1
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG, Chen WY. USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis 2021; 12:880. [PMID: 34580281 PMCID: PMC8476631 DOI: 10.1038/s41419-021-04176-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
USP7, one of the most abundant ubiquitin-specific proteases (USP), plays multifaceted roles in many cellular events, including oncogenic pathways. Accumulated studies have suggested that USP7, through modulating the MDM2/MDMX-p53 pathway, is a promising target for cancer treatment; however, little is known about the function of USP7 in p53-deficient tumors. Here we report that USP7 regulates the autoregulation of SMAD3, a key regulator of transforming growth factor β (TGFβ) signaling, that represses the cell progression of p53-deficient lung cancer. CRISPR/Cas9-mediated inactivation of USP7 in p53-deficient lung cancer H1299 line resulted in advanced cell proliferation in vitro and in xenograft tumor in vivo. Genome-wide analyses (ChIP-seq and RNA-seq) of USP7 KO H1299 cells reveal a dramatic reduction of SMAD3 autoregulation, including decreased gene expression and blunted function of associated super-enhancer (SE). Furthermore, biochemical assays show that SMAD3 is conjugated by mono-ubiquitin, which negatively regulates the DNA-binding function of SMAD3, in USP7 KO cells. In addition, cell-free and cell-based analyses further demonstrate that the deubiquitinase activity of USP7 mediates the removal of mono-ubiquitin from SMAD3 and facilitates the DNA-binding of SMAD3-SMAD4 dimer at SMAD3 locus, and thus enhance the autoregulation of SMAD3. Collectively, our study identified a novel mechanism by which USP7, through catalyzing the SMAD3 de-monoubiquitination, facilitates the positive autoregulation of SMAD3, and represses the cancer progression of p53-deficient lung cancer.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - An-Chieh Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hui-Chi Tang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guo-Cheng Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ling Cai
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ta-Hsien Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Greg G Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
4
|
Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelia exist in the animal body since the onset of embryonic development; they generate tissue barriers and specify organs and glands. Through epithelial-mesenchymal transitions (EMTs), epithelia generate mesenchymal cells that form new tissues and promote healing or disease manifestation when epithelial homeostasis is challenged physiologically or pathologically. Transforming growth factor-βs (TGF-βs), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs) have been implicated in the regulation of epithelial differentiation. These TGF-β family ligands are expressed and secreted at sites where the epithelium interacts with the mesenchyme and provide paracrine queues from the mesenchyme to the neighboring epithelium, helping the specification of differentiated epithelial cell types within an organ. TGF-β ligands signal via Smads and cooperating kinase pathways and control the expression or activities of key transcription factors that promote either epithelial differentiation or mesenchymal transitions. In this review, we discuss evidence that illustrates how TGF-β family ligands contribute to epithelial differentiation and induce mesenchymal transitions, by focusing on the embryonic ectoderm and tissues that form the external mammalian body lining.
Collapse
Affiliation(s)
- Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
6
|
Gao Y, Vincent DF, Davis AJ, Sansom OJ, Bartholin L, Li Q. Constitutively active transforming growth factor β receptor 1 in the mouse ovary promotes tumorigenesis. Oncotarget 2016; 7:40904-40918. [PMID: 27344183 PMCID: PMC5173031 DOI: 10.18632/oncotarget.10149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the well-established tumor suppressive role of TGFβ proteins, depletion of key TGFβ signaling components in the mouse ovary does not induce a growth advantage. To define the role of TGFβ signaling in ovarian tumorigenesis, we created a mouse model expressing a constitutively active TGFβ receptor 1 (TGFBR1) in ovarian somatic cells using conditional gain-of-function approach. Remarkably, these mice developed ovarian sex cord-stromal tumors with complete penetrance, leading to reproductive failure and mortality. The tumors expressed multiple granulosa cell markers and caused elevated serum inhibin and estradiol levels, reminiscent of granulosa cell tumors. Consistent with the tumorigenic effect, overactivation of TGFBR1 altered tumor microenvironment by promoting angiogenesis and enhanced ovarian cell proliferation, accompanied by impaired cell differentiation and dysregulated expression of critical genes in ovarian function. By further exploiting complementary genetic models, we substantiated our finding that constitutively active TGFBR1 is a potent oncogenic switch in mouse granulosa cells. In summary, overactivation of TGFBR1 drives gonadal tumor development. The TGFBR1 constitutively active mouse model phenocopies a number of morphological, hormonal, and molecular features of human granulosa cell tumors and are potentially valuable for preclinical testing of targeted therapies to treat granulosa cell tumors, a class of poorly defined ovarian malignancies.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David F. Vincent
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Anna Jane Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Goodier HCJ, Carr AJ, Snelling SJB, Roche L, Wheway K, Watkins B, Dakin SG. Comparison of transforming growth factor beta expression in healthy and diseased human tendon. Arthritis Res Ther 2016; 18:48. [PMID: 26883016 PMCID: PMC4756520 DOI: 10.1186/s13075-016-0947-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Background Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Methods Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. Results TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p < 0.01) in diseased compared to healthy tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p < 0.01). BMP-2, BMP-7 and CTGF mRNA remained unchanged with tendon disease. Conclusions We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Future studies should investigate the expression profile of fibrotic mediators in earlier stages of tendon disease to improve understanding of the targetable mechanisms underpinning tendon fibrosis.
Collapse
Affiliation(s)
- Henry C J Goodier
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Lucy Roche
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
8
|
Wang T, Long S, Zhao N, Wang Y, Sun H, Zou Z, Wang J, Ran X, Su Y. Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair. Int J Mol Sci 2015; 17:ijms17010008. [PMID: 26703592 PMCID: PMC4730255 DOI: 10.3390/ijms17010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Zhongmin Zou
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Ramirez H, Patel SB, Pastar I. The Role of TGFβ Signaling in Wound Epithelialization. Adv Wound Care (New Rochelle) 2014; 3:482-491. [PMID: 25032068 DOI: 10.1089/wound.2013.0466] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Transforming growth factor β (TGFβ) has a crucial role in maintaining skin homeostasis. TGFβ signaling is important for re-epithelialization, inflammation, angiogenesis, and granulation tissue formation during wound healing. This review will discuss the most important findings regarding the role of TGFβ in epidermal maintenance and its restoration after injury. Recent Advances: Latest findings on the role of TGFβ signaling in normal and impaired wound healing, including the role of TGFβ pathway in tissue regeneration observed in super-healer animal models, will be reviewed. Critical Issues: The TGFβ pathway is attenuated in nonhealing wounds. Observed suppression of TGFβ signaling in chronic ulcers may contribute to the loss of tissue homeostasis and the inability of keratinocytes to migrate and close a wound. Future Directions: A better understanding of TGFβ signaling may provide new insights not only in the normal epithelialization process, but also in tissue regeneration. Future studies focused on TGFβ-mediated crosstalk between multiple cell types involved in wound healing may lead to development of novel therapeutic advances for chronic wounds.
Collapse
Affiliation(s)
- Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- PIBS Human Genetics and Genomics Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 2014; 106:djt369. [PMID: 24511106 DOI: 10.1093/jnci/djt369] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.
Collapse
Affiliation(s)
- Daniel R Principe
- Affiliations of authors: Department of Medicine, Division of Gastroenterology (DRP, JB, BJ) and Division of Hematology/Oncology (HGM), Department of Surgery, Division of GI Surgical Oncology (DRP, PJG), and Department of Urology (CL), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering. McCormick School of Engineering, Northwestern University, Evanston, IL (DRP); Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (JAD); UMR INSERM U1052, CNRS 5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France (LB); Division of Hematology/Oncology, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL (BP); Department of Pathology and Laboratory Medicine, University of California-Irvine, Irvine, CA (CL)
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zheng Z, Lee KS, Zhang X, Nguyen C, Hsu C, Wang JZ, Rackohn TM, Enjamuri DR, Murphy M, Ting K, Soo C. Fibromodulin-deficiency alters temporospatial expression patterns of transforming growth factor-β ligands and receptors during adult mouse skin wound healing. PLoS One 2014; 9:e90817. [PMID: 24603701 PMCID: PMC3948369 DOI: 10.1371/journal.pone.0090817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022] Open
Abstract
Fibromodulin (FMOD) is a small leucine-rich proteoglycan required for scarless fetal cutaneous wound repair. Interestingly, increased FMOD levels have been correlated with decreased transforming growth factor (TGF)-β1 expression in multiple fetal and adult rodent models. Our previous studies demonstrated that FMOD-deficiency in adult animals results in delayed wound closure and increased scar size accompanied by loose package collagen fiber networks with increased fibril diameter. In addition, we found that FMOD modulates in vitro expression and activities of TGF-β ligands in an isoform-specific manner. In this study, temporospatial expression profiles of TGF-β ligands and receptors in FMOD-null and wild-type (WT) mice were compared by immunohistochemical staining and quantitative reverse transcriptase-polymerase chain reaction using a full-thickness, primary intention wound closure model. During the inflammatory stage, elevated inflammatory infiltration accompanied by increased type I TGF-β receptor levels in individual inflammatory cells was observed in FMOD-null wounds. This increased inflammation was correlated with accelerated epithelial migration during the proliferative stage. On the other hand, significantly more robust expression of TGF-β3 and TGF-β receptors in FMOD-null wounds during the proliferative stage was associated with delayed dermal cell migration and proliferation, which led to postponed granulation tissue formation and wound closure and increased scar size. Compared with WT controls, expression of TGF-β ligands and receptors by FMOD-null dermal cells was markedly reduced during the remodeling stage, which may have contributed to the declined collagen synthesis capability and unordinary collagen architecture. Taken together, this study demonstrates that a single missing gene, FMOD, leads to conspicuous alternations in TGF-β ligand and receptor expression at all stages of wound repair in various cell types. Therefore, FMOD critically coordinates temporospatial distribution of TGF-β ligands and receptors in vivo, suggesting that FMOD modulates TGF-β bioactivity in a complex way beyond simple physical binding to promote proper wound healing.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kevin S. Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Calvin Nguyen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chingyun Hsu
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joyce Z. Wang
- Department of Emergency Medicine, State University of New York Downstate/Kings Country Hospital Center, New York, New York, United States of America
| | - Todd Matthew Rackohn
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dwarak Reddy Enjamuri
- Department of Psychobiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maxwell Murphy
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Finnson KW, Arany PR, Philip A. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies. Adv Wound Care (New Rochelle) 2013; 2:225-237. [PMID: 24761336 DOI: 10.1089/wound.2012.0419] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
SIGNIFICANCE Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. RECENT ADVANCES Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). CRITICAL ISSUES Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. FUTURE DIRECTIONS Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| | - Praveen R. Arany
- Cell Regulation and Control Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| |
Collapse
|
13
|
Li F, Zhou M. Conditional expression of the dominant-negative TGF-β receptor type II elicits lingual epithelial hyperplasia in transgenic mice. Dev Dyn 2013; 242:444-55. [PMID: 23362225 DOI: 10.1002/dvdy.23933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The transforming growth factor-β (TGF-β) signaling pathway is generally believed to be a potent inhibitor of proliferation. However, many epithelia lacking the essential Tgfbr2 gene still maintain normal tissue homeostasis. Here, transgenic mice expressing rtTA from the human keratin 14 (K14) promoter were used to generate an inducible dominant-negative TGF-β receptor type II (Tgfbr2) mutant model, which allowed us to distinguish between the primary and secondary effects of TGF-β signaling disruption by Doxycycline treatment in K14+ epithelial stem cells. RESULTS We showed that in mice lacking TGF-β signaling in K14+ cells, invasive carcinomas developed on the ventral surface of the tip of the tongue, while filiform papillae on the dorsal surface showed different pathological changes from the tip to the posterior of the tongue. In addition, acetylation levels of histone H4 and histone H3 rapidly increased, while pMAPK activity was enhanced and Jagged2 inactivated in lingual epithelia after disruption of TGF-β signaling. CONCLUSIONS Our results contribute to the understanding of TGF-β signaling in regulating homeostasis and carcinogenesis in lingual epithelia.
Collapse
Affiliation(s)
- Feng Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
14
|
Glick AB. The Role of TGFβ Signaling in Squamous Cell Cancer: Lessons from Mouse Models. J Skin Cancer 2012; 2012:249063. [PMID: 23326666 PMCID: PMC3541634 DOI: 10.1155/2012/249063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022] Open
Abstract
TGFβ1 is a member of a large growth factor family including activins/inhibins and bone morphogenic proteins (BMPs) that have a potent growth regulatory and immunomodulatory functions in normal skin homeostasis, regulation of epidermal stem cells, extracellular matrix production, angiogenesis, and inflammation. TGFβ signaling is tightly regulated in normal tissues and becomes deregulated during cancer development in cutaneous SCC and many other solid tumors. Because of these diverse biological processes regulated by TGFβ1, this cytokine and its signaling pathway appear to function at multiple points during carcinogenesis with distinct effects. The mouse skin carcinogenesis model has been a useful tool to dissect the function of this pathway in cancer pathogenesis, with transgenic and null mice as well as small molecule inhibitors to alter the function of the TGFβ1 pathway and assess the effects on cancer development. This paper will review data on changes in TGFβ1 signaling in human SCC primarily HNSCC and cutaneous SCC and different mouse models that have been generated to investigate the relevance of these changes to cancer. A better understanding of the mechanisms underlying the duality of TGFβ1 action in carcinogenesis will inform potential use of this signaling pathway for targeted therapies.
Collapse
Affiliation(s)
- Adam B. Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Connolly EC, Akhurst RJ. The complexities of TGF-β action during mammary and squamous cell carcinogenesis. Curr Pharm Biotechnol 2011; 12:2138-49. [PMID: 21619543 PMCID: PMC3520605 DOI: 10.2174/138920111798808284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 12/19/2022]
Abstract
Many advanced tumors produce excess amounts of Transforming Growth Factor-β (TGF-β), which is a potent growth inhibitor of normal epithelial cells. However, in tumors its homeostatic action on cells can be diverted along several alternative pathways. Thus, TGF-β signaling has been reported to elicit a preventative or tumor suppressive effect during the earlier stages of tumorigenesis, but later in tumor development, when carcinoma cells become refractory to TGF-β-mediated growth inhibition, response to TGF-β signaling elicits predominantly tumor progressing effects. This is not a simple switch from suppression to progression, but more like a rheostat, involving multiple complementary and antagonizing activities that slowly tip the balance from one to the other. This review will focus on the multiple activities of TGF-β in regulation of two epithelial tumor types, namely squamous cell carcinoma and breast cancer. Basic findings in current mouse models of cancer are presented, as well as a discussion of the complicating issue of outcome of altered TGFβ signaling depending on genetic variability between mouse strains. This review also discusses the role TGF-β within the tumor microenvironment particularly its ability to polarize the microenvironment towards a pro-tumorigenic milieu.
Collapse
Affiliation(s)
- Erin C. Connolly
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143-0512. USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143-0512. USA
- Department of Anatomy, University of California San Francisco, California 94143-0512. USA
| |
Collapse
|
16
|
Terai K, Call MK, Liu H, Saika S, Liu CY, Hayashi Y, Chikama TI, Zhang J, Terai N, Kao CWC, Kao WWY. Crosstalk between TGF-beta and MAPK signaling during corneal wound healing. Invest Ophthalmol Vis Sci 2011; 52:8208-15. [PMID: 21917935 DOI: 10.1167/iovs.11-8017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to elucidate the mechanisms governing epithelial cell migration and proliferation during wound healing. METHODS The authors used wound healing of mouse corneal epithelium to examine the role TGF-β signaling plays during the healing process. To achieve this goal, they used transgenic mice in which the TGF-β receptor type II (Tbr2) was conditionally ablated from the corneal epithelium. Epithelium debridement wounds were made, followed by the assessment of cell migration, proliferation, and immunostaining of various signaling pathway components. RESULTS The authors showed that in the absence of TGF-β signaling corneal epithelial wound healing is delayed by 48 hours; this corresponds to a delay in p38MAPK activation. Despite the delayed p38MAPK activation, ATF2, a substrate of p38MAPK, is still phosphorylated, leading to the suppression of cell proliferation at the leading edge of the wound. These data provide evidence that in the absence of TGF-β signaling, the suppression of cell proliferation during the early stages of wound healing is maintained through the JNK activation of ATF2. CONCLUSIONS; Together the data presented here demonstrate the importance of the TGF-β and MAPK signaling pathways in corneal epithelial wound healing.
Collapse
Affiliation(s)
- Kazuto Terai
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0838, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Watanabe S, Misawa M, Matsuzaki T, Sakurai T, Muramatsu T, Sato M. A novel glycosylation signal regulates transforming growth factor beta receptors as evidenced by endo-beta-galactosidase C expression in rodent cells. Glycobiology 2010; 21:482-92. [PMID: 21062784 DOI: 10.1093/glycob/cwq186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The αGal (Galα1-3Gal) epitope is a xenoantigen that is responsible for hyperacute rejection in xenotransplantation. This epitope is expressed on the cell surface in the cells of all mammals except humans and Old World monkeys. It can be digested by the enzyme endo-β-galactosidase C (EndoGalC), which is derived from Clostridium perfringens. Previously, we produced EndoGalC transgenic mice to identify the phenotypes that would be induced following EndoGalC overexpression. The mice lacked the αGal epitope in all tissues and exhibited abnormal phenotypes such as postnatal death, growth retardation, skin lesion and abnormal behavior. Interestingly, skin lesions caused by increased proliferation of keratinocytes suggest the role of a glycan structure [in which the αGal epitope has been removed or the N-acetylglucosamine (GlcNAc) residue is newly exposed] as a regulator of signal transduction. To verify this hypothesis, we introduced an EndoGalC expression vector into cultured mouse NIH3T3 cells and obtained several EndoGalC-expressing transfectants. These cells lacked αGal epitope expression and exhibited 1.8-fold higher proliferation than untransfected parental cells. We then used several cytokine receptor inhibitors to assess the signal transduction cascades that were affected. Only SB431542 and LY364947, both of which are transforming growth factor β (TGFβ) receptor type-I (TβR-I) inhibitors, were found to successfully reverse the enhanced cell proliferation rate of EndoGalC transfectants, indicating that the glycan structure is a regulator of TβRs. Biochemical analysis demonstrated that the glycan altered association between TβR-I and TβR-II in the absence of ligands.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Wagner EF, Schonthaler HB, Guinea-Viniegra J, Tschachler E. Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 2010; 6:704-14. [PMID: 20877306 DOI: 10.1038/nrrheum.2010.157] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psoriasis is a common inflammatory skin disease of unknown etiology, for which there is no cure. This heterogeneous, cutaneous, inflammatory disorder is clinically characterized by prominent epidermal hyperplasia and a distinct inflammatory infiltrate. Crosstalk between immunocytes and keratinocytes, which results in the production of cytokines, chemokines and growth factors, is thought to mediate the disease. Given that psoriasis is only observed in humans, numerous genetic approaches to model the disease in mice have been undertaken. In this Review, we describe and critically assess the mouse models and transplantation experiments that have contributed to the discovery of novel disease-relevant pathways in psoriasis. Research performed using improved mouse models, combined with studies employing human cells, xenografts and patient material, will be key to our understanding of why such distinctive patterns of inflammation develop in patients with psoriasis. Indeed, a combination of genetic and immunological investigations will be necessary to develop both improved drugs for the treatment of psoriasis and novel curative strategies.
Collapse
Affiliation(s)
- Erwin F Wagner
- Fundación Banco Bilbao Vizcaya Argentaria (F-BBVA)-CNIO Cancer Cell Biology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almargo 3, 29029 Madrid, Spain.
| | | | | | | |
Collapse
|
19
|
Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2008; 115:453-95. [PMID: 18841463 DOI: 10.1007/s10549-008-0184-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 12/24/2022]
Abstract
In most human breast cancers, lowering of TGFbeta receptor- or Smad gene expression combined with increased levels of TGFbetas in the tumor microenvironment is sufficient to abrogate TGFbetas tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFbeta signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFbeta tumor suppression. In mouse models of "triple-negative" or basal-like breast cancer, treatment with TGFbeta neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFbeta antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFbeta target genes upregulation in human breast cancers suggest that TGFbeta may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFbeta appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFbeta because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFbeta, while antiestrogens act by upregulating TGFbeta. This model predicts that inhibiting TGFbeta signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFbeta antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Collapse
Affiliation(s)
- Antoinette R Tan
- Division of Medical Oncology, Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
20
|
Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M. TGF-β superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007; 86:781-99. [PMID: 17499880 DOI: 10.1016/j.ejcb.2007.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 12/22/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) superfamily of signaling molecules are involved in the regulation of many developmental processes that involve the interaction between mesenchymal and epithelial tissues. Smad7 is a potent inhibitor of many members of the TGF-beta family, notably TGF-beta and activin. In this study, we show that embryonic overexpression of Smad7 in stratified epithelia using a keratin 5 promoter, results in severe morphogenetic defects in skin and teeth and leads to embryonic and perinatal lethality. To further analyze the functions of Smad7 in epithelial tissues of adult mice, we used an expression system that allowed a controlled overexpression of Smad7 in terms of both space and time. Skin defects in adult mice overexpressing Smad7 were characterized by hyper-proliferation and missing expression of early markers of keratinocyte differentiation. Upon Smad7-mediated blockade of TGF-beta superfamily signaling, ameloblasts failed to produce an enamel layer in incisor teeth. In addition, TGF-beta blockade in adult mice altered the pattern of thymic T cell differentiation and the number of thymic T cells was significantly reduced. This study shows that TGF-beta superfamily signaling is essential for development of hair, tooth and T-cells as well as differentiation and proliferation control in adult tissues.
Collapse
Affiliation(s)
- Borut Klopcic
- I. Medical Department, Section Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E. Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 2007; 12:313-27. [PMID: 17936557 PMCID: PMC2424201 DOI: 10.1016/j.ccr.2007.08.020] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 07/09/2007] [Accepted: 08/20/2007] [Indexed: 12/17/2022]
Abstract
Although TGFbeta is a potent inhibitor of proliferation, epithelia lacking the essential receptor (TbetaRII) for TGFbeta signaling display normal tissue homeostasis. By studying asymptomatic TbetaRII-deficient stratified epithelia, we show that tissue homeostasis is maintained by balancing hyperproliferation with elevated apoptosis. Moreover, rectal and genital epithelia, which are naturally proliferative, develop spontaneous squamous cell carcinomas with age when TbetaRII is absent. This progression is associated with a reduction in apoptosis and can be accelerated in phenotypically normal epidermis by oncogenic mutations in Ras. We show that TbetaRII deficiency leads to enhanced keratinocyte motility and integrin-FAK-Src signaling. Together, these mechanisms provide a molecular framework to account for many of the characteristics of TbetaRII-deficient invasive SQCCs.
Collapse
MESH Headings
- Animals
- Anus Neoplasms/metabolism
- Anus Neoplasms/pathology
- Apoptosis
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Extracellular Matrix/metabolism
- Focal Adhesion Protein-Tyrosine Kinases/metabolism
- Homeostasis
- Humans
- Integrins/metabolism
- Keratin-14/genetics
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Male
- Mice
- Mice, Knockout
- Mutation
- Neoplasm Invasiveness
- Papilloma/metabolism
- Papilloma/pathology
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Skin/metabolism
- Skin/pathology
- Skin/physiopathology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Time Factors
- Transforming Growth Factor beta/metabolism
- Urogenital Neoplasms/metabolism
- Urogenital Neoplasms/pathology
- Wound Healing
- ras Proteins/genetics
- ras Proteins/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Géraldine Guasch
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Markus Schober
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - H. Amalia Pasolli
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Emily Belmont Conn
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
- *Correspondence:
| |
Collapse
|
22
|
Lee J, Basak JM, Demehri S, Kopan R. Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development 2007; 134:2795-806. [PMID: 17611229 PMCID: PMC2583345 DOI: 10.1242/dev.02868] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Notch1-deficient epidermal keratinocytes become progressively hyperplastic and eventually produce tumors. By contrast, Notch1-deficient hair matrix keratinocytes have lower mitotic rates, resulting in smaller follicles with fewer cells. In addition, the ratio of melanocytes to keratinocytes is greatly reduced in hair follicles. Investigation into the underlying mechanism for these phenotypes revealed significant changes in the Kit, Tgfbeta and insulin-like growth factor (IGF) signaling pathways, which have not been previously shown to be downstream of Notch signaling. The level of Kitl (Scf) mRNA produced by Notch1-deficient follicular keratinocytes was reduced when compared with wild type, resulting in a decline in melanocyte population. Tgfbeta ligands were elevated in Notch1-deficient keratinocytes, which correlated with elevated expression of several targets, including the diffusible IGF antagonist Igfbp3 in the dermal papilla. Diffusible stromal targets remained elevated in the absence of epithelial Tgfbeta receptors, consistent with paracrine Tgfbeta signaling. Overexpression of Igf1 in the keratinocyte reversed the phenotype, as expected if Notch1 loss altered the IGF/insulin-like growth factor binding protein (IGFBP) balance. Conversely, epidermal keratinocytes contained less stromal Igfbp4 and might thus be primed to experience an increase in IGF signaling as animals age. These results suggest that Notch1 participates in a bi-compartmental signaling network that controls homeostasis, follicular proliferation rates and melanocyte population within the skin.
Collapse
|
23
|
Fang NX, Gu W, Ding J, Saunders NA, Frazer IH, Zhao KN. Calcium enhances mouse keratinocyte differentiation in vitro to differentially regulate expression of papillomavirus authentic and codon modified L1 genes. Virology 2007; 365:187-97. [PMID: 17462691 DOI: 10.1016/j.virol.2007.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Here, we first wished to establish for mouse primary keratinocytes (KCs) the Ca(2+) concentrations that were associated with KC differentiation in vitro. Using the range of Ca(2+) concentrations (0-6 mM) to differentiate primary KCs in culture to varying extents for 2 days, we then examined how KC differentiation impacted on expression of papillomavirus (PV) native (Nat) and codon modified (Mod) L1 genes. L1 mRNAs transcribed from either Nat or Mod L1 genes were present in similar amounts in KCs exposed to six Ca(2+) concentrations. However, expression of the L1 proteins from two Mod L1 genes were down-regulated, with no L1 signal detected in KCs exposed to 6 mM Ca(2+). In contrast, L1 proteins expressed from the two Nat L1 genes were not detectable in KCs without Ca(2+), but dramatically up-regulated as the KC cultures exposed to Ca(2+) from 0.5 to 2 mM, then down-regulated in KCs exposed to Ca(2+) from 4 to 6 mM. The different regulatory roles of the Ca(2+) in L1 protein expression from Nat and Mod L1 genes in cultured KCs were confirmed by TGF-beta1 experiments. We observed that aminoacyl-tRNAs (aa-tRNAs) from the 2 mM Ca(2+)-treated KCs only significantly enhanced the Nat L1 mRNAs translation in vitro, suggesting that aa-tRNAs play a differentially regulatory role in translations of the PV Nat and Mod L1 mRNAs. Importantly, the Ca(2+) experimental model provides evidence that mouse primary KCs could be transiently infected by BPV1 virus to express L1 mRNA and protein, which is very useful for future HPV virus infection study.
Collapse
Affiliation(s)
- Ning-Xia Fang
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Psoriasis is a T-cell-mediated chronic inflammatory skin disease believed to be of autoimmune nature that can be triggered or worsened by streptococcal throat infections. In addition to conventional chronic inflammatory changes, psoriasis is characterized by complex and striking alterations in epidermal growth and differentiation. Psoriasis is generally not observed in animals other than man, and this lack of a suitable animal model has greatly hindered research into the pathogenesis of psoriasis. Multiple transgenic, knockout, and reconstituted models of psoriasis have been developed over the past two decades. Despite their limitations, these models have demonstrated that keratinocyte hyperplasia, vascular hyperplasia, and cell-mediated immunity in the skin are closely interrelated. Xenograft models, in which involved and uninvolved psoriatic skin are transplanted onto immunodeficient mice, are the only models that come close to incorporating the complete genetic, immunologic, and phenotypic changes of the disease. They have shown conclusively that psoriasis is a T-cell-mediated disease, and have been used to elucidate novel pathogenic pathways. In this review, we describe various animal models, detail the immunologic and intracellular pathways that mediate these phenotypes and assess the utility of these models to better understand this disease.
Collapse
Affiliation(s)
- Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Transforming growth factor-beta (TGFbeta) signalling regulates cancer through mechanisms that function either within the tumour cell itself or through host-tumour cell interactions. Studies of tumour-cell-autonomous TGFbeta effects show clearly that TGFbeta signalling has a mechanistic role in tumour suppression and tumour promotion. In addition, factors in the tumour microenvironment, such as fibroblasts, immune cells and the extracellular matrix, influence the ability of TGFbeta to promote or suppress carcinoma progression and metastasis. The complex nature of TGFbeta signalling and crosstalk in the tumour microenvironment presents a unique challenge, and an opportunity to develop therapeutic intervention strategies for targeting cancer.
Collapse
Affiliation(s)
- Brian Bierie
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
26
|
Gebhardt A, Frye M, Herold S, Benitah SA, Braun K, Samans B, Watt FM, Elsässer HP, Eilers M. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. ACTA ACUST UNITED AC 2006; 172:139-49. [PMID: 16391002 PMCID: PMC2063541 DOI: 10.1083/jcb.200506057] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myc plays a key role in homeostasis of the skin. We show that Miz1, which mediates Myc repression of gene expression, is expressed in the epidermal basal layer. A large percentage of genes regulated by the Myc–Miz1 complex in keratinocytes encode proteins involved in cell adhesion, and some, including the α6 and β1 integrins, are directly bound by Myc and Miz1 in vivo. Using a Myc mutant deficient in Miz1 binding (MycV394D), we show that Miz1 is required for the effects of Myc on keratinocyte responsiveness to TGF-β. Myc, but not MycV394D, decreases keratinocyte adhesion and spreading. In reconstituted epidermis, Myc induces differentiation and loss of cell polarization in a Miz1-dependent manner. In vivo, overexpression of β1 integrins restores basal layer polarity and prevents Myc-induced premature differentiation. Our data show that regulation of cell adhesion is a major function of the Myc–Miz1 complex and suggest that it may contribute to Myc-induced exit from the epidermal stem cell compartment.
Collapse
Affiliation(s)
- Anneli Gebhardt
- Institute for Cell Biology, University of Marburg, 35033 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li AG, Lu SL, Han G, Hoot KE, Wang XJ. Role of TGFβ in skin inflammation and carcinogenesis. Mol Carcinog 2006; 45:389-96. [PMID: 16673381 DOI: 10.1002/mc.20229] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The functions of transforming growth factor beta-1(TGFbeta1) are cell-context specific. We have found that TGFbeta1 expression in human skin squamous cell carcinoma (SCC) samples has two distinct distribution patterns: (1) either predominantly in suprabasal layers or (2) throughout tumor epithelia including basal proliferative cells. To understand whether the spatial TGFbeta1 expression patterns affect its functions, we have generated several keratinocyte-specific transgenic mouse models in which TGFbeta1 overexpression can be induced either predominantly in the suprabasal epidermis or in the basal layer of the epidermis and hair follicles. Suprabasal TGFbeta1 overexpression inhibits keratinocyte proliferation, suppresses skin carcinogenesis at early stages, but promotes tumor invasion at later stages. In contrast, TGFbeta1 overexpression in the basal layer of the epidermis and hair follicles causes a severe inflammatory skin disorder and epidermal hyperproliferation. Given the importance of inflammation in cancer development, our data suggest that TGFbeta1-induced skin inflammation may override its tumor suppressive effect at early stages during skin carcinogenesis. This hypothesis is further suggested by our recent study that Smad3 knockout mice are resistant to skin chemical carcinogenesis at least in part via abrogation of endogenous TGFbeta1-induced inflammation. This review intends to summarize current insights into the role of TGFbeta1 in skin inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Allen Guanqun Li
- Department of Otolaryngology, Cell & Developmental Biology, and Dermatology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
28
|
Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X. Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 2005; 65:8671-8. [PMID: 16204035 DOI: 10.1158/0008-5472.can-05-0800] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smad4 is the common mediator of transforming growth factor-beta (TGF-beta) superfamily signaling, which functions in diverse developmental processes in mammals. To study the role of Smad4 in skin development, a keratinocyte-specific null mutant of Smad4 (Smad4(co/co);K5-Cre) was generated in mice using the Cre-loxP system. The Smad4-mutant mice exhibited progressive alopecia as a result of the mutant hair follicles failing to undergo programmed regression. Sonic hedgehog (Shh) was only detected in Smad4-mutant hair follicles at the catagen stage. Seventy percent of Smad4(co/co); K5-Cre mice developed spontaneous tumors within 12 months of birth. c-Myc and cyclin D1 were up-regulated whereas p21 and p27 expressions were decreased, which correlated with the epidermal hyperplasia in Smad4 mutants. Interestingly, coordinated deletion of the Smad4 and PTEN genes resulted in accelerated hair loss and skin tumor formation, suggesting that Smad4 and PTEN act synergistically to regulate epidermal proliferation and differentiation. All of our data indicate that Smad4 is essential for catagen induction and acts as a critical suppressor in skin tumorigenesis.
Collapse
Affiliation(s)
- Leilei Yang
- Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Shanghai, P.R.China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li AG, Lu SL, Han G, Kulesz-Martin M, Wang XJ. Current view of the role of transforming growth factor beta 1 in skin carcinogenesis. J Investig Dermatol Symp Proc 2005; 10:110-7. [PMID: 16363062 DOI: 10.1111/j.1087-0024.2005.200403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previously, we have shown that transforming growth factor beta 1 (TGFbeta1) overexpression in suprabasal epidermis suppresses skin carcinogenesis at early stages, but promotes tumor invasion at later stages. To elucidate the role of TGFbeta1 overexpression in naturally occurring human squamous cell carcinomas (SCC), we screened TGFbeta1 expression patterns in human skin SCC samples and found that TGFbeta1 was overexpressed with two distinct patterns: either predominantly in suprabasal layers or throughout tumor epithelia including basal proliferative cells. To determine the effect of TGFbeta1 overexpression in basal keratinocytes, we generated transgenic mice expressing wild-type TGFbeta1 in basal keratinocytes and hair follicles using the K5 promoter (K5.TGFbeta1(wt)). Surprisingly, these mice developed a severe inflammatory skin disorder. Inflammation was also observed in head and neck tissue when TGFbeta1 transgene expression was inducibly expressed in head and neck epithelia in our gene-switch-TGFbeta1 transgenic mice. Given the importance of inflammation in cancer development, our data suggest that TGFbeta1-induced inflammation may override its tumor-suppressive effect even at early stages of skin carcinogenesis. This notion is further suggested by our recent study that Smad3 knockout mice were resistant to skin chemical carcinogenesis at least in part via abrogation of endogenous TGFbeta1-induced inflammation.
Collapse
Affiliation(s)
- Allen Guanqun Li
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
30
|
Mazzieri R, Jurukovski V, Obata H, Sung J, Platt A, Annes E, Karaman-Jurukovska N, Gleizes PE, Rifkin DB. Expression of truncated latent TGF-beta-binding protein modulates TGF-beta signaling. J Cell Sci 2005; 118:2177-87. [PMID: 15870109 DOI: 10.1242/jcs.02352] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor-beta is released from most cells as an inactive complex consisting of transforming growth factor-beta, the transforming growth factor-beta propeptide and the latent transforming growth factor-beta-binding protein. We studied the role of latent transforming growth factor-beta-binding protein in modulating transforming growth factor-beta availability by generating transgenic mice that express a truncated form of latent transforming growth factor-beta-binding protein-1 that binds to transforming growth factor-beta but is missing the known N- and C-terminal matrix-binding sequences. As transforming growth factor-beta is an inhibitor of keratinocyte proliferation and is involved in the control of hair cycling, we over-expressed the mutated form of latent transforming growth factor-beta-binding protein under the control of the keratin 14-promoter. Transgenic animals displayed a hair phenotype due to a reduction in keratinocyte proliferation, an abbreviated growth phase and an early initiation of the involution (catagen) phase of the hair cycle. This phenotype appears to result from excess active transforming growth factor-beta, as enhanced numbers of pSmad2/3-positive nuclei are observed in transgenic animal skin. These data suggest that the truncated form of latent transforming growth factor-beta-binding protein-1 competes with wild-type latent transforming growth factor-beta-binding protein for binding to latent transforming growth factor-beta, resulting in latent transforming growth factor-beta complexes that fail to be targeted correctly in the extracellular matrix. The mis-localization of the transforming growth factor-beta results in inappropriate activation and premature initiation of catagen, thereby illustrating the significance of latent transforming growth factor-beta-binding protein interaction with transforming growth factor-beta in the targeting and activation of latent transforming growth factor-beta in addition to previously reported effects on small latent complex secretion.
Collapse
Affiliation(s)
- Roberta Mazzieri
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Rechberger T, Jakowicki JA, Krajewska WM. TGF-β signaling is disrupted in endometrioid-type endometrial carcinomas. Gynecol Oncol 2004; 95:173-80. [PMID: 15385128 DOI: 10.1016/j.ygyno.2004.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Previous studies have demonstrated deregulation of the expression and changes in the intracellular distribution of TGF-beta pathway components in human endometrial cancer (EC). The aim of this study was to assess the relationship between the expression of TGF-beta cascade components, including TGF-beta receptor type I (TGF beta RI) and type II (TGF beta RII), SMAD2, SMAD3, SMAD4, and clinicopathological features--tumor grade, FIGO classification, and depth of myometrial invasion--of type I (endometrioid-type) ECs to give some insight into the role of TGF-beta cascade components in endometrial tumorigenesis. METHODS The expression of TGF beta RI, TGF beta RII, SMAD2, SMAD3, and SMAD4 was evaluated both at the mRNA and protein level using reverse transcription polymerase chain reaction (RT-PCR) and ELISA, respectively. RESULTS Infiltrating endometrial carcinomas (less and more than half of the myometrial wall thickness) express significantly higher TGF beta RII protein level compared with non-infiltrating tumors (P = 0.04 and P = 0.01, respectively). Decreased level of SMAD2 and SMAD4 mRNAs was observed in the uterine tumors infiltrating less and more than half of the myometrial wall (P = 0.03 and P = 0.02, respectively) compared with noninfiltrating ECs. Significantly higher SMAD4 protein level in the cytoplasmic fraction of ECs was found when tumor grade and depth of myometrial invasion were considered (P < 0.05). Generally, tumor progression was associated with a decreased number of cases characterized by the presence of SMADs in the nuclear fraction only. CONCLUSION Our data suggest that disturbances of the TGF beta RII and SMAD4 expression as well as localization of SMADs may be important to the infiltration of the myometrial wall by the type I endometrial carcinomas.
Collapse
MESH Headings
- Activin Receptors, Type I/biosynthesis
- Activin Receptors, Type I/genetics
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Intracellular Space/metabolism
- Protein Serine-Threonine Kinases
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/physiology
- Smad2 Protein
- Smad3 Protein
- Smad4 Protein
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transforming Growth Factor beta/physiology
Collapse
|
32
|
Li AG, Wang D, Feng XH, Wang XJ. Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 2004; 23:1770-81. [PMID: 15057277 PMCID: PMC394237 DOI: 10.1038/sj.emboj.7600183] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/03/2004] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor beta1 (TGFbeta1), a potent keratinocyte growth inhibitor, has been shown to be overexpressed in keratinocytes in certain inflammatory skin diseases and has been thought to counteract the effects of other growth factors at the site of inflammation. Surprisingly, our transgenic mice expressing wild-type TGFbeta1 in the epidermis using a keratin 5 promoter (K5.TGFbeta1(wt)) developed inflammatory skin lesions, with gross appearance of psoriasis-like plaques, generalized scaly erythema, and Koebner's phenomenon. These lesions were characterized by epidermal hyperproliferation, massive infiltration of neutrophils, T lymphocytes, and macrophages to the epidermis and superficial dermis, subcorneal microabscesses, basement membrane degradation, and angiogenesis. K5.TGFbeta1(wt) skin exhibited multiple molecular changes that typically occur in human Th1 inflammatory skin disorders, such as psoriasis. Further analyses revealed enhanced Smad signaling in transgenic epidermis and dermis. Our study suggests that certain pathological condition-induced TGFbeta1 overexpression in the skin may synergize with or induce molecules required for the development of Th1 inflammatory skin disorders.
Collapse
Affiliation(s)
- Allen G Li
- Departments of Otolaryngology, Dermatology, Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA
| | - Donna Wang
- Departments of Otolaryngology, Dermatology, Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA
| | - Xin-Hua Feng
- Departments of Surgery, Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiao-Jing Wang
- Departments of Otolaryngology, Dermatology, Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA
- Mail code R&D 46, VAMC Bldg. 103, Rm. F-221, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA. Tel.: +1 503 220 8262x54273; Fax: +1 503 402 2817; E-mail:
| |
Collapse
|
33
|
Karatsaidis A, Schreurs O, Axéll T, Helgeland K, Schenck K. Inhibition of the Transforming Growth Factor-β/Smad Signaling Pathway in the Epithelium of Oral Lichen. J Invest Dermatol 2003; 121:1283-90. [PMID: 14675171 DOI: 10.1046/j.1523-1747.2003.12633.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The basal cells in epithelium of the erythematous form of oral lichen display hyperproliferation compared with normal oral mucosa. In this study we examined whether this is associated with disrupted production, activation, or signal transduction of the epithelial growth inhibitor transforming growth factor (TGF) beta1. In situ immunostaining showed that most epithelial cells in normal oral mucosa had nuclear and cytoplasmic Smad4 and phosphorylated Smad2/3, but expressed little or no Smad7. Expression of latency-associated peptide TGF-beta1, latent TGF-beta binding protein 1, TGF-beta type I receptor, and TGF-beta type II receptor was readily seen, but only very little TGF-beta1 was activated. In erythematous oral lichen, basal and lower spinous epithelial layers showed staining for latency-associated peptide TGF-beta1, TGF-beta type I receptor, and TGF-beta type II receptor. A band with scanty staining for these molecules, but with marked staining for active TGF-beta1, was seen in the upper spinous and granular layers. Numbers of epithelial cell nuclei with Smad4 and phosphorylated Smad2/3 staining were significantly reduced in erythematous oral lichen compared with normal oral mucosa. Basal and suprabasal cell layers in erythematous oral lichen showed strong cytoplasmic Smad7 protein staining, but in spinous and granular layers Smad7 was localized to the cell membrane. In situ hybridization showed strong Smad7 mRNA expression in almost all basal keratinocytes in erythematous oral lichen; by contrast, no or occasionally very weak Smad7 mRNA expression was seen in these cells in normal oral mucosa. The observations indicate that inhibition of the TGF-beta/Smad pathway may account for the hyperproliferation of keratinocytes in erythematous oral lichen.
Collapse
Affiliation(s)
- Andreas Karatsaidis
- Department of Oral Biology, Dental Faculty, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Peter M Siegel
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
35
|
Fortunel NO, Hatzfeld JA, Rosemary PA, Ferraris C, Monier MN, Haydont V, Longuet J, Brethon B, Lim B, Castiel I, Schmidt R, Hatzfeld A. Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-beta1 concentrations. J Cell Sci 2003; 116:4043-52. [PMID: 12953061 DOI: 10.1242/jcs.00702] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously introduced the concept of high proliferative potential-quiescent (HPP-Q) cells to refer to primitive human hematopoietic progenitors, on which transforming growth factor-beta1 (TGF-beta1) exerts a pleiotropic effect. TGF-beta1 confers to these slow-dividing cells a mitogenic receptor(low) phenotype and maintains immature properties by preventing differentiation and apoptosis. However, the effect of TGF-beta1 on long-term expansion has not yet been clearly demonstrated. Here, we describe the characterization of a human skin keratinocyte subpopulation, highly enriched for primitive epidermal precursors, on the basis of high adhesion capacity (Adh+++) and low expression of the epidermal growth factor receptor (Adh+++EGF-Rlow). In our standard culture condition without feeder cells, the mean estimated output for cells from an unfractionated population of primary foreskin keratinocytes was 10(7)-10(8), increasing to 10(12)-10(13) in cultures initiated with selected Adh+++EGF-Rlow precursors. Characterization of these cells revealed a hitherto unknown property of TGF-beta1: its addition at a very low concentration (10 pg/ml) in long-term cultures induces a very significant additional increase of expansion. In this optimized system, outputs obtained in cultures initiated with Adh+++EGF-Rlow cells repeatedly reached 10(16)-10(17) ( approximately 60 population doublings, approximately 4 x 10(18) keratinocytes produced per clonogenic cell present in the initial population). At the molecular level, this effect is associated with an increase in Smad1, Smad2 and Smad3 phosphorylation and an increase in alpha6 and beta1 integrin expression. No such effect could be observed on mature keratinocytes with low adhesion capacity (Adh-/+). We finally demonstrated that the progeny of Adh+++EGF-Rlow precursors after long-term expansion is still capable of generating a pluristratified epidermis in a model for skin reconstruction. In conclusion, after further characterizing the phenotype of primitive epidermal precursors, we demonstrated a new function of TGF-beta1, which is to promote undifferentiated keratinocyte amplification.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Laboratoire de Biologie des Cellules Souches Humaines, CNRS-UPR 9045, Institut André Lwoff, 94800 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bigliardi PL, Sumanovski LT, Büchner S, Rufli T, Bigliardi-Qi M. Different expression of mu-opiate receptor in chronic and acute wounds and the effect of beta-endorphin on transforming growth factor beta type II receptor and cytokeratin 16 expression. J Invest Dermatol 2003; 120:145-52. [PMID: 12535211 DOI: 10.1046/j.1523-1747.2003.12018.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is evidence that neuropeptides, especially the opiate receptor agonists, are involved in wound healing. We have previously observed that beta-endorphin, the endogenous ligand for the mu-opiate receptor, stimulates the expression of cytokeratin 16 in a dose-dependent manner in human skin organ cultures. Cytokeratin 16 is expressed in hyperproliferative epidermis such as psoriasis and wound healing. Therefore we were interested to study whether epidermal mu-opiate receptor expression is changed at the wound margins in acute and chronic wounds. Using classical and confocal microscopy, we were able to compare the expression level of mu-opiate receptors and the influence of beta-endorphin on transforming growth factor beta type II receptor in organ culture. Our results show indeed a significantly decreased expression of mu-opiate receptors on keratinocytes close to the wound margin of chronic wounds compared to acute wounds. Additionally beta-endorphin upregulates the expression of transforming growth factor beta type II receptor in human skin organ cultures. These results suggest a crucial role of opioid peptides not only in pain control but also in wound healing. Opioid peptides have already been used in animal models in treatment of wounds; they induce fibroblast proliferation and growth of capillaries, and accelerate the maturation of granulation tissue and the epithelization of the defect. Furthermore opioid peptides may fine-tune pain and the inflammatory response while healing takes place. This new knowledge could potentially be used to design new locally applied drugs to improve the healing of painful chronic wounds.
Collapse
Affiliation(s)
- P L Bigliardi
- Department of Dermatology, University of Basel and Kantonsspital Schauffhausen, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Sung SY, Chung LWK. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 2002; 70:506-21. [PMID: 12492493 DOI: 10.1046/j.1432-0436.2002.700905.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maintenance of cell and tissue homeostasis is dependent upon the dynamic balance of cell proliferation, differentiation, and apoptosis through interactions between cells and their microenvironment. The unique prostatic cellular phenotypes are induced and maintained by interaction between epithelium and adjacent stroma through intimate intercellular signaling pathways. In this article, we summarize current advances in the tumor-stroma interaction and its biologic and therapeutic implications. We specifically emphasize current studies of the possible factors driving the "vicious cycle" between stroma and emerging prostate tumor epithelial cells that may be responsible for carcinogenesis and metastasis to bone. Stroma responds both genotypically and phenotypically to tumor epithelium upon co-culture under 3-D conditions. Likewise, the emerging carcinoma responds to stromal signals that drive progression to malignancy. A vicious cycle mediated by soluble and insoluble molecules secreted by tumor cells and stroma appear be the critical factors supporting and sustaining tumor colonization in bone. Co-targeting tumor and stroma with therapeutic agents has yielded promising results both in pre-clinical models of prostate cancer and bony metastasis and in clinical trials of patients treated with a dual tumor and stroma targeting strategies. In conclusion, understanding and targeting the interaction of the tumor and its stromal microenvironmant may improve the prognosis, reduce the suffering and increase the survival of patients with advanced cancer metastasis.
Collapse
Affiliation(s)
- Shian-Ying Sung
- Department of Urology and Winship Cancer Institute Emory University School of MedicineAtlanta, Georgia 30322, USA
| | | |
Collapse
|
38
|
Bauer BS, Tredget EE, Marcoux Y, Scott PG, Ghahary A. Latent and active transforming growth factor beta1 released from genetically modified keratinocytes modulates extracellular matrix expression by dermal fibroblasts in a coculture system. J Invest Dermatol 2002; 119:456-63. [PMID: 12190870 DOI: 10.1046/j.1523-1747.2002.01837.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor beta1 is a multifunctional cytokine involved in many aspects of wound healing. Here we report the effects of both latent and active transforming growth factor beta1 released from genetically modified keratinocytes on extracellular matrix expression by dermal fibroblasts in a coculture system. Human keratinocytes were genetically modified with adenovirus containing cDNA for latent transforming growth factor beta1 (AdTGF-beta1) or active transforming growth factor beta1 (AdTGF-beta1(223/225)) or LacZ and cultured with human dermal fibroblasts. Northern blotting for mRNA confirmed that keratinocytes were successfully transduced with the adenoviruses as the cDNA transcripts are smaller than native transforming growth factor beta1 mRNA. An enzyme-linked immunosorbent assay specific for transforming growth factor beta1 demonstrated that the transforming growth factor beta1 produced by the genetically modified keratinocytes was able to pass through the membrane separating the two cell layers. Levels of transforming growth factor beta1 were significantly higher for both latent (p < 0.0001) and active (p < 0.0001) transforming growth factor beta1 compared to the LacZ control. Without acid activation of samples, keratinocytes transduced with the active transforming growth factor beta1 construct exhibited significantly higher levels of transforming growth factor beta1 than either the latent construct or the LacZ control (p < 0.0001). The transforming growth factor beta1 produced was biologically active, as shown by the plasminogen activator inhibitor assay (p < 0.0001). To demonstrate that transforming growth factor beta1 had an effect on underlying fibroblasts, mRNA was extracted and analyzed using Northern analysis. Latent transforming growth factor beta1 significantly increased the expression of type I collagen mRNA (p < 0.05) but did not significantly affect collagenase mRNA. Active transforming growth factor beta1 significantly increased type I collagen mRNA (p < 0.005) while also decreasing collagenase mRNA (p < 0.05). These results illustrate the ability of increased levels of transforming growth factor beta1 to override the effects of normal keratinocytes on the behavior of dermal fibroblasts.
Collapse
Affiliation(s)
- Barbara S Bauer
- Department of Surgery, Wound Healing Research Group; Department of Biochemistry, and Division of Plastic and Reconstructive Surgery, Division of Critical Care, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
39
|
Chan T, Ghahary A, Demare J, Yang L, Iwashina T, Scott PG, Tredget EE. Development, characterization, and wound healing of the keratin 14 promoted transforming growth factor-beta1 transgenic mouse. Wound Repair Regen 2002; 10:177-87. [PMID: 12100379 DOI: 10.1046/j.1524-475x.2002.11101.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta1 is a fibrogenic cytokine that is important in the development of fibroproliferative disorders of the skin after injury. To investigate the role of transforming growth factor-beta1 produced by keratinocytes during wound healing, a plasmid with the human transforming growth factor-beta1 gene coupled with the keratin 14 promoter (pG3Z: K14-TGF-beta1) was constructed. The construct was tested successfully in vitro before being used to generate transgenic animals, which were subsequently bred into homozygous and heterozygous lines. Genotype screening of founders and progeny was performed by Southern blotting and targeting of the transgene to the epidermis by the keratin 14 promoter was shown by reverse transcription polymerase chain reaction. The major phenotypic change observed in the transgenic animals was "scruffiness" of the fur attributed to transgene expression in the skin, seen primarily in the homozygous line. A significant reduction in the rate of reepithelialization of full-thickness excisional wounds of dorsal skin was seen in homozygous animals compared with normal litter-mate controls at day 7 (p < 0.05, Fisher's Exact test) and day 9 (p < 0.01) postwounding. Wounds in heterozygous animals also healed more slowly at day 9 (p < 0.01). Northern analysis of mRNA extracted from the wounds showed increased human transforming growth factor-beta1 message levels in homozygous and heterozygous animals, maximal at day 5. Significant increases in transforming growth factor-beta1 activity in healing wounds measured using the plasminogen activator inhibitor-1/luciferase assay were found in the transgenic strains at day 9 postinjury as compared with the normal litter-mate control mice (p < 0.001, ANOVA). Type I procollagen mRNA expression was higher in the homozygous and heterozygous animals, with the highest levels reached at day 9. By day 5 postwounding, biopsies of both homozygous and heterozygous tissues were significantly higher in collagen as compared with wounds in control animals (p < 0.05, ANOVA). Based on these data, the K14-TGF-beta1 transgenic mouse shows that excessive latent transforming growth factor-beta1 produced in the epidermal layer of the skin delays reepithelialization in excisional wounds but subsequently the cells of the epidermis stimulate dermal fibroblasts leading to fibrosis through a paracrine mechanism.
Collapse
Affiliation(s)
- Teddy Chan
- Wound Healing Research Group, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2002; 83:1-54. [PMID: 11665716 DOI: 10.1016/s0065-230x(01)83001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated in oncogenesis since the time of its discovery almost 20 years ago. The complex, multifunctional activities of TGF-beta endow it with both tumor suppressor and tumor promoting activities, depending on the stage of carcinogenesis and the responsivity of the tumor cell. Dysregulation or alteration of TGF-beta signaling in tumorigenesis can occur at many different levels, including activation of the ligand, mutation or transcriptional suppression of the receptors, or alteration of downstream signal transduction pathways resulting from mutation or changes in expression patterns of signaling intermediates or from changes in expression of other proteins which modulate signaling. New insights into signaling from the TGF-beta receptors, including the identification of Smad signaling pathways and their interaction with mitogen-activated protein (MAP) kinase pathways, are providing an understanding of the changes involved in the change from tumor suppressor to tumor promoting activities of TGF-beta. It is now appreciated that loss of sensitivity to inhibition of growth by TGF-beta by most tumor cells is not synonymous with complete loss of TGF-beta signaling but rather suggests that tumor cells gain advantage by selective inactivation of the tumor suppressor activities of TGF-beta with retention of its tumor promoting activities, especially those dependent on cross talk with MAP kinase pathways and AP-1.
Collapse
Affiliation(s)
- E Piek
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-8395, USA
| | | |
Collapse
|
41
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
42
|
Yang L, Chan T, Demare J, Iwashina T, Ghahary A, Scott PG, Tredget EE. Healing of burn wounds in transgenic mice overexpressing transforming growth factor-beta 1 in the epidermis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:2147-57. [PMID: 11733365 PMCID: PMC1850602 DOI: 10.1016/s0002-9440(10)63066-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play an important role in wound healing. Transgenic mice overexpressing TGF-beta in the skin under control of epidermal-specific promoters have provided models to study the effects of increased TGF-beta on epidermal cell growth and cutaneous wound repair. To date, most of these studies used transgenic mice that overexpress active TGF-beta in the skin by modulating the latency-associated-peptide to prevent its association with active TGF-beta. The present study is the first to use transgenic mice that overexpress the natural form of latent TGF-beta 1 in the epidermis, driven by the keratin 14 gene promoter to investigate the effects of locally elevated TGF-beta 1 on the healing of partial-thickness burn wounds made on the back of the mice using a CO(2) laser. Using this model, we demonstrated activation of latent TGF-beta after wounding and determined the phenotypes of burn wound healing. We found that introduction of the latent TGF-beta1 gene into keratinocytes markedly increases the release and activation of TGF-beta after burn injury. Elevated local TGF-beta significantly inhibited wound re-epithelialization in heterozygous (42% closed versus 92% in controls, P < 0.05) and homozygous (25% versus 92%, P < 0.01) animals at day 12 after wounding. Interestingly, expression of type I collagen mRNA and hydroxyproline significantly increased in the wounds of transgenic mice, probably as a result of a paracrine effect of the transgene.
Collapse
Affiliation(s)
- L Yang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Wound Healing Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
44
|
Ito Y, Sarkar P, Mi Q, Wu N, Bringas P, Liu Y, Reddy S, Maxson R, Deng C, Chai Y. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 2001; 236:181-94. [PMID: 11456453 DOI: 10.1006/dbio.2001.0332] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are critical regulators for epithelial growth and can alter the differentiation of keratinocytes. Transduction of TGF-beta signaling depends on the phosphorylation and activation of Smad proteins by heteromeric complexes of ligand-specific type I and II receptors. To understand the function of TGF-beta and activin-specific Smad, we generated transgenic mice that overexpress Smad2 in epidermis under the control of keratin 14 promoter. Overexpression of Smad2 increases endogenous Smad4 and TGF-beta 1 expression while heterozygous loss of Smad2 reduces their expression levels, suggesting a concerted action of Smad2 and -4 in regulating TGF-beta signaling during skin development. These transgenic mice have delayed hair growth, underdeveloped ears, and shorter tails. In their skin, there is severe thickening of the epidermis with disorganized epidermal architecture, indistinguishable basement membrane, and dermal fibrosis. These abnormal phenotypes are due to increased proliferation of the basal epidermal cells and abnormalities in the program of keratinocyte differentiation. The ectodermally derived enamel structure is also abnormal. Collectively, our study presents the first in vivo evidence that, by providing an auto-feedback in TGF-beta signaling, Smad2 plays a pivotal role in regulating TGF-beta-mediated epidermal homeostasis.
Collapse
Affiliation(s)
- Y Ito
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu X, Alexander V, Vijayachandra K, Bhogte E, Diamond I, Glick A. Conditional epidermal expression of TGFbeta 1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia. Proc Natl Acad Sci U S A 2001; 98:9139-44. [PMID: 11481479 PMCID: PMC55386 DOI: 10.1073/pnas.161016098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To study the role of transforming growth factor type beta1 (TGFbeta1) in epidermal growth control and disease, we have generated a conditional expression system by using the bovine keratin 5 promoter to drive expression of the tetracycline-regulated transactivators tTA and rTA, and a constitutively active mutant of TGFbeta1 linked to the tetO target sequence for the transactivator. This model allows for induction or suppression of exogenous TGFbeta1 with oral doxycycline. Maximal expression of TGFbeta1 during gestation caused embryonic lethality, whereas partial suppression allowed full-term development with neonatal lethality characterized by runting, epidermal hypoproliferation, and blocked hair follicle growth. With complete suppression, phenotypically normal double transgenic (DT) mice were born. Acute induction of TGFbeta1 in the epidermis of adult mice inhibited basal and follicular keratinocyte proliferation and reentry of telogen hair follicles into anagen. However, chronic expression of TGFbeta1 in adult DTs caused severe alopecia characterized by epidermal and follicular hyperproliferation, apoptosis, as well as dermal fibrosis and inflammation. Readministration of doxycycline to tTA DT mice caused hair regrowth within 14 days. The mRNA and protein for Smad7, an inhibitor of TGFbeta signaling, were up-regulated in the epidermis and hair follicles of alopecic skin and rapidly induced in rTA mice in parallel with the TGFbeta1 transgene, suggesting that the hyperproliferative phenotype may result in part from development of a sustained negative feedback loop. Thus, this conditional expression system provides an important model for understanding the role of TGFbeta1 during development, in normal skin biology, and in disease.
Collapse
Affiliation(s)
- X Liu
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fujimoto K, Sheng H, Shao J, Beauchamp RD. Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp Cell Res 2001; 266:239-49. [PMID: 11399052 DOI: 10.1006/excr.2000.5229] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Invasion is a defining event in carcinoma progression. In general, invasive carcinoma is characterized by an epithelial-fibroblastoid conversion associated with loss of cell-cell adhesion receptors such as E-cadherin and beta-catenin. We report here that TGF-beta1 promotes the invasiveness by modulating the alterations of cellular plasticity including a loss of cell-cell contact in Ras-transformed epithelial cells. In order to examine the role of TGF-beta1 in the Ras-induced responses, intestinal epithelial cells expressing a conditionally activated Ha-Ras(Val12) (RIE-iRas cells) were used in this study. Induced expression of activated Ha-Ras(Val12) caused morphologic transformation of the RIE-iRas cells with an increase in vimentin expression and a decrease of E-cadherin levels. There was also redistribution of beta-catenin from the cytoplasm to the nucleus after the induction of Ras. TGF-beta1 treatment enhanced both the decrease in E-cadherin levels and the redistribution of beta-catenin. Interestingly, the activation of Ras markedly decreased the level of TGF-beta receptor type II (TbetaRII) in RIE-iRas cells. However, the expression of plasminogen activator inhibitor-1, which is known to be transcriptionally induced by TGF-beta1, was strongly induced by TGF-beta1 despite the marked downregulation of TbetaRII. The induction of Ha-Ras(Val12) markedly increased the invasiveness in RIE-iRas cells, as evaluated by a collagen type I-coated Boyden-chamber assay, and the Ras-mediated invasiveness was significantly enhanced by TGF-beta1 treatment. Expression of a dominant-negative form of TbetaRII in the RIE-iRas cells abrogated both growth-inhibitory and invasion responses to TGF-beta1. Collectively, these results suggest that TGF-beta1 and oncogenic Ras collaborate in promoting cellular invasiveness in intestinal epithelial cells. The enhancement of invasiveness was correlated with decreased E-cadherin levels and subcellular distribution of beta-catenin. The enhancement of oncogenic Ras-mediated cell transformation by TGF-beta1 occurs via TbetaRII.
Collapse
Affiliation(s)
- K Fujimoto
- Department of Surgery, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The TGFbeta signaling pathway is one of the most important mechanisms in the maintenance of epithelial homeostasis. Alterations leading to either the repression or enhancement of this pathway have been shown to affect cancer development. Although TGFbeta inhibits growth of normal epithelial cells, it is paradoxically overexpressed in many epithelial cancers. It has been postulated that TGFbeta acts as a tumor suppressor at the early stages of carcinogenesis, but overexpression of TGFbeta at late stages of carcinogenesis may be a critical factor for tumor invasion and metastasis. The detailed mechanisms regulating this functional switch of TGFbeta remain to be elucidated. The relevance of the TGFbeta signaling pathway to the development of primary epithelial tumors in man has been further substantiated by the discovery of mutations in TGFbeta receptors and in the downstream signaling mediators, the Smads. The epidermis is one of the major targeting tissues for TGFbeta signaling. Chemical carcinogenesis studies have revealed a paradoxical effect of TGFbeta on skin carcinogenesis: inhibition of papilloma formation but promotion of malignant conversion. In addition, deletion of the TGFbeta type II receptor accelerates skin carcinogenesis. This review focuses on our current understanding of the role of TGFbeta signaling in skin carcinogenesis.
Collapse
Affiliation(s)
- X J Wang
- Departments of Dermatology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
48
|
Dahler AL, Cavanagh LL, Saunders NA. Suppression of keratinocyte growth and differentiation by transforming growth factor beta1 involves multiple signaling pathways. J Invest Dermatol 2001; 116:266-74. [PMID: 11180003 DOI: 10.1046/j.1523-1747.2001.01243.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor beta1 treatment of keratinocytes results in a suppression of differentiation, an induction of extracellular matrix production, and a suppression of growth. In this study we utilized markers specific for each of these functions to explore the signaling pathways involved in mediating these transforming-growth-factor-beta1-induced activities. In the first instance, we found that the induction of extracellular matrix production (characterized by 3TP-Lux reporter activity) was induced in both keratinocytes and a keratinocyte-derived carcinoma cell line, SCC25, in a dose-dependent manner. Furthermore, transforming growth factor beta1 also suppressed the differentiation-specific marker gene, transglutaminase type 1, in both keratinocytes and SCC25 cells. In contrast, transforming growth factor beta1 inhibited proliferation of keratinocytes but did not cause growth inhibition in the SCC25 cells. Transforming-growth-factor-beta1-induced growth inhibition of keratinocytes was characterized by decreases in DNA synthesis, accumulation of hypophosphorylated Rb, and the inhibition of the E2F:Rb-responsive promoter, cdc2, and an induction of the p21 promoter. When the negative regulator of transforming growth factor beta1 signaling, SMAD7, was overexpressed in keratinocytes it could prevent transforming-growth-factor-beta1-induced activation of the 3TP-Lux and the p21 promoter. SMAD7 could also prevent the suppression of the transglutaminase type 1 by transforming growth factor beta1 but it could not inhibit the repression of the cdc2 promoter. These data indicate that the induction of 3TP-Lux and p21 and the suppression of transglutaminase type 1 are mediated by a different proximate signaling pathway to that regulating the suppression of the cdc2 gene. Combined, these data indicate that the regulation of transforming growth factor beta1 actions are complex and involve multiple signaling pathways.
Collapse
Affiliation(s)
- A L Dahler
- Epithelial Pathobiology Group, Center for Immunology and Cancer Research, University of Queensland Department of Medicine, Princess Alexandra Hospital, Ipswich Road, Brisbane, Queensland, Australia 4102
| | | | | |
Collapse
|
49
|
Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. MOLECULAR MEDICINE TODAY 2000; 6:324-9. [PMID: 10904250 DOI: 10.1016/s1357-4310(00)01756-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.
Collapse
Affiliation(s)
- C C Park
- Joint Center for Radiation Therapy, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
50
|
Gold LI, Jussila T, Fusenig NE, Stenbäck F. TGF-beta isoforms are differentially expressed in increasing malignant grades of HaCaT keratinocytes, suggesting separate roles in skin carcinogenesis. J Pathol 2000; 190:579-88. [PMID: 10727984 DOI: 10.1002/(sici)1096-9896(200004)190:5<579::aid-path548>3.0.co;2-i] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The three mammalian isoforms of transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) are potent regulators of cell growth, differentiation, and extracellular matrix deposition. To study their role in skin carcinogenesis, normal human keratinocytes, early (31) and late (310) passage immortalized keratinocytes (HaCaT cells), and five HaCaT-ras clones exhibiting benign (A-5, I-7), malignant (II-4, A-5 RT1), and highly aggressive (A-5 RT3) tumourigenic phenotypes were examined for the expression of TGF-beta isoforms, by immunohistochemistry. This was performed under in vivo conditions, in surface transplants and subcutaneously growing tumours in nude mice. Generally, all tissues that formed keratinized epithelia demonstrated an immunostaining pattern similar to normal human skin. TGF-beta1 was localized to the upper differentiated layers, the stratum granulosum and corneum, in a perimembranous pattern, whereas TGF-beta2 and, weaker, TGF-beta3 immunostaining was present in all suprabasal layers of normal keratinizing epithelia. In contrast, non-keratinizing transplants of non-tumourigenic or highly aggressive cells showed little to no immunoreactivity for TGF-beta1. Whereas TGF-beta2 expression was moderate in the upper layers of non-tumourigenic epithelia, large tumour cells of the malignant HaCaT-ras clones, particularly at the invasion front, were strongly positive for TGF-beta2. TGF-beta3 immunostaining was most pronounced in the stroma of malignant tumours, implying its paracrine induction by the malignant tumour transplants. These results suggest differential functions for each TGF-beta isoform in epidermal carcinogenesis, such that TGF-beta1 is associated with the more differentiated state, TGF-beta2 with highly malignant and invading cells, and TGF-beta3 with tumour stroma formation and angiogenesis. Furthermore, the expression of TGF-betas by both early- and late-stage tumours implies that the isoforms may have distinct functions at different stages of malignancy, supporting their dual role in skin carcinogenesis.
Collapse
Affiliation(s)
- L I Gold
- Department of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|