and cell viability. Towards the functional annotation of the genome, we are engaged in a reverse genetic screen using mammalian preimplantation embryos as a model system. Here we report the essential function of four RNA processing/splicing factors (Sf3b14, Sf3b1, Rpl7l1, and Rrp7a) and show that each of these genes is required for blastocyst formation in the mouse. As very little information is known about these genes, we characterized their normal expression and localization in mouse embryos as well as phenotypic analysis of loss of function during preimplantation development. Functional knockdown of each gene product results in normal morula development but there is failure to form a blastocoel cavity or morphologically differentiated trophectoderm. We show that zygotic genome activation does occur as well as initial lineage specification in the absence of each factor. Consistent with a role in RNA splicing, we demonstrate that the absence of Sf3b14 and Sf3b1 in 8-cell and morula-stage embryos results in a specific reduction of intron containing transcripts, but no reduction single-exon genes. Taken together, we show critical developmental and molecular requirements of Sf3b14, Sf3b1, Rpl7l1, and Rrp7a during mammalian preimplantation.
Collapse
|
14
|
Eckardt S, Dinger TC, Kurosaka S, Leu NA, Müller AM, McLaughlin KJ. In vivo and in vitro differentiation of uniparental embryonic stem cells into hematopoietic and neural cell types. Organogenesis 2012; 4:33-41. [PMID: 19279713 DOI: 10.4161/org.6123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/16/2008] [Indexed: 12/12/2022] Open
Abstract
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research; New Bolton Center; University of Pennsylvania; Kennett Square, Pennsylvania USA
| | | | | | | | | | | |
Collapse
|
15
|
Long non-coding RNA in epigenetic gene silencing. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Sun B, Ito M, Mendjan S, Ito Y, Brons IGM, Murrell A, Vallier L, Ferguson-Smith AC, Pedersen RA. Status of genomic imprinting in epigenetically distinct pluripotent stem cells. Stem Cells 2012; 30:161-8. [PMID: 22109880 DOI: 10.1002/stem.793] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.
Collapse
Affiliation(s)
- Bowen Sun
- The Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pauler FM, Barlow DP, Hudson QJ. Mechanisms of long range silencing by imprinted macro non-coding RNAs. Curr Opin Genet Dev 2012; 22:283-9. [PMID: 22386265 PMCID: PMC3387373 DOI: 10.1016/j.gde.2012.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
Abstract
Non-coding (nc) RNA silencing of imprinted genes in extra-embryonic tissues provides a good model for understanding an underexamined aspect of gene regulation by macro or long ncRNAs, that is their action as long-range cis-silencers. Numerous long intergenic ncRNAs (lincRNAs) have been recently discovered that are thought to regulate gene expression, some of which have been associated with disease. The few shown to regulate protein-coding genes are suggested to act by targeting repressive or active chromatin marks. Correlative evidence also indicates that imprinted macro ncRNAs cause long-range cis-silencing in placenta by targeting repressive histone modifications to imprinted promoters. It is timely, however, to consider alternative explanations consistent with the published data, whereby transcription alone could cause gene silencing at a distance.
Collapse
Affiliation(s)
- Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH-BT 25.3, 1090 Vienna, Austria
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Denise P. Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria;
| |
Collapse
|
19
|
Ushida H, Kawakami T, Minami K, Chano T, Okabe H, Okada Y, Okamoto K. Methylation profile of DNA repetitive elements in human testicular germ cell tumor. Mol Carcinog 2011; 51:711-22. [DOI: 10.1002/mc.20831] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/10/2022]
|
20
|
Guo L, Qiao M, Wang C, Zheng R, Xiong YZ, Deng CY. Imprinting analysis of porcine MAGEL2 gene in two fetal stages and association analysis with carcass traits. Mol Biol Rep 2011; 39:147-55. [PMID: 21633897 DOI: 10.1007/s11033-011-0719-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
Abstract
Imprinted genes play an essential role in the regulation of fetal growth, development and function of the placenta, however only a limited number of imprinted genes have been studied in swine. In this study, we cloned and characterized porcine MAGEL2 (melanoma antigen-like gene 2), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 1,193 amino acids was isolated and two single nucleotide polymorphisms (SNPs) (g.2592A>C and g.3277T>C) in the coding region were identified. The reciprocal Yorkshire×Meishan F1 hybrid model and the RT-PCR/RFLP method were used to detect the imprinting status of porcine MAGEL2 gene at two developmental stages of day 30 and 65 of gestation. Imprinting analysis showed that porcine MAGEL2 was paternally expressed in day 65 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta. Interestingly, we observed an imprinting variance of MAGEL2 gene in 30 dpc fetuses produced by the cross of Yorkshire boar×Meishan sow, in which seven heterozygous fetuses were monoallelically expressed from the paternal allele but two were biallelically expressed from both the paternal and maternal alleles. Association analysis in a Yorkshire×Meishan F2 resource population showed that the mutation of g.2592A>C was significantly associated with dressed carcass percentage (P<0.05) and buttock fat thickness (P<0.05). Our results suggest that MAGEL2, as a novel imprinted gene in pig, might be a candidate gene affecting carcass traits and could provide important information for the functional study of imprinted genes during porcine development.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo. Dev Biol 2011; 353:420-31. [PMID: 21354127 DOI: 10.1016/j.ydbio.2011.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 02/06/2023]
Abstract
A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably, these so-called "placental-specific" imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue, and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The complexity of the placenta, which arises from multiple embryonic lineages, poses additional problems in accurately assessing allele-specific repressive epigenetic modifications in genes that also show lineage-specific silencing in this organ. These problems require that extra evidence be obtained to support the imprinted status of genes whose imprinted expression is restricted to the placenta. We show here that the extra-embryonic visceral yolk sac (VYS), a nutritive membrane surrounding the developing embryo, shows a similar "extra-embryonic-lineage-specific" pattern of imprinted expression. We present an improved enzymatic technique for separating the bilaminar VYS and show that this pattern of imprinted expression is restricted to the endoderm layer. Finally, we show that VYS "extra-embryonic-lineage-specific" imprinted expression is regulated by DNA methylation in a similar manner as shown for genes showing multi-lineage imprinted expression in extra-embryonic, embryonic, and adult tissues. These results show that the VYS is an improved model for studying the epigenetic mechanisms regulating extra-embryonic-lineage-specific imprinted expression.
Collapse
|
22
|
Santoro F, Barlow DP. Developmental control of imprinted expression by macro non-coding RNAs. Semin Cell Dev Biol 2011; 22:328-35. [PMID: 21333747 DOI: 10.1016/j.semcdb.2011.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/11/2011] [Indexed: 01/22/2023]
Abstract
Genomic imprinting is a developmentally regulated epigenetic phenomenon. The majority of imprinted genes only show parent-of-origin specific expression in a subset of tissues or at defined developmental stages. In some cases, imprinted expression is controlled by an imprinted macro non-coding RNA (ncRNA) whose expression pattern and repressive activity does not necessarily correlate with that of the genes whose imprinted expression it controls. This suggests that developmentally regulated factors other than the macro ncRNA are involved in establishing or maintaining imprinted expression. Here, we review how macro ncRNAs control imprinted expression during development and differentiation and consider how this impacts on target choice in epigenetic therapy.
Collapse
Affiliation(s)
- Federica Santoro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria
| | | |
Collapse
|
23
|
Lee DH, Tran DA, Singh P, Oates N, Rivas GE, Larson GP, Pfeifer GP, Szabó PE. MIRA-SNuPE, a quantitative, multiplex method for measuring allele-specific DNA methylation. Epigenetics 2011; 6:212-23. [PMID: 20948294 DOI: 10.4161/epi.6.2.13699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
5-methyl-C (5mC) and 5-hydroxymethyl-C (5hmC) are epigenetic marks with well known and putative roles in gene regulation, respectively. These two DNA covalent modifications cannot be distinguished by bisulfite sequencing or restriction digestion, the standard methods of 5mC detection. The methylated CpG island recovery assay (MIRA), however, specifically detects 5mC but not 5hmC. We further developed MIRA for the analysis of allele-specific CpG methylation at differentially methylated regions (DMRs) of imprinted genes. MIRA specifically distinguished between the parental alleles by capturing the paternally methylated H19/Igf2 DMR and maternally methylated KvDMR1 in mouse embryo fibroblasts (MEFs) carrying paternal and maternal duplication of mouse distal Chr7, respectively. MIRA in combination with multiplex single nucleotide primer extension (SNuPE) assays specifically captured the methylated parental allele from normal cells at a set of maternally and paternally methylated DMRs. The assay correctly recognized aberrant biallelic methylation in a case of loss-of imprinting. The MIRA-SNuPE assays revealed that placenta exhibited less DNA methylation bias at DMRs compared to yolk sac, amnion, brain, heart, kidney, liver and muscle. This method should be useful for the analysis of allele-specific methylation events related to genomic imprinting, X chromosome inactivation and for verifying and screening haplotype-associated methylation differences in the human population.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rivera RM. Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst Biol Reprod Med 2011; 56:388-404. [PMID: 20849224 DOI: 10.3109/19396368.2010.482726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During gametogenesis, the parental genomes are separated and are epigenetically marked by modifications that will direct the expression profile of genes necessary for meiosis as well as for the formation of the oocyte and sperm cell. Immediately after sperm-egg fusion, the parental haploid genomes show great epigenetic asymmetry with differences in the levels of DNA methylation and histone tail modifications. The epigenetic program acquired during oogenesis and spermatogenesis must be reset for the zygote to successfully proceed through preimplantation development and this occurs as the two genomes approach each other in preparation for karyogamy. During preimplantation development, the embryo is vested with the responsibility of maintaining the primary imprints. In addition, female embryos must silence one of the X-chromosomes in order to transcribe equal levels of X-linked genes as their male counterparts. This review is intended as a survey of the epigenetic modifications and mechanisms present in zygotes and preimplantation mouse embryos, namely DNA methylation, histone modifications, dosage compensation, genomic imprinting, and regulation by non-coding RNAs.
Collapse
|
25
|
Singh P, Cho J, Tsai SY, Rivas GE, Larson GP, Szabó PE. Coordinated allele-specific histone acetylation at the differentially methylated regions of imprinted genes. Nucleic Acids Res 2010; 38:7974-90. [PMID: 20693536 PMCID: PMC3001058 DOI: 10.1093/nar/gkq680] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is an epigenetic inheritance system characterized by parental allele-specific gene expression. Allele-specific DNA methylation and chromatin composition are two epigenetic modification systems that control imprinted gene expression. To get a general assessment of histone lysine acetylation at imprinted genes we measured allele-specific acetylation of a wide range of lysine residues, H3K4, H3K18, H3K27, H3K36, H3K79, H3K64, H4K5, H4K8, H4K12, H2AK5, H2BK12, H2BK16 and H2BK46 at 11 differentially methylated regions (DMRs) in reciprocal mouse crosses using multiplex chromatin immunoprecipitation SNuPE assays. Histone acetylation marks generally distinguished the methylation-free alleles from methylated alleles at DMRs in mouse embryo fibroblasts and embryos. Acetylated lysines that are typically found at transcription start sites exhibited stronger allelic bias than acetylated histone residues in general. Maternally methylated DMRs, that usually overlap with promoters exhibited higher levels of acetylation and a 10% stronger allele-specific bias than paternally methylated DMRs that reside in intergenic regions. Along the H19/Igf2 imprinted domain, allele-specific acetylation at each lysine residue depended on functional CTCF binding sites in the imprinting control region. Our results suggest that many different histone acetyltransferase and histone deacetylase enzymes must act in concert in setting up and maintaining reciprocal parental allelic histone acetylation at DMRs.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
26
|
Differentiation diversity of mouse parthenogenetic embryonic stem cells in chimeric mice. Theriogenology 2010; 74:135-45. [DOI: 10.1016/j.theriogenology.2010.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/16/2010] [Accepted: 01/30/2010] [Indexed: 11/17/2022]
|
27
|
Koerner MV, Barlow DP. Genomic imprinting-an epigenetic gene-regulatory model. Curr Opin Genet Dev 2010; 20:164-70. [PMID: 20153958 PMCID: PMC2860637 DOI: 10.1016/j.gde.2010.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/15/2010] [Accepted: 01/24/2010] [Indexed: 11/24/2022]
Abstract
Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression.
Collapse
Affiliation(s)
- Martha V Koerner
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna Biocenter, Austria
| | | |
Collapse
|
28
|
Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 2010; 105:45-56. [PMID: 20234385 DOI: 10.1038/hdy.2010.23] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imprinted genes in mice and humans mainly occur in clusters that are associated with differential DNA methylation of an imprint control element (ICE) and at least one nonprotein-coding RNA (ncRNA). Imprinted gene silencing is achieved by parental-specific insulator activity of the unmethylated ICE mediated by CTCF (CCCTC-binding factor) binding, or by ncRNA expression from a promoter in the unmethylated ICE. In many imprinted clusters, some genes, particularly those located furthest away from the ICE, show imprinted expression only in extraembryonic tissues. Recent research indicates that genes showing imprinted expression only in extraembryonic tissues may be regulated by different epigenetic mechanisms compared with genes showing imprinted expression in extraembryonic tissues and in embryonic/adult tissues. The study of extraembryonic imprinted expression, thus, has the potential to illuminate novel epigenetic strategies, but is complicated by the need to collect tissue from early stages of mouse development, when extraembryonic tissues may be contaminated by maternal cells or be present in limited amounts. Research in this area would be advanced by the development of an in vitro model system in which genetic experiments could be conducted in less time and at a lower cost than with mouse models. Here, we summarize what is known about the mechanisms regulating imprinted expression in mouse extraembryonic tissues and explore the possibilities for developing an in vitro model.
Collapse
|
29
|
Maruotti J, Dai XP, Brochard V, Jouneau L, Liu J, Bonnet-Garnier A, Jammes H, Vallier L, Brons IGM, Pedersen R, Renard JP, Zhou Q, Jouneau A. Nuclear Transfer-Derived Epiblast Stem Cells Are Transcriptionally and Epigenetically Distinguishable from Their Fertilized-Derived Counterparts. Stem Cells 2010; 28:743-52. [DOI: 10.1002/stem.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6:e1000803. [PMID: 20062522 PMCID: PMC2794364 DOI: 10.1371/journal.pgen.1000803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/19/2022] Open
Abstract
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. Parthenogenetic mouse embryos with two maternal genomes die early in development due to the misexpression of imprinted genes. To gain further insight into which misexpressions might be involved, we examined some of the misexpressions that could determine the small size and fetal death of a “partial parthenogenone”—embryos with maternal duplication of distal Chr 7 (MatDup.dist7). We investigated the involvement of two maternal copies of the Igf2/H19 imprinting control region (ICR), which is associated with lack of activity of the Igf2 gene, encoding a growth factor, and over-activity of H19. By introducing a mutant ICR, we activated Igf2 and expected to correct other misexpressions, such as that of H19. The result was substantial increase in growth and full postnatal viability of MatDup.dist7 fetuses, demonstrating the dependency of their abnormal phenotype on two maternal copies of the ICR. Activation of Igf2 was probably the main effector of this rescue. These results are consistent with the idea that reduced expression of IGF2 is causal in the human growth deficit disorder, Silver-Russell syndrome.
Collapse
Affiliation(s)
- Li Han
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Laboratory and Community Genetics Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2009; 19:36-51. [DOI: 10.1093/hmg/ddp465] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Jones MJ, Lefebvre L. An imprinted GFP insertion reveals long-range epigenetic regulation in embryonic lineages. Dev Biol 2009; 336:42-52. [PMID: 19778534 DOI: 10.1016/j.ydbio.2009.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023]
Abstract
Imprinted genes are often grouped in clusters at defined chromosomal locations. Long-range regulatory effects are implicated in the control of imprinting and these could be co-opted in the emergence of novel imprinted genes during evolution. We present a detailed analysis of a novel imprinted GFP mouse line. Tel7KI is a new insertion allele near the Ins2 locus within a cluster of imprinted genes on distal mouse Chr7. The GFP reporter becomes regulated by the host domain in two notable fashions. First, transcription of GFP is imprinted and active exclusively from the maternally inherited allele in the embryo. Second, the expressed maternal allele is subject to position effects reflecting a distinct pattern of expression. The GFP reporter acquires silencing DNA methylation marks on the paternal allele after fertilization. This imprinting is not acquired in the placenta, where GFP is active from both parental alleles, demonstrating key epigenetic differences between embryonic and extraembryonic lineages. Our analysis shows that imprinted clusters can provide environments conducive to the acquisition of imprinting upon novel inserted transcriptional units. The Tel7KI line offers new powerful avenues to explore both genetic and environmental factors implicated in the acquisition and maintenance of imprinted transcription in mammals.
Collapse
Affiliation(s)
- Meaghan J Jones
- Department of Medical Genetics, Life Sciences Institute, Molecular Epigenetics Group, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
33
|
Nagano T, Fraser P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome 2009; 20:557-62. [PMID: 19727951 DOI: 10.1007/s00335-009-9218-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) such as Xist, Air, and Kcnq1ot1 are required for epigenetic silencing of multiple genes in cis within large chromosomal domains, including distant genes located hundreds of kilobase pairs away. Recent evidence suggests that all three of these lncRNAs are functional and that they silence gene expression, in part, through an intimate interaction with chromatin. Here we provide an overview of lncRNA-dependent gene silencing, focusing on recent findings for the Air and Kcnq1ot1 lncRNAs. We review molecular evidence indicating that these lncRNAs interact with chromatin and correlate their presence with specific histone modifications associated with gene silencing. A general model for a lncRNA-dependent gene-silencing mechanism is presented based on the apparent ability of lncRNAs to recruit histone-modifying activities to chromatin. However, alternate mechanisms may be required to explain the silencing of some lncRNA-dependent genes. Finally, we discuss unanswered questions and future perspectives associated with these enigmatic lncRNA molecules.
Collapse
Affiliation(s)
- Takashi Nagano
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB223AT, UK.
| | | |
Collapse
|
34
|
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells 2009; 27:2136-45. [DOI: 10.1002/stem.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Hoque MO. DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Rev Mol Diagn 2009; 9:243-57. [PMID: 19379083 DOI: 10.1586/erm.09.10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promoter hypermethylation is associated with the loss of expression of tumor-suppressor genes in cancer. Currently, several genome-wide technologies are available and have been utilized to examine the extent of DNA methylation in discovery-based studies involving several physiological and disease states. Although early in the process, aberrant DNA methylation is gaining strength in the fields of cancer risk assessment, diagnosis and therapy monitoring in different cancer types. There is a need to improve existing methods for early diagnosis of prostate cancer and to identify men at risk for developing aggressive disease. Because of the ubiquity of DNA methylation changes and the ability to detect methylated DNA in several body fluids (e.g., blood and urine), this specifically altered DNA may serve, on one hand, as a possible new screening marker for prostate cancer and, on the other hand, as a tool for therapy monitoring in patients having had neoplastic disease of the prostate. Since many prostate cancer patients present with advanced disease and some present with nonspecific elevation of prostate-specific antigen without prostate cancer, early detection with high specificity and sensitivity is considered to be one of the most important approaches to reduce mortality and unwanted tension of the men with high prostate-specific antigen. Therefore, an effective screening test would have substantial clinical benefits. Furthermore, methylation markers of risk of progression of disease in patients having prostate cancer permits immediate commencement of specific treatment regimens and probably longer survival and better quality of life. This review illustrates the current benefits and limitations of potentially useful prostate cancer methylation markers that have considerable existing data and touches upon other future markers as well as the field of methylation in prostate cancer.
Collapse
Affiliation(s)
- Mohammad Obaidul Hoque
- Department of Otolaryngology and Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M.07, Baltimore, MD 21231, USA.
| |
Collapse
|
36
|
Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development 2009; 136:1771-83. [PMID: 19429783 PMCID: PMC2847617 DOI: 10.1242/dev.030403] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-coding RNAs (ncRNAs) that regulate gene expression in cis or in trans are a shared feature of prokaryotic and eukaryotic genomes. In mammals, cis-acting functions are associated with macro ncRNAs, which can be several hundred thousand nucleotides long. Imprinted ncRNAs are well-studied macro ncRNAs that have cis-regulatory effects on multiple flanking genes. Recent advances indicate that they employ different downstream mechanisms to regulate gene expression in embryonic and placental tissues. A better understanding of these downstream mechanisms will help to improve our general understanding of the function of ncRNAs throughout the genome.
Collapse
Affiliation(s)
- Martha V Koerner
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
37
|
Latos PA, Stricker SH, Steenpass L, Pauler FM, Huang R, Senergin BH, Regha K, Koerner MV, Warczok KE, Unger C, Barlow DP. An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias. Development 2009; 136:437-48. [PMID: 19141673 DOI: 10.1242/dev.032060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In mammals, imprinted genes are clustered and at least one gene in each imprinted cluster is a long i.e., macro non-coding (nc) RNA. Most genes in a cluster show concordant parental-specific expression but the ncRNA is the odd one out, and is expressed from the opposite parental chromosome. While reciprocal expression between imprinted macro non-coding RNAs and flanking mRNA genes is indicative of a functional role, only two of three tested macro ncRNAs have been shown to induce imprinted gene expression. The two known functional imprinted macro non-coding RNAs are both RNAPII transcripts with unusual transcriptional properties that may be functionally relevant and their analysis may shed light on the function of non-coding RNAs that have been shown to comprise the majority of the mammalian transcriptome.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | |
Collapse
|
39
|
Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PFM, Simmons PJ, Dawid IB, Thomas DM. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009; 119:837-51. [PMID: 19307728 DOI: 10.1172/jci37175] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/21/2009] [Indexed: 02/06/2023] Open
Abstract
Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genetics and Preventative Medicine, and Sir Donald and Lady Trescowthick Laboratories, Peter MacCallumCancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard DF. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res 2008; 68:6797-802. [PMID: 18701505 DOI: 10.1158/0008-5472.can-08-1714] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of imprinting (LOI) is an epigenetic alteration involving loss of parental origin-specific expression at normally imprinted genes. A LOI for Igf2, a paracrine growth factor, is important in cancer progression. Epigenetic modifications may be altered by environmental factors. However, is not known whether changes in imprinting occur with aging in prostate and other tissues susceptible to cancer development. We found a LOI for Igf2 occurs specifically in the mouse prostate associated with increased Igf2 expression during aging. In older animals, expression of the chromatin insulator protein CTCF and its binding to the Igf2-H19 imprint control region was reduced. Forced down-regulation of CTCF leads to Igf2 LOI. We further show that Igf2 LOI occurs with aging in histologically normal human prostate tissues and that this epigenetic alteration was more extensive in men with associated cancer. This finding may contribute to a postulated field of cancer susceptibility that occurs with aging. Moreover, Igf2 LOI may serve as a marker for the presence of prostate cancer.
Collapse
Affiliation(s)
- Vivian X Fu
- Department of Urology, University of Wisconsin School of Medicine and Public Health, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cruz NTD, Wilson KJ, Cooney MA, Tecirlioglu RT, Lagutina I, Galli C, Holland MK, French AJ. Putative imprinted gene expression in uniparental bovine embryo models. Reprod Fertil Dev 2008; 20:589-97. [PMID: 18577356 DOI: 10.1071/rd08024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/07/2008] [Indexed: 12/11/2022] Open
Abstract
Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner.
Collapse
Affiliation(s)
- Nancy T D' Cruz
- Monash Institute of Medical Research, Monash University, Clayton, Vic. 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
May A, Reifenberg K, Zechner U, Haaf T. Asynchronous replication dynamics of imprinted and non-imprinted chromosome regions in early mouse embryos. Exp Cell Res 2008; 314:2788-95. [PMID: 18675801 DOI: 10.1016/j.yexcr.2008.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 07/13/2008] [Accepted: 07/14/2008] [Indexed: 12/19/2022]
Abstract
We have used interphase FISH to analyze the replication behavior of four imprinted chromosome regions (Snrpn, Zim1-Peg3, Dlk1-Gtl2, and Igf2r) and five non-imprinted regions in mouse one-cell to morula-stage embryos and embryonic fibroblasts. In general, imprinted chromosome regions showed the expected asynchronous pattern of replication throughout all analyzed stages of preimplantation development and in differentiated cells. The Dlk1-Gtl2 locus which is not expressed and Igf2r which is biallelically expressed in early embryos showed a relaxation of replication asynchrony at the morula stage. Asynchronous replication in zygotes and two-cell embryos was not specific to imprinted regions. Three non-imprinted loci (Emp1-Pbp2-Dyntl1, Hbb-b1-Hbb-b2-Hbb-y, and Opa1) as well as one gene-free region on chromosome 7A1 switched from asynchronous replication in one- and two-cell embryos to synchronous replication in 4-cell embryos and later stages. Another gene-free region on chromosome 16C2 showed a more gradual transition from asynchronous to synchronous replication from two-cell to morula-stage embryos. We propose that replication asynchrony contributes to the striking asymmetry between the two parental genomes, which are epigenetically reprogrammed after fertilization into a diploid somatic genome. The switching of non-imprinted genes from asynchronous to synchronous replication may be associated with embryonic genome activation and restoration of transcriptional potential for somatic development.
Collapse
Affiliation(s)
- Andreas May
- Institute for Human Genetics, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
43
|
Thurston A, Taylor J, Gardner J, Sinclair KD, Young LE. Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction 2008; 135:29-40. [PMID: 18159081 DOI: 10.1530/rep-07-0211] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The preimplantation embryos of a range of mammals can be susceptible to disruptions in genomic imprinting mechanisms, resulting in loss of imprinting. Such disruptions can have developmental consequences involving foetal and placental growth such as Beckwith-Wiedemann syndrome in humans and large offspring syndrome in sheep. Our objective was to investigate the dynamics of establishing monoallelic expression of individual sheep imprinted genes post-fertilisation. Semi-quantitative RT-PCR was used to amplify cDNA from the sheep blastocyst, day 21 foetus and day 21 chorioallantois, to compare expression levels between biparental and parthenogenetic embryos in order to indicate allelic expression status. In common with other mammals, IGF2, PEG1 and PEG3 were paternally expressed in the day 21 conceptus, while H19, IGF2R, GRB10 and p57KIP were maternally expressed. Interestingly, GNAS was maternally expressed in the foetus, but paternally expressed in the chorioallantois at day 21. Overall, the imprinting of ovine GRB10 and IGF2R was comparable with mouse but not with human. Contrary to the trophoblast-restricted maternal expression in both mouse and human, SASH2 (sheep homologue of Mash2/HASH2) was expressed in the ovine foetus and was biallelically expressed in the chorioallantois. Differential methylation of the H19 CTCF III upstream region and IGF2R DMR2 in the chorioallantois revealed predominantly paternal and maternal methylation respectively, indicating conservation of these imprinting regulatory regions. In blastocysts, IGF2R, GRB10 and SASH2 were expressed biallelically, while the other genes were not detected. Thus, for the majority of ovine imprinted genes examined, monoallelic expression does not occur until after the blastocyst stage.
Collapse
Affiliation(s)
- Alexandra Thurston
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG2 2RD, UK
| | | | | | | | | |
Collapse
|
44
|
Assisted Reproductive Technology, Congenital Malformations, and Epigenetic Disease. Clin Obstet Gynecol 2008; 51:96-105. [DOI: 10.1097/grf.0b013e318161d25a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC DEVELOPMENTAL BIOLOGY 2008; 8:9. [PMID: 18221528 PMCID: PMC2266903 DOI: 10.1186/1471-213x-8-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/25/2008] [Indexed: 02/06/2023]
Abstract
Background Identical DNA methylation differences between maternal and paternal alleles in gametes and adults suggest that the inheritance of genomic imprints is strictly due to the embryonic maintenance of DNA methylation. Such maintenance would occur in association with every cycle of DNA replication, including those of preimplantation embryos. Results The expression of the somatic form of the Dnmt1 cytosine methyltransferase (Dnmt1s) was examined in cleavage-stage preimplantation mouse embryos. Low concentrations of Dnmt1s are found in 1-, 2-, 4-, and 8-cell embryos, as well as in morulae and blastocysts. Dnmt1s is present in the cytoplasm at all stages, and in the nuclei of all stages except the 1-cell, pronuclear-stage embryo. The related oocyte-derived Dnmt1o protein is also present in nuclei of 8-cell embryos, along with embryo-synthesized Dnmt1s. Dnmt1s protein expressed in 1-cell and 2-cell embryos is derived from the oocyte, whereas the embryo synthesizes its own Dnmt1s from the 2-cell stage onward. Conclusion These observations suggest that Dnmt1s provides maintenance methyltransferase activity for the inheritance of methylation imprints in the early mouse embryo. Moreover, the ability of Dnmt1o and Dnmt1s proteins synthesized at the same time to substitute for one another's maintenance function, but the lack of functional interchange between oocyte- and embryo-synthesized Dnmt1 proteins, suggests that the developmental source is the critical determinant of Dnmt1 function during preimplantation development.
Collapse
|
46
|
Gonzalgo ML, Liang G. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat Protoc 2007; 2:1931-6. [PMID: 17703204 DOI: 10.1038/nprot.2007.271] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.
Collapse
Affiliation(s)
- Mark L Gonzalgo
- Department of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
47
|
Kim KP, Thurston A, Mummery C, Ward-van Oostwaard D, Priddle H, Allegrucci C, Denning C, Young L. Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Res 2007; 17:1731-42. [PMID: 17989250 DOI: 10.1101/gr.6609207] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disregulation of imprinted genes can be associated with tumorigenesis and altered cell differentiation capacity and so could provide adverse outcomes for stem cell applications. Although the maintenance of mouse and primate embryonic stem cells in a pluripotent state has been reported to disrupt the monoallelic expression of several imprinted genes, available data have suggested relatively higher imprint stability in the human equivalents. Identification of 202 heterozygous loci allowed us to examine the allelic expression of 22 imprinted genes in 22 human embryonic stem cell lines. Half of the genes examined (IPW, H19, MEG3, MEST isoforms 1 and 2, PEG10, MESTIT1, NESP55, ATP10A, PHLDA2, IGF2) showed variable allelic expression between lines, indicating vulnerability to disrupted imprinting. However, seven genes showed consistent monoallelic expression (NDN, MAGEL2, SNRPN, PEG3, KCNQ1, KCNQ1OT1, CDKN1C). Furthermore, four genes known to be monoallelic or to exhibit polymorphic imprinting in later-developing human tissues (TP73, IGF2R, WT1, SLC22A18) were always biallelic in hESCs. MEST isoform 1, PEG10, and NESP55 showed an association between the variability observed in interline allelic expression status and the DNA methylation of previously identified regulatory regions. Our results demonstrate gene-specific differences in the stability of imprinted loci in human embryonic stem cells and identify disrupted DNA methylation as one potential mechanism. We conclude the prudence of including comprehensive imprinting analysis in the continued characterization of human embryonic stem cell lines.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Centre for Biomolecular Sciences, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Eckardt S, Leu NA, Bradley HL, Kato H, Bunting KD, McLaughlin KJ. Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes Dev 2007; 21:409-19. [PMID: 17322401 PMCID: PMC1804330 DOI: 10.1101/gad.1524207] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fetal liver cells into lethally irradiated adult mice to test their capacity to replace adult hematopoietic tissue. Both maternal (gynogenetic) and paternal (androgenetic) derived cells conveyed long-term, multilineage reconstitution of hematopoiesis in recipients, with no associated pathologies. We also establish that uniparental ES cells can differentiate into transplantable hematopoietic progenitors in vitro that contribute to long-term hematopoiesis in recipients. Hematopoietic tissue in recipients maintained fidelity of parent-of-origin methylation marks at the Igf2/H19 locus; however, variability occurred in the maintenance of parental-specific methylation marks at other loci. In summary, despite genomic imprinting and its consequences on development that are particularly evident in the androgenetic phenotype, uniparental cells of both parental origins can form adult-transplantable stem cells and can repopulate an adult organ.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - N. Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - Heath L. Bradley
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hiromi Kato
- Institute of Advanced Technology, Kinki University, Kainan, Wakayama 642-0017, Japan
| | - Kevin D. Bunting
- Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Center for Stem Cell and Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - K. John McLaughlin
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| |
Collapse
|
49
|
Abstract
Human embryonic stem cells (hESCs) are derived from human preimplantation embryos, and exhibit the defining characteristics of immortality and pluripotency. Indeed, these cell populations can be maintained for several years in continuous culture, and undergo hundreds of population doublings. hESCs are thus likely candidates for source of cells for cell replacement therapies. Although hESC lines appear stable in their expression of cytokine markers, expression of telomerase, ability to differentiate, and maintenance of a stable karyotype, several other aspects of stability have not yet been addressed, including mitochondrial sequencing, methylation patterns, and fine resolution cytogenetic analysis. Because of the potential utility of hESCs, it will be of utmost importance to evaluate the stability of these aspects of ESC biology.
Collapse
Affiliation(s)
- Lisa M Hoffman
- Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|
50
|
Kwong WY, Miller DJ, Ursell E, Wild AE, Wilkins AP, Osmond C, Anthony FW, Fleming TP. Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction 2006; 132:265-77. [PMID: 16885535 DOI: 10.1530/rep.1.01038] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In our previous study, we have shown that maternal low protein diet (LPD, 9% casein vs 18% casein control) fed exclusively during the rat preimplantation period (0-4.25 day postcoitum) induced low birth weight, altered postnatal growth and hypertension in a gender-specific manner. In this study, we investigated the effect of maternal LPD restricted only to the preimplantation period (switched diet) or provided throughout gestation on fetal growth and imprinted gene expression in blastocyst and fetal stages of development. Male, but not female, blastocysts collected from LPD dams displayed a significant reduction (30%) in H19 mRNA level. A significant reduction in H19 (9.4%) and Igf2 (10.9%) mRNA was also observed in male, but not in female, fetal liver at day 20 postcoitum in response to maternal LPD restricted to the preimplantation period. No effect on the blastocyst expression of Igf2R was observed in relation to maternal diet. The reduction in H19 mRNA expression did not correlate with an observed alteration in DNA methylation at the H19 differentially methylated region in fetal liver. In contrast, maternal LPD throughout 20 days of gestation did not affect male or female H19 and Igf2 imprinted gene expression in fetal liver. Neither LPD nor switched diet treatments affected H19 and Igf2 imprinted gene expression in day 20 placenta. Our findings demonstrate that one contributor to the alteration in postnatal growth induced by periconceptional maternal LPD may derive from a gender-specific programming of imprinted gene expression originating within the preimplantation embryo itself.
Collapse
Affiliation(s)
- Wing Yee Kwong
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | | | | | |
Collapse
|