1
|
Hedaya OM, Venkata Subbaiah KC, Jiang F, Xie LH, Wu J, Khor ES, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Nat Commun 2023; 14:6166. [PMID: 37789015 PMCID: PMC10547706 DOI: 10.1038/s41467-023-41799-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we data-mined human and mouse heart ribosome profiling analyses and identified a double-stranded RNA (dsRNA) structure within the GATA4 uORF that cooperates with the start codon to augment uORF translation and inhibits mORF translation. A trans-acting RNA helicase DDX3X inhibits the GATA4 uORF-dsRNA activity and modulates the translational balance of uORF and mORF. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the broad utility of uORF-dsRNA- or mORF-targeting ASO to regulate mORF translation for other mRNAs. This work demonstrates that the uORF-dsRNA element regulates the translation of multiple mRNAs as a generalizable translational control mechanism. Moreover, we develop a valuable strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon.
Collapse
Affiliation(s)
- Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
2
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Hedaya OM, Subbaiah KCV, Jiang F, Xie LH, Wu J, Khor E, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545153. [PMID: 37397986 PMCID: PMC10312771 DOI: 10.1101/2023.06.15.545153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we identified a double-stranded RNA (dsRNA) structure residing within the GATA4 uORF that augments uORF translation and inhibits mORF translation. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the general utility of uORF-dsRNA- or mORF- targeting ASO to regulate mORF translation for other mRNAs. Our work demonstrates a regulatory paradigm that controls translational efficiency and a useful strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon. Bullet points for discoveries dsRNA within GATA4 uORF activates uORF translation and inhibits mORF translation. ASOs that target the dsRNA can either inhibit or enhance GATA4 mORF translation. ASOs can be used to impede hypertrophy in human cardiomyocytes and mouse hearts.uORF- and mORF-targeting ASOs can be used to control translation of multiple mRNAs.
Collapse
Affiliation(s)
- Omar M. Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Kadiam C. Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| |
Collapse
|
4
|
Hwang S, Kim SH, Yoo KH, Chung MH, Lee JW, Son KH. Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol 2022; 23:55. [DOI: 10.1186/s12860-022-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDoxorubicin (DOX), which is widely used in cancer treatment, can induce cardiomyopathy. One of the main mechanisms whereby DOX induces cardiotoxicity involves pyroptosis through the NLR family pyrin domain containing 3 (NLRP3) inflammasome and gasdermin D (GSDMD). Increased NAPDH oxidase (NOX) and oxidative stress trigger pyroptosis. Exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases reactive oxygen species (ROS) production by inactivating NOX. Here, we examined whether 8-OHdG treatment can attenuate DOX-induced pyroptosis in H9c2 cardiomyocytes. Exposure to DOX increased the peroxidative glutathione redox status and NOX1/2/4, toll-like receptor (TLR)2/4, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while an additional 8-OHdG treatment attenuated these effects. Furthermore, DOX induced higher expression of NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a c-terminal caspase recruitment domain (ASC), and pro-caspase-1. Moreover, it increased caspase-1 activity, a marker of pyroptosis, and interleukin (IL)-1β expression. All these effects were attenuated by 8-OHdG treatment. In addition, the expression of the cardiotoxicity markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was increased by DOX, whereas the increase of ANP and BNP induced by DOX treatment was reversed by 8-OHdG. In conclusion, exogenous 8-OHdG attenuated DOX-induced pyroptosis by decreasing the expression of NOX1/2/3, TLR2/4, and NF-κB. Thus, 8-OHdG may attenuate DOX-induced cardiotoxicity through the inhibition of pyroptosis.
Collapse
|
5
|
Song YL, Yang MH, Zhang S, Wang H, Kai KL, Yao CX, Dai FF, Zhou MJ, Li JB, Wei ZR, Yin Z, Zhu WG, Xue L, Zang MX. A GRIP-1-EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 2022; 41:5223-5237. [PMID: 36309571 DOI: 10.1038/s41388-022-02521-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yang-Liu Song
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kun-Lun Kai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Biao Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongnan Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Cancer Center of Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
7
|
Soltani S, Emadi R, Haghjooy Javanmard S, Kharaziha M, Rahmati A, Thakur VK, Lotfian S. Development of an Injectable Shear-Thinning Nanocomposite Hydrogel for Cardiac Tissue Engineering. Gels 2022; 8:121. [PMID: 35200502 PMCID: PMC8871917 DOI: 10.3390/gels8020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapeutic method for cardiac tissue regeneration. However, to monitor the fate of MSCs for tissue repair, a better stem cell delivery carrier is needed. Developing a unique injectable and shear-thinning dual cross-linked hybrid hydrogel for MSC delivery for cardiac tissue engineering is highly desirable. This hydrogel was synthesised using guest: host reaction based on alginate-cyclodextrin (Alg-CD) and adamantane-graphene oxide (Ad-GO). Here, the role of macromere concentration (10 and 12%) on the MSC function is discussed. Our hybrid hydrogels reveal a suitable oxygen pathway required for cell survival. However, this value is strongly dependent on the macromere concentrations, while the hydrogels with 12% macromere concentration (2DC12) significantly enhanced the oxygen permeability value (1.16-fold). Moreover, after two weeks of culture, rat MSCs (rMSCs) encapsulated in Alg-GO hydrogels expressed troponin T (TNT) and GATA4 markers. Noticeably, the 2DC12 hydrogels enhance rMSCs differentiation markers (1.30-times for TNT and 1.21-times for GATA4). Overall, our findings indicate that tuning the hydrogel compositions regulates the fate of encapsulated rMSCs within hydrogels. These outcomes may promote the advancement of new multifunctional platforms that consider the spatial and transient guidelines of undifferentiated cell destiny and capacity even after transplantation for heart tissue regeneration.
Collapse
Affiliation(s)
- Samaneh Soltani
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Rahmatollah Emadi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Saeid Lotfian
- Faculty of Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| |
Collapse
|
8
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Yoshimoto K, Minier N, Yang J, Imamura S, Stocking K, Patel J, Terada S, Hirai Y, Kamei KI. Recapitulation of Human Embryonic Heartbeat to Promote Differentiation of Hepatic Endoderm to Hepatoblasts. Front Bioeng Biotechnol 2020; 8:568092. [PMID: 33015019 PMCID: PMC7506096 DOI: 10.3389/fbioe.2020.568092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Hepatic development requires multiple sequential physicochemical environmental changes in an embryo, and human pluripotent stem cells (hPSCs) allow for the elucidation of this embryonic developmental process. However, the current in vitro methods for hPSC-hepatic differentiation, which employ various biochemical substances, produce hPSC-derived hepatocytes with less functionality than primary hepatocytes, due to a lack of physical stimuli, such as heart beating. Here, we developed a microfluidic platform that recapitulates the beating of a human embryonic heart to improve the functionality of hepatoblasts derived from hepatic endoderm (HE) in vitro. This microfluidic platform facilitates the application of multiple mechanical stretching forces, to mimic heart beating, to cultured hepatic endoderm cells to identify the optimal stimuli. Results show that stimulated HE-derived hepatoblasts increased cytochrome P450 3A (CYP3A) metabolic activity, as well as the expression of hepatoblast functional markers (albumin, cytokeratin 19 and CYP3A7), compared to unstimulated hepatoblasts. This approach of hepatic differentiation from hPSCs with the application of mechanical stimuli will facilitate improved methods for studying human embryonic liver development, as well as accurate pharmacological testing with functional liver cells.
Collapse
Affiliation(s)
- Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Cellular and Molecular Biomechanics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nicolas Minier
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Jiandong Yang
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | - Satoshi Imamura
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Kaylene Stocking
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Janmesh Patel
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Yoshikazu Hirai
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Zheng M, Kang L, Uchino T, Liu G, Wang Y, Ono K. Mitogen-activated protein kinase p38 modulates pacemaker ion channels differentiation in P19-derived pluripotent cells. J Physiol Sci 2020; 70:39. [PMID: 32895058 PMCID: PMC10717480 DOI: 10.1186/s12576-020-00766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Signal regulators during early cardiogenetic differentiation for the cellular automaticity are largely unknown. Our investigations were designed to clarify the role of transcription factors and their modulators in P19-derived cardiomyocytes to the expression of cardiac pacemaker ion channels. Transcription factors Csx/Nkx2.5 and GATA4 but not MEF2C were markedly inhibited by p38 MAP kinase inhibition in a distinct manner; expression but not phosphorylation of GATA4 was reduced by inhibition of p38 MAP kinase actions. In the presence of an ERK1/2,5 inhibitor PD98059 or a JNK MAP kinase inhibitor SP600125, P19 cells successfully differentiated into cardiomyocytes displaying spontaneous beatings with expression of three types of pacemaker ion channels. We demonstrate that acquisition of cellular automaticity and the expression of pacemaker ion channels are regulated by the transcription factors, Csx/Nkx2.5 and GATA4, through intracellular signals including p38 MAP kinase in the process of P19-derived pluripotent cells differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Mingqi Zheng
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Kang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tomoko Uchino
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anesthesiology, Oita University School of Medicine, Oita, Japan
| | - Gang Liu
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan.
| |
Collapse
|
11
|
Inhibition of the ROS-EGFR Pathway Mediates the Protective Action of Nox1/4 Inhibitor GKT137831 against Hypertensive Cardiac Hypertrophy via Suppressing Cardiac Inflammation and Activation of Akt and ERK1/2. Mediators Inflamm 2020; 2020:1078365. [PMID: 32831633 PMCID: PMC7424508 DOI: 10.1155/2020/1078365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, inflammation, and hypertension constitute a self-perpetuating vicious circle to exacerbate hypertension and subsequent hypertensive cardiac hypertrophy. NADPH oxidase (Nox) 1/4 inhibitor GKT137831 alleviates hypertensive cardiac hypertrophy in models of secondary hypertension; however, it remains unclear about its effect on hypertensive cardiac hypertrophy in models of essential hypertension. This study is aimed at determining the beneficial role of GKT137831 in hypertensive cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and its mechanisms of action. Treating with GKT137831 prevented cardiac hypertrophy in SHRs. Likewise, decreasing production of reactive oxygen species (ROS) with GKT137831 reduced epidermal growth factor receptor (EGFR) activity in the left ventricle of SHRs. Additionally, EGFR inhibition also reduced ROS production in the left ventricle and blunted hypertensive cardiac hypertrophy in SHRs. Moreover, inhibition of the ROS-EGFR pathway with Nox1/4 inhibitor GKT137831 or selective EGFR inhibitor AG1478 reduced protein and mRNA levels of proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β), as well as the activities of Akt and extracellular signal-regulated kinase (ERK) 1/2 in the left ventricle of SHRs. In summary, GKT137831 prevents hypertensive cardiac hypertrophy in SHRs, Nox-deprived ROS regulated EGFR activation through positive feedback in the hypertrophic myocardium, and inhibition of the ROS-EGFR pathway mediates the protective role of GKT137831 in hypertensive cardiac hypertrophy via repressing cardiac inflammation and activation of Akt and ERK1/2. This research will provide additional details for GKT137831 to prevent hypertensive cardiac hypertrophy.
Collapse
|
12
|
HYDIN loss-of-function inhibits GATA4 expression and enhances atrial septal defect risk. Mech Dev 2020; 162:103611. [PMID: 32376282 DOI: 10.1016/j.mod.2020.103611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations affecting cardiac structural genes can lead to congenital heart diseases (CHDs). Axonemal Central Pair Apparatus Protein (HYDIN) is a ciliary protein previously linked to congenital cardiomyopathy. However, the role of HYDIN in the aetiology of CHDs is thus far unknown. Herein, we explore the function of HYDIN in heart development and CHDs. METHODS The function of HYDIN in cardiac differentiation was assessed in vitro using HYDIN siRNAs, HYDIN overexpression, and HYDIN short hairpin RNA (shRNA)-GATA binding protein 4 (GATA4) cDNA rescue constructs in the human embryonic stem cell (hESC) line HES3. To assess Hydin's function in vivo, we generated shRNA-mediated Hydin knockdown transgenic mice. We characterized the functional mechanisms of the most common human HYDIN variant associated with atrial septal defect (ASD) risk (71098693 mutant, c.A2207C) in cardiac-differentiating HES3 cells. RESULTS HYDIN functions as a positive regulator of human cardiomyocyte differentiation and promotes expression of cardiac contractile genes in hESC cells. This is mediated through GATA4, a critical transcription factor in heart development. Cardiac-specific Hydin knockdown in vivo leads to Gata4 downregulation and enhanced atrial septal defect (ASD) risk in mice. The c.A2207C HYDIN mutation reduces GATA4 expression in hESC cells. CONCLUSION HYDIN loss-of-function inhibits GATA4 expression and enhances ASD risk. We also establish the regulation of a key transcription factor in heart development by a ciliary protein.
Collapse
|
13
|
Yang JJ, Zhang XH, Ma XH, Duan WJ, Xu NG, Chen YJ, Liang L. Astragaloside IV enhances GATA-4 mediated myocardial protection effect in hypoxia/reoxygenation injured H9c2 cells. Nutr Metab Cardiovasc Dis 2020; 30:829-842. [PMID: 32278611 DOI: 10.1016/j.numecd.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM The transcription factor GATA-4 plays an important role in myocardial protection. Astragaloside IV (Ast-IV) was reported with the effects on improving cardiac function after ischemia. In this study, we explored how Ast-IV interacts with GATA-4 to protect myocardial cells H9c2 against Hypoxia/Reoxygenation (H/R) stress. METHODS AND RESULTS H9c2 cells were cultured under the H/R condition. Various cell activity and morphology assays were used to assess the rates of apoptosis and autophagy. In these H/R injured H9c2 cells, increased apoptosis (P < 0.01) and autophagosome number (P < 0.01) were observed, and the addition of Ast-IV ameliorated this tendency. Mechanistically, we used the RT-qPCR and Western blot to evaluate the expressions of various molecules. The results showed that Ast-IV treatment upregulated gene expression of GATA-4 (P < 0.01) and the survival factors (Bcl-2, P < 0.05; p62, P < 0.01), but suppressed apoptosis and autophagy related genes (PARP, Caspase-3, Beclin-1, and LC3-II; All P < 0.01). Furthermore, overexpressing of GATA-4 by its agonist phenylephrine can also protect H/R injured H9c2 cells, and the addition of Ast-IV further enhanced this protection of GATA-4. In contrast, silencing GATA-4 expression abolished the H/R protection of Ast-IV, which demonstrated that the myocardial protection of Ast-IV is mediated by GATA-4. Lastly, along with GATA overexpression, enhanced interactions between Bcl-2 and Beclin-1 were detected by Chromatin immunoprecipitation (P < 0.01). CONCLUSION Ast-IV rescued the H/R injury induced apoptosis and autophagy in H9c2 cells. Ast-IV treatment can stimulate the overexpression of GATA-4, and further enhanced the myocardial protection effect of GATA-4.
Collapse
Affiliation(s)
- Jing-Jing Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Pharmacy Department, Huizhou Traditional Chinese Medical Hospital, Huizhou, 516000, China
| | - Xu-Hui Zhang
- Second Department of Oncology, Guangdong Second Provincial General Hospital, 466 Xingangzhong Road, Guangzhou, 510317, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Huang JJ, Xie Y, Li H, Zhang XX, Huang Q, Zhu Y, Gu P, Jiang WM. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med 2020; 17:746-755. [PMID: 31703755 DOI: 10.1016/s1875-5364(19)30091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/20/2022]
Abstract
To investigate the effect of Yiqi Wenyang (YQWY) decoction on reversing cardiac hypertrophy induced by the transverse aortic constriction (TAC). Wistar rats aged 7-8 weeks were subjected to TAC surgery and then randomly divided into 4 groups (n = 5/group): Sham group, TAC group, low-dose group and high dose group. After 16-week intragastric administration of YQWY decoction, the effect of YQWY decoction on alleviating cardiomyocyte hypertrophy was examined by transthoracic echocardiography (TTE), hematoxylin/eosin (HE), wheat germ agglutinin (WGA) staining, enzyme linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC) and immunofluorescence (IF), respectively. The results showed significant differences in left ventricle volume-diastole/systole (LV Vol d/s), N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) (P < 0.01), Ejection Fraction (EF), LV mass and fractional shortening (FS) (P < 0.05) between YQWY-treated group and TAC group. HE and WGA staining showed that treatment with YQWY decoction dramatically prevented TAC-induced cardiomycyte hypertrophy. Moreover, the results of WB, IHC and IF indicated that administration of YQWY could suppress the expressions of cardiac hypertrophic markers, which included the atrial natriuretic peptide (ANP), BNP and myosin heavy chain 7 (MYH7) (P < 0.05) and inhibit phosphorylation of GATA binding protein 4 (P-GATA4) (P < 0.05), phosphorylation of extracellular signal-regulated kinase (P-ERK) (P < 0.05), phosphorylation of P38 mitogen activated protein kinase (P-P38) (P < 0.05) and phosphorylation of c-Jun N-terminal kinase (P-JNK) (P < 0.05). Thus, we concluded that YQWY decoction suppressed cardiomyocyte hypertrophy and reversed the impaired heart function, and the curative effects of YQWY decoction were associated with the decreased phosphorylation of GATA4 and mitogen activated protein kinases (MAPKs), as well as the reduced expression of the downstream targets of GATA4, including ANP, BNP, and MYH7.
Collapse
Affiliation(s)
- Jing-Jing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yong Xie
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - He Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Xiao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Qing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yao Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 21002, China.
| | - Wei-Min Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
15
|
GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Arch Toxicol 2020; 94:2113-2130. [PMID: 32185414 PMCID: PMC7303099 DOI: 10.1007/s00204-020-02711-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1–3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.
Collapse
|
16
|
Jurado Acosta A, Rysä J, Szabo Z, Moilanen AM, Serpi R, Ruskoaho H. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin Pharmacol Toxicol 2020; 127:178-195. [PMID: 32060996 PMCID: PMC7496669 DOI: 10.1111/bcpt.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine 105 (S105) for the actions of GATA4 in an angiotensin II (AngII)‐induced hypertension rat model. Adenoviral constructs overexpressing wild‐type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg/kg/h) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT‐qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII‐induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult‐to‐foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild‐type or mutated GATA4. Our results indicate that GATA4 reduces AngII‐induced responses by interfering with pro‐fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.
Collapse
Affiliation(s)
- Alicia Jurado Acosta
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltan Szabo
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anne-Mari Moilanen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.
Collapse
Affiliation(s)
- Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| |
Collapse
|
18
|
Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Sci Rep 2019; 9:16351. [PMID: 31705019 PMCID: PMC6841971 DOI: 10.1038/s41598-019-52746-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
The role of RhoA GTPases in breast cancer tumorigenesis and metastasis is unclear. Early studies within which mutations in RhoA were designed based on cancer-associated mutations in Ras supported an oncogene role for RhoA. However, recent whole-genome sequencing studies of cancers raised the possibility that RhoA may have a tumor suppression function. Here, using a syngeneic triple negative breast cancer murine model we investigated the physiological effects of reduced RhoA expression on breast cancer tumorigenesis and metastasis. RhoA knockdown had no effect on primary tumor formation and tumor proliferation, concurring with our in vitro findings where reduced RhoA had no effect on breast cancer cell proliferation and clonogenic growth. In contrast, primary tumors with RhoA knockdown efficiently invaded sentinel lymph nodes and significantly metastasized to lungs compared to control tumors. Mechanistically, the current study demonstrated that this is achieved by promoting a pro-tumor microenvironment, with increased cancer-associated fibroblasts and macrophage infiltration, and by modulating the CCL5-CCR5 and CXCL12-CXCR4 chemokine axes in the primary tumor. To our knowledge, this is the first such mechanistic study in breast cancer showing the ability of RhoA to suppress chemokine receptor expression in breast tumor cells. Our work suggests a physiological lung and lymph node metastasis suppressor role for RhoA GTPase in breast cancer.
Collapse
|
19
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Polidovitch N, Yang S, Sun H, Lakin R, Ahmad F, Gao X, Turnbull PC, Chiarello C, Perry CG, Manganiello V, Yang P, Backx PH. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 2019; 132:60-70. [DOI: 10.1016/j.yjmcc.2019.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
|
21
|
Bergeron F, Boulende Sab A, Bouchard MF, Taniguchi H, Souchkova O, Brousseau C, Tremblay JJ, Pilon N, Viger RS. Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology 2019; 7:357-372. [PMID: 30793514 DOI: 10.1111/andr.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA4 is a transcription factor essential for male sex determination, testicular differentiation during fetal development, and male fertility in the adult. GATA4 exerts part of its function by regulating multiple genes in the steroidogenic enzyme pathway. In spite of these crucial roles, how the activity of this factor is regulated remains unclear. OBJECTIVES Studies in gonadal cell lines have shown that GATA4 is phosphorylated on at least two serine residues-serine 105 (S105) and serine 261 (S261)-and that this phosphorylation is important for GATA4 activity. The objective of the present study is to characterize the endogenous role of GATA4 S105 and S261 phosphorylation in the mouse testis. MATERIALS AND METHODS We examined both previously described GATA4 S105A mice and a novel GATA4 S261A knock-in mouse that we generated by CRISPR/Cas9 gene editing. The male phenotype of the mutants was characterized by assessing androgen-dependent organ weights, hormonal profiles, and expression of multiple testicular target genes using standard biochemical and molecular biology techniques. RESULTS The fecundity of crosses between GATA4 S105A mice was reduced but without a change in sex ratio. The weight of androgen-dependent organs was smaller when compared to wild-type controls. Plasma testosterone levels showed a 70% decrease in adult GATA4 S105A males. This decrease was associated with a reduction in Cyp11a1, Cyp17a1, and Hsd17b3 expression. GATA4 S261A mice were viable and testis morphology appeared normal. Testosterone production and steroidogenic enzyme expression were not altered in GATA4 S261A males. DISCUSSION AND CONCLUSION Our analysis showed that blocking GATA4 S105 phosphorylation is associated with decreased androgen production in males. In contrast, S261 phosphorylation by itself is dispensable for GATA4 function. These results confirm that endogenous GATA4 action is essential for normal steroid production in males and that this activity requires phosphorylation on at least one serine residue.
Collapse
Affiliation(s)
- F Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - A Boulende Sab
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - M F Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - H Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - O Souchkova
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - C Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - J J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| | - N Pilon
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - R S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| |
Collapse
|
22
|
Cui M, Wang Z, Bassel-Duby R, Olson EN. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development 2018; 145:145/24/dev171983. [PMID: 30573475 DOI: 10.1242/dev.171983] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic and postnatal life depend on the uninterrupted function of cardiac muscle cells. These cells, termed cardiomyocytes, display many fascinating behaviors, including complex morphogenic movements, interactions with other cell types of the heart, persistent contractility and quiescence after birth. Each of these behaviors depends on complex interactions between both cardiac-restricted and widely expressed transcription factors, as well as on epigenetic modifications. Here, we review recent advances in our understanding of the genetic and epigenetic control of cardiomyocyte differentiation and proliferation during heart development, regeneration and disease. We focus on those regulators that are required for both heart development and disease, and highlight the regenerative principles that might be manipulated to restore function to the injured adult heart.
Collapse
Affiliation(s)
- Miao Cui
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4
variants are frequently associated with Tetralogy of Fallot. Hum Mutat 2018; 39:1957-1972. [DOI: 10.1002/humu.23620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology; Sri Jayadeva Institute of Cardiovascular Sciences and Research; Bengaluru Karnataka India
| | - Vijyalakshmi I. Balekundri
- Super Speciality Hospital; Prime Minister Swasth Suraksha Yojana (PMSSY); Bengaluru Medical College and Research Institute; Bengaluru Karnataka India
| | - Damyanti Agrawal
- Department of Cardio-vascular and Thoracic Surgery; Institute of Medical Science; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Ashok Kumar
- Department of Pediatrics; Institute of Medical Sciences; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| |
Collapse
|
24
|
Kim JG, Islam R, Cho JY, Jeong H, Cap KC, Park Y, Hossain AJ, Park JB. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J Cell Physiol 2018; 233:6381-6392. [PMID: 29377108 DOI: 10.1002/jcp.26487] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
RhoA GTPase plays a variety of functions in regulation of cytoskeletal proteins, cellular morphology, and migration along with various proliferation and transcriptional activity in cells. RhoA activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and the guanine nucleotide dissociation factor (GDI). The RhoA-RhoGDI complex exists in the cytosol and the active GTP-bound form of RhoA is located to the membrane. GDI displacement factors (GDFs) including IκB kinase γ (IKKγ) dissociate the RhoA-GDI complex, allowing activation of RhoA through GEFs. In addition, modifications of Tyr42 phosphorylation and Cys16/20 oxidation in RhoA and Tyr156 phosphorylation and oxidation of RhoGDI promote the dissociation of the RhoA-RhoGDI complex. The expression of RhoA is regulated through transcriptional factors such as c-Myc, HIF-1α/2α, Stat 6, and NF-κB along with several reported microRNAs. As the role of RhoA in regulating actin-filament formation and myosin-actin interaction has been well described, in this review we focus on the transcriptional activity of RhoA and also the regulation of RhoA message itself. Of interest, in the cytosol, activated RhoA induces transcriptional changes through filamentous actin (F-actin)-dependent ("actin switch") or-independent means. RhoA regulates the activity of several transcription regulators such as serum response factor (SRF)/MAL, AP-1, NF-κB, YAP/TAZ, β-catenin, and hypoxia inducible factor (HIF)-1α. Interestingly, RhoA also itself is localized to the nucleus by an as-yet-undiscovered mechanism.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Rokibul Islam
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Jung Y Cho
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea.,Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Hwalrim Jeong
- Department of Paediatrics, Chuncheon Sacred Hospital Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Kim-Cuong Cap
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Yohan Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Abu J Hossain
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea.,Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea.,Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
25
|
Kinnunen SM, Tölli M, Välimäki MJ, Gao E, Szabo Z, Rysä J, Ferreira MPA, Ohukainen P, Serpi R, Correia A, Mäkilä E, Salonen J, Hirvonen J, Santos HA, Ruskoaho H. Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4-NKX2-5 Interaction. Sci Rep 2018; 8:4611. [PMID: 29545582 PMCID: PMC5854571 DOI: 10.1038/s41598-018-22830-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4–NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4–NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4–NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.
Collapse
Affiliation(s)
- Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland.,Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Marja Tölli
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland.,Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Erhe Gao
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Zoltan Szabo
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mónica P A Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Raisa Serpi
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland. .,Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
26
|
Välimäki MJ, Tölli MA, Kinnunen SM, Aro J, Serpi R, Pohjolainen L, Talman V, Poso A, Ruskoaho HJ. Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. J Med Chem 2017; 60:7781-7798. [PMID: 28858485 DOI: 10.1021/acs.jmedchem.7b00816] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 μM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.
Collapse
Affiliation(s)
- Mika J Välimäki
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Marja A Tölli
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Sini M Kinnunen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Jani Aro
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Raisa Serpi
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Lotta Pohjolainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Antti Poso
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland , Kuopio FI-70211, Finland
| | - Heikki J Ruskoaho
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| |
Collapse
|
27
|
Rose BA, Yokota T, Chintalgattu V, Ren S, Iruela-Arispe L, Khakoo AY, Minamisawa S, Wang Y. Cardiac myocyte p38α kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. J Biol Chem 2017. [PMID: 28637870 DOI: 10.1074/jbc.m117.784553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stress-induced p38 mitogen-activated protein kinase (MAPK) activity is implicated in pathological remodeling in the heart. For example, constitutive p38 MAPK activation in cardiomyocytes induces pathological features, including myocyte hypertrophy, apoptosis, contractile dysfunction, and fetal gene expression. However, the physiological function of cardiomyocyte p38 MAPK activity in beneficial compensatory vascular remodeling is unclear. This report investigated the functional role and the underlying mechanisms of cardiomyocyte p38 MAPK activity in cardiac remodeling induced by chronic stress. Using both in vitro and in vivo model systems, we found that p38 MAPK activity is required for hypoxia-induced pro-angiogenic activity from cardiomyocytes and that p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity. We further demonstrate that VEGF is a paracrine factor responsible for the p38 MAPK-mediated pro-angiogenic activity from cardiomyocytes and that p38 MAPK pathway activation is sufficient for inducing VEGF secretion from cardiomyocytes in an Sp1-dependent manner. More significantly, cardiomyocyte-specific inactivation of p38α in mouse heart impaired compensatory angiogenesis after pressure overload and promoted early onset of heart failure. In summary, p38αMAPK has a critical role in the cross-talk between cardiomyocytes and vasculature by regulating stress-induced VEGF expression and secretion in cardiomyocytes. We conclude that as part of a stress-induced signaling pathway, p38 MAPK activity significantly contributes to both pathological and compensatory remodeling in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Tomohiro Yokota
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan
| | | | - Shuxun Ren
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Luisa Iruela-Arispe
- Department of Molecular, Cellular, and Developmental Biology, Molecular Biology Institute, School of Life Sciences, University of California, Los Angeles, California 90095
| | - Aarif Y Khakoo
- Amgen, Inc., Metabolic Disorders, South San Francisco, California 94080
| | - Susumu Minamisawa
- Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan; Department of Cell Physiology, Jikei University, 25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095.
| |
Collapse
|
28
|
Chen Z, Zhang S, Guo C, Li J, Sang W. Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med 2017; 39:1589-1596. [PMID: 28440427 DOI: 10.3892/ijmm.2017.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-induced cardiomyocyte apoptosis plays an important role in the development of ischemic heart disease. MicroRNAs (miRNAs or miRs) are emerging as critical regulators of hypoxia-induced cardiomyocyte apoptosis. miR-200c is an miRNA that has been reported to be related to apoptosis in various pathological processes; however, its role in hypoxia‑induced cardiomyocyte apoptosis remains unclear. In the present study, we aimed to investigate the potential role and underlying mechanism of miR-200c in regulating hypoxia‑induced cardiomyocyte apoptosis. We found that miR-200c was significantly upregulated by hypoxia in cardiomyocytes, as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The lactate dehydrogenase, MTT, Annexin V/propidium iodide apoptosis and caspase-3 activity assays showed that downregulation of miR-200c markedly improved cell survival and suppressed the apoptosis of cardiomyocytes in response to hypoxia. Bioinformatics analysis and the dual-luciferase reporter assay demonstrated that miR-200c directly targeted the 3'-untranslated region of GATA-4, an important transcription factor for cardiomyocyte survival. RT-qPCR and western blot analysis showed that suppression of miR-200c significantly increased GATA-4 expression. Furthermore, downregulation of miR-200c upregulated the expression of the anti-apoptotic gene Bcl-2. However, the protective effects against hypoxia induced by the downregulation of miR‑200c were significantly abolished by GATA-4 knockdown. Taken together, our results suggest that downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4, providing a potential therapeutic molecular target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shaoli Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Changlei Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianhua Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wenfeng Sang
- Department of Internal Medicine Nursing, College of Nursing, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
29
|
Zhou T, Guo S, Zhang Y, Weng Y, Wang L, Ma J. GATA4 regulates osteoblastic differentiation and bone remodeling via p38-mediated signaling. J Mol Histol 2017; 48:187-197. [PMID: 28393293 DOI: 10.1007/s10735-017-9719-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
Abstract
Osteoblasts play a major role in bone remodeling and are regulated by transcription factors. GATA4, a zinc finger transcription factor from the GATA family, has an unclear role in osteoblast differentiation. In this study, the role of GATA4 in osteoblast differentiation was studied both in vitro and in vivo by GATA4 knockdown. GATA4 expression increased during osteoblast differentiation. GATA4 knockdown in osteoblast precursor cells reduced alkaline phosphatase activity and decreased the formation of calcified nodule in an osteogenic-induced cell culture system. In vivo, micro-CT showed that local injection of lentivirus-delivered GATA4 shRNA caused reduced new bone formation during tooth movement. Histological analyses such as total collagen and Goldner's trichrome staining confirmed these results. In vivo immunohistochemical analysis showed reduced expression of osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) in the shGATA4 group (P < 0.05). Consistently, both western blotting and quantitative reverse-transcription PCR proved that expression of osteogenesis-related genes, including OSX, OPN, and OCN, was significantly repressed in the shGATA4 group in vitro (P < 0.01). For further analysis of the pathways involved in this process, we examined the MAPK signaling pathway, and found knockdown of GATA4, downregulated p38 signaling pathways (P < 0.01). Collectively, these results imply GATA4 is a regulator of osteoblastic differentiation via the p38 signaling pathways.
Collapse
Affiliation(s)
- Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
30
|
Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga, Gomez Peña M, Pomilio C, Saravia F, Tesone M, Abramovich D, Parborell F. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod 2016; 22:852-866. [PMID: 27645281 DOI: 10.1093/molehr/gaw065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are follicular fluid (FF) sphingosine-1-phosphate (S1P) levels in patients at risk of developing ovarian hyperstimulation syndrome (OHSS) altered and in part responsible for the high vascular permeability observed in these patients. STUDY ANSWER FF S1P levels are lower in FF from patients at risk of OHSS and treatment with S1P may reduce vascular permeability in these patients. WHAT IS KNOWN ALREADY Although advances have been made in the diagnosis, and management of OHSS and in basic knowledge of its development, complete prevention has proven difficult. STUDY DESIGN, SIZE, DURATION A total of 40 FF aspirates were collected from patients undergoing ART. The women (aged 25-39 years old) were classified into a control group (n = 20) or a group at risk of OHSS (n = 20). The EA.hy926 endothelial cell line was used to assess the efffects of FF from patients at risk of OHSS with or without the addition of S1P. An animal model that develops OHSS in immature Sprague-Dawley rats were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS Migration assays, confocal microscopy analysis of actin filaments, immunoblotting and quail chorioallantoic membrane (CAM) assays of in-vivo angiogenesis were performed and statistical comparisons between groups were made. MAIN RESULTS AND THE ROLE OF CHANCE The S1P concentration was significantly lower in FF from patients at risk of OHSS (P = 0.03). The addition of S1P to this FF decreased cell migration (P < 0.05) and prevented VE-cadherin phosphorylation in endothelial cells (P < 0.05). S1P in the FF from patients at risk of OHSS increased the levels of VE-cadherin (P < 0.05), N-cadherin (P < 0.05) and β-catenin (P < 0.05), and partially reversed actin redistribution in endothelial cells. The addition of S1P in FF from patients at risk of OHSS also decreased the levels of vascular endothelial growth factor (VEGF121; P < 0.01) and S1P lyase (SPL; P < 0.05) and increased the levels of S1PR1 (P < 0.05) in endothelial cells. In CAMs incubated with FF from patients at risk of OHSS with S1P, the number of vessel branch points decreased while the periendothelial cell coverage increased. Additionally, in a rat OHSS model, we demonstrated that vascular permeability and VEGF121 and its receptor KDR expression were increased in the OHSS group compared to the control group and that S1P administration decreased these parameters. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The results of this study were generated from an in-vitro system. This model reflects the microvasculature in vivo. Even though the ideal model would be the use of human endothelial cells from the ovary, it is obviously not possible to carry out this kind of approach in ovaries of patients from ART. More studies will be necessary to delineate the effects of S1P in the pathogenesis of OHSS. Hence, clinical studies are needed in order to choose the most appropriate method of prevention and management. WIDER IMPLICATIONS OF THE FINDINGS The use of bioactive sphingolipid metabolites may contribute to finding better and safer therapeutic strategies for the treatment of OHSS and other human diseases that display aberrant vascular leakage. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants ANPCyT (PICT 2012-897), CONICET (PIP 5471), Roemmers and Baron Foundation, Argentina. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- L Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - M Di Pietro
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - N Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - G Irusta
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - I de Zúñiga
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Gomez Peña
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - C Pomilio
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - F Saravia
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - D Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - F Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| |
Collapse
|
31
|
Abstract
GATA transcription factors are emerging as critical players in mammalian reproductive development and function. GATA-4 contributes to fetal male gonadal development by regulating genes mediating Müllerian duct regression and the onset of testosterone production. GATA-2 expression appears to be sexually dimorphic being transiently expressed in the germ cell lineage of the fetal ovary but not the fetal testis. In the reproductive system, GATA-1 is exclusively expressed in Sertoli cells at specific seminiferous tubule stages. In addition, GATA-4 and GATA-6 are localized primary to ovarian and testicular somatic cells. The majority of cell transfection studies demonstrate that GATA-1 and GATA-4 can stimulate inhibin subunit gene promoter constructs. Other studies provide strong evidence that GATA-4 and GATA-6 can activate genes mediating gonadal cell steroidogenesis. GATA-2 and GATA-3 are found in pituitary and placental cells and can regulate alpha-glycoprotein subunit gene expression. Gonadal expression and activation of GATAs appear to be regulated in part by gonadotropin signaling via the cyclic AMP-protein kinase A pathway. This review will cover the current knowledge regarding GATA expression and function at all levels of the reproductive axis.
Collapse
Affiliation(s)
- Holly A LaVoie
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA.
| |
Collapse
|
32
|
García-Mariscal A, Peyrollier K, Basse A, Pedersen E, Rühl R, van Hengel J, Brakebusch C. RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases 2016; 9:433-444. [PMID: 27754752 DOI: 10.1080/21541248.2016.1248272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ubiquitously expressed small GTPase RhoA is essential for embryonic development and mutated in different cancers. Functionally, it is well described as a regulator of the actin cytoskeleton, but its role in gene regulation is less understood. Using primary mouse keratinocytes with a deletion of the RhoA gene, we have now been exploring how the loss of RhoA affects gene expression. Performing transcription factor reporter assays, we found a significantly decreased activity of a RAR luciferase reporter in RhoA-null keratinocytes. Inhibition of the RhoA effector ROCK in control cells reproduced this phenotype. ATRA and retinal, but not retinol increased RAR reporter activity of keratinocytes with impaired RhoA/ROCK signaling, suggesting that retinol metabolism is regulated by RhoA/ROCK signaling. Furthermore a significant percentage of known ATRA target genes displayed altered expression in RhoA-null keratinocytes. These data reveal an unexpected link between the cytoskeletal regulator RhoA and retinoid signaling and uncover a novel pathway by which RhoA regulates gene expression.
Collapse
Affiliation(s)
| | - Karine Peyrollier
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Astrid Basse
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Esben Pedersen
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Ralph Rühl
- b Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center of Molecular Medicine, University of Debrecen , Hungary
| | - Jolanda van Hengel
- c Department of Basic Medical Sciences , Faculty of Medicine and Health Sciences, Ghent University , Ghent , Belgium
| | - Cord Brakebusch
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
33
|
Appari M, Breitbart A, Brandes F, Szaroszyk M, Froese N, Korf-Klingebiel M, Mohammadi MM, Grund A, Scharf GM, Wang H, Zwadlo C, Fraccarollo D, Schrameck U, Nemer M, Wong GW, Katus HA, Wollert KC, Müller OJ, Bauersachs J, Heineke J. C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure. Circ Res 2016; 120:66-77. [PMID: 27821723 DOI: 10.1161/circresaha.116.309398] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Myocardial endothelial cells promote cardiomyocyte hypertrophy, possibly through the release of growth factors. The identity of these factors, however, remains largely unknown, and we hypothesized here that the secreted CTRP9 (C1q-tumor necrosis factor-related protein-9) might act as endothelial-derived protein to modulate heart remodeling in response to pressure overload. OBJECTIVE To examine the source of cardiac CTRP9 and its function during pressure overload. METHODS AND RESULTS CTRP9 was mainly derived from myocardial capillary endothelial cells. CTRP9 mRNA expression was enhanced in hypertrophic human hearts and in mouse hearts after transverse aortic constriction (TAC). CTRP9 protein was more abundant in the serum of patients with severe aortic stenosis and in murine hearts after TAC. Interestingly, heterozygous and especially homozygous knock-out C1qtnf9 (CTRP9) gene-deleted mice were protected from the development of cardiac hypertrophy, left ventricular dilatation, and dysfunction during TAC. CTRP9 overexpression, in turn, promoted hypertrophic cardiac remodeling and dysfunction after TAC in mice and induced hypertrophy in isolated adult cardiomyocytes. Mechanistically, CTRP9 knock-out mice showed strongly reduced levels of activated prohypertrophic ERK5 (extracellular signal-regulated kinase 5) during TAC compared with wild-type mice, while CTRP9 overexpression entailed increased ERK5 activation in response to pressure overload. Inhibition of ERK5 by a dominant negative MEK5 mutant or by the ERK5/MEK5 inhibitor BIX02189 blunted CTRP9 triggered hypertrophy in isolated adult cardiomyocytes in vitro and attenuated mouse cardiomyocyte hypertrophy and cardiac dysfunction in vivo, respectively. Downstream of ERK5, we identified the prohypertrophic transcription factor GATA4, which was directly activated through ERK5-dependent phosphorylation. CONCLUSIONS The upregulation of CTRP9 during hypertrophic heart disease facilitates maladaptive cardiac remodeling and left ventricular dysfunction and might constitute a therapeutic target in the future.
Collapse
Affiliation(s)
- Mahesh Appari
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Astrid Breitbart
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Florian Brandes
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Malgorzata Szaroszyk
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Natali Froese
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Mortimer Korf-Klingebiel
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Mona Malek Mohammadi
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Andrea Grund
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Gesine M Scharf
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Honghui Wang
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Carolin Zwadlo
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Daniela Fraccarollo
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Ulrike Schrameck
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Mona Nemer
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - G William Wong
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Hugo A Katus
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Kai C Wollert
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Oliver J Müller
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Johann Bauersachs
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.)
| | - Joerg Heineke
- From the Klinik für Kardiologie und Angiologie (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., D.F., U.S., K.C.W., J.B., J.H.) and Cluster of Excellence REBIRTH (M.A., A.B., F.B., M.S., N.F., M.K.-K., M.M.M., A.G., G.M.S., H.W., C.Z., U.S., K.C.W., J.B., J.H.), Medizinische Hochschule Hannover, Germany; Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China (H.W.); Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada (M.N.); Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD (G.W.W.); Department of Cardiology, University Hospital Heidelberg, Germany (H.A.K., O.J.M.); and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.).
| |
Collapse
|
34
|
Yariswamy M, Yoshida T, Valente AJ, Kandikattu HK, Sakamuri SSVP, Siddesha JM, Sukhanov S, Saifudeen Z, Ma L, Siebenlist U, Gardner JD, Chandrasekar B. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction. J Biol Chem 2016; 291:19425-36. [PMID: 27466370 PMCID: PMC5016681 DOI: 10.1074/jbc.m116.724138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/25/2016] [Indexed: 01/19/2023] Open
Abstract
TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction.
Collapse
Affiliation(s)
- Manjunath Yariswamy
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201
| | | | - Anthony J Valente
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | | | | | | | - Zubaida Saifudeen
- Department of Pediatric Nephrology Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Lixin Ma
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, Department of Radiology, University of Missouri, Columbia, Missouri 65211
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Bysani Chandrasekar
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201,
| |
Collapse
|
35
|
Pervan CL, Lautz JD, Blitzer AL, Langert KA, Stubbs EB. Rho GTPase signaling promotes constitutive expression and release of TGF-β2 by human trabecular meshwork cells. Exp Eye Res 2016; 146:95-102. [PMID: 26743044 PMCID: PMC4893883 DOI: 10.1016/j.exer.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Elevated intraocular pressure (IOP) is causally implicated in the pathophysiology of primary open-angle glaucoma (POAG). The molecular mechanisms responsible for elevated IOP remain elusive, but may involve aberrant expression and signaling of transforming growth factor (TGF)-β2 within the trabecular meshwork (TM). Consistent with previously published studies, we show here that exogenous addition of TGF-β2 to cultured porcine anterior segments significantly attenuates outflow facility in a time-dependent manner. By comparison, perfusing segments with a TGFβRI/ALK-5 antagonist (SB-431542) unexpectedly elicited a significant and sustained increase in outflow facility, implicating a role for TM-localized constitutive expression and release of TGF-β2. Consistent with this thesis, cultured primary or transformed (GTM3) quiescent human TM cells were found to constitutively express and secrete measurable amounts of biologically-active TGF-β2. Disrupting monomeric GTPase post-translational prenylation and activation with lovastatin or GGTI-298 markedly reduced constitutive TGF-β2 expression and release. Specifically, inhibiting the Rho subfamily of GTPases with C3 exoenzyme similarly reduced constitutive expression and secretion of TGF-β2. These findings suggest that Rho GTPase signaling, in part, regulates constitutive expression and release of biologically-active TGF-β2 from human TM cells. Localized constitutive expression and release of TGF-β2 by TM cells may promote or exacerbate elevation of IOP in POAG.
Collapse
Affiliation(s)
- Cynthia L Pervan
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA.
| | - Jonathan D Lautz
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Program in Neuroscience, Loyola University Chicago, Maywood, IL, USA
| | - Andrea L Blitzer
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kelly A Langert
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Evan B Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA; Program in Neuroscience, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
36
|
PKG-1α mediates GATA4 transcriptional activity. Cell Signal 2016; 28:585-94. [PMID: 26946174 DOI: 10.1016/j.cellsig.2016.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease.
Collapse
|
37
|
Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, Nie Y, Hu S, Lin Z, Zhou B, Pu W, Lui KO, Zhou B. GATA4 regulates Fgf16 to promote heart repair after injury. Development 2016; 143:936-49. [PMID: 26893347 DOI: 10.1242/dev.130971] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Although the mammalian heart can regenerate during the neonatal stage, this endogenous regenerative capacity is lost with age. Importantly, replication of cardiomyocytes has been found to be the key mechanism responsible for neonatal cardiac regeneration. Unraveling the transcriptional regulatory network for inducing cardiomyocyte replication will, therefore, be crucial for the development of novel therapies to drive cardiac repair after injury. Here, we investigated whether the key cardiac transcription factor GATA4 is required for neonatal mouse heart regeneration. Using the neonatal mouse heart cryoinjury and apical resection models with an inducible loss of GATA4 specifically in cardiomyocytes, we found severely depressed ventricular function in the Gata4-ablated mice (mutant) after injury. This was accompanied by reduced cardiomyocyte replication. In addition, the mutant hearts displayed impaired coronary angiogenesis and increased hypertrophy and fibrosis after injury. Mechanistically, we found that the paracrine factor FGF16 was significantly reduced in the mutant hearts after injury compared with littermate controls and was directly regulated by GATA4. Cardiac-specific overexpression of FGF16 via adeno-associated virus subtype 9 (AAV9) in the mutant hearts partially rescued the cryoinjury-induced cardiac hypertrophy, promoted cardiomyocyte replication and improved heart function after injury. Altogether, our data demonstrate that GATA4 is required for neonatal heart regeneration through regulation of Fgf16, suggesting that paracrine factors could be of potential use in promoting myocardial repair.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - William Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077 China
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
38
|
Raut SK, Kumar A, Singh GB, Nahar U, Sharma V, Mittal A, Sharma R, Khullar M. miR-30c Mediates Upregulation of Cdc42 and Pak1 in Diabetic Cardiomyopathy. Cardiovasc Ther 2016; 33:89-97. [PMID: 25781190 DOI: 10.1111/1755-5922.12113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Cardiac hypertrophy and myocardial fibrosis significantly contribute to the pathogenesis of diabetic cardiomyopathy (DCM). Altered expression of several genes and their regulation by microRNAs has been reported in hypertrophied failing hearts. This study aims to examine the role of Cdc42, Pak1, and miR-30c in the pathogenesis of cardiac hypertrophy in DCM. METHODS DCM was induced in Wistar rats by low-dose streptozotocin-high-fat diet for 12 weeks. Cardiac expression of Cdc42, Pak1 and miR-30c, and hypertrophy markers (ANP and β-MHC) was studied in DCM vs control rats and in high-glucose (HG)-treated H9c2 cardiomyocytes. RESULTS Diabetic rats showed cardiomyocyte hypertrophy, increased heart-to-body weight ratio, and an increased expression of ANP and β-MHC. Cardiac expression of Cdc42 and Pak1 genes was increased in diabetic hearts and in HG-treated cardiomyocytes. miR-30c was identified to target Cdc42 and Pak1 genes, and cardiac miR-30c expression was found to be decreased in DCM rats, patients with DCM, and in HG-treated cardiomyocytes. miR-30c overexpression decreased Cdc42 and Pak1 genes and attenuated HG-induced cardiomyocyte hypertrophy, whereas miR-30c inhibition increased Cdc42 and Pak1 gene expression and myocyte hypertrophy in HG-treated cardiomyocytes. CONCLUSION Downregulation of miR-30c mediates prohypertrophic effects of hyperglycemia in DCM by upregulation of Cdc42 and Pak1 genes.
Collapse
Affiliation(s)
- Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Kumar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurinder B Singh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhuti Sharma
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Mittal
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Ramachandra CJ, Mehta A, Wong P, Shim W. ErbB4 Activated p38γ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells. Stem Cells 2016; 34:288-298. [DOI: 10.1002/stem.2223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Activation of ErbB4 receptor signaling is instrumental in heart development, lack of which results in embryonic lethality. However, mechanism governing its intracellular signaling remains elusive. Using human pluripotent stem cells, we show that ErbB4 is critical for cardiogenesis whereby its genetic knockdown results in loss of cardiomyocytes. Phospho-proteome profiling and Western blot studies attribute this loss to inactivation of p38γ MAPK isoform which physically interacts with NKx2.5 and GATA4 transcription factors. Post-cardiomyocyte formation p38γ/NKx2.5 downregulation is followed by p38α/MEF2c upregulation suggesting stage-specific developmental roles of p38 MAPK isoforms. Knockdown of p38γ MAPK similarly disrupts cardiomyocyte formation in spite of the presence of NKx2.5. Cell fractionation and NKx2.5 phosphorylation studies suggest inhibition of ErbB4-p38γ signaling hinders NKx2.5 nuclear translocation during early cardiogenesis. This study reveals a novel pathway that directly links ErbB4 and p38γ to the transcriptional machinery of NKx2.5-GATA4 complex which is critical for cardiomyocyte formation during mammalian heart development.
Collapse
Affiliation(s)
| | - Ashish Mehta
- National Heart Research Institute Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| | - Philip Wong
- National Heart Research Institute Singapore, Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Winston Shim
- National Heart Research Institute Singapore, Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
40
|
Kinnunen S, Välimäki M, Tölli M, Wohlfahrt G, Darwich R, Komati H, Nemer M, Ruskoaho H. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS One 2015; 10:e0144145. [PMID: 26642209 PMCID: PMC4671672 DOI: 10.1371/journal.pone.0144145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
AIMS Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. METHODS AND RESULTS A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. CONCLUSIONS The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.
Collapse
Affiliation(s)
- Sini Kinnunen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Mika Välimäki
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Marja Tölli
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Gerd Wohlfahrt
- Orion Pharma, Computer-Aided Drug Design, Espoo, Finland
| | - Rami Darwich
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
- * E-mail: (HR); (MN)
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (HR); (MN)
| |
Collapse
|
41
|
Yuan Y, Gan H, Dai J, Zhou H, Deng W, Zong J, Bian Z, Liao H, Li H, Tang Q. IRAK4 deficiency promotes cardiac remodeling induced by pressure overload. Int J Clin Exp Med 2015; 8:20434-20443. [PMID: 26884959 PMCID: PMC4723804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Interluekin1 receptor-associated kinase-4 (IRAK4) plays an essential role in the innate immune system. The aim of this study was to investigate the role of IRAK4 in cardiac remodeling induced by pressure overload and elucidate the underlying mechanisms. METHODS In vivo studies were performed using IRAK4 heterozygous knockout (HET) mice and wild type (WT) mice. Models of cardiac remodeling were induced by aortic banding (AB). Cardiac remodeling was evaluated by Echocardiography and histological analysis. RESULTS IRAK4 was upregulated in hearts of dilated cardiomyopathy (DCM) patients and also pressure overload-induced mice hearts. IRAK4 HET mice exhibited exacerbated cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared with that in WT mice. Furthermore, enhanced activation of the MEK-ERK1/2, p38 and NFκB pathways was found in IRAK4 HET mice compared to WT mice. CONCLUSION Our results suggest that IRAK4 may play a crucial role in the development of cardiac remodeling via negative regulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Huawen Gan
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Jing Zong
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan, China
- Cardiovascular Research Institute of Wuhan UniversityWuhan, China
| |
Collapse
|
42
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
43
|
Coleman MA, Sasi SP, Onufrak J, Natarajan M, Manickam K, Schwab J, Muralidharan S, Peterson LE, Alekseyev YO, Yan X, Goukassian DA. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 309:H1947-63. [PMID: 26408534 DOI: 10.1152/ajpheart.00050.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/03/2015] [Indexed: 01/22/2023]
Abstract
There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.
Collapse
Affiliation(s)
- Matthew A Coleman
- University of California, Davis School of Medicine, Radiation Oncology, Sacramento, California; Lawrence Livermore National Laboratory, Livermore, California
| | - Sharath P Sasi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Jillian Onufrak
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Mohan Natarajan
- University of Texas Health Science Center, San Antonio, Texas
| | | | - John Schwab
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Sujatha Muralidharan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; and
| | - Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts; Tufts University School of Medicine, Boston, Massachusetts
| | - David A Goukassian
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; and Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
44
|
Li S, Dislich B, Brakebusch CH, Lichtenthaler SF, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. THE JOURNAL OF IMMUNOLOGY 2015; 195:4244-56. [PMID: 26408665 DOI: 10.4049/jimmunol.1500676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022]
Abstract
Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation.
Collapse
Affiliation(s)
- Shuai Li
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Center, Molecular Pathology Section, 2200 Copenhagen, Denmark
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany; Neuroproteomics, Technical University Munich, 81675 Munich, Germany; and Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
45
|
Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D. The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 2015; 27:1984-93. [PMID: 26169957 DOI: 10.1016/j.cellsig.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy.
| | - Cosmo Damiano Del Vescovo
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Caso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy; Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Dario Diviani
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| |
Collapse
|
46
|
Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype. PLoS One 2015; 10:e0129303. [PMID: 26121149 PMCID: PMC4485408 DOI: 10.1371/journal.pone.0129303] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 12/11/2022] Open
Abstract
H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays.
Collapse
Affiliation(s)
- Ana F. Branco
- CNC—Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park, University of Coimbra, Cantanhede, Portugal
- Department of Life Sciences, Largo Marques de Pombal, University of Coimbra, Coimbra, Portugal
| | - Susana P. Pereira
- CNC—Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Susana Gonzalez
- Stem Cell Aging Group, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- * E-mail: (PJO); (AAR)
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park, University of Coimbra, Cantanhede, Portugal
- * E-mail: (PJO); (AAR)
| |
Collapse
|
47
|
Matrone G, Wilson KS, Mullins JJ, Tucker CS, Denvir MA. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation 2015; 89:117-27. [PMID: 26095446 DOI: 10.1016/j.diff.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022]
Abstract
Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.
Collapse
Affiliation(s)
- Gianfranco Matrone
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Kathryn S Wilson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Carl S Tucker
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Martin A Denvir
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
48
|
Zhong L, Chiusa M, Cadar AG, Lin A, Samaras S, Davidson JM, Lim CC. Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc Res 2015; 106:261-71. [PMID: 25770146 DOI: 10.1093/cvr/cvv108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Accumulating evidence suggest that sarcomere signalling complexes play a pivotal role in cardiomyocyte hypertrophy by communicating stress signals to the nucleus to induce gene expression. Ankyrin repeat domain 1 (ANKRD1) is a transcriptional regulatory protein that also associates with sarcomeric titin; however, the exact role of ANKRD1 in the heart remains to be elucidated. We therefore aimed to examine the role of ANKRD1 in cardiomyocyte hypertrophic signalling. METHODS AND RESULTS In neonatal rat ventricular myocytes, we found that ANKRD1 is part of a sarcomeric signalling complex that includes ERK1/2 and cardiac transcription factor GATA4. Treatment with hypertrophic agonist phenylephrine (PE) resulted in phosphorylation of ERK1/2 and GATA4 followed by nuclear translocation of the ANKRD1/ERK/GATA4 complex. Knockdown of Ankrd1 attenuated PE-induced phosphorylation of ERK1/2 and GATA4, inhibited nuclear translocation of the ANKRD1 complex, and prevented cardiomyocyte growth. Mice lacking Ankrd1 are viable with normal cardiac function. Chronic PE infusion in wild-type mice induced significant cardiac hypertrophy with reactivation of the cardiac fetal gene program which was completely abrogated in Ankrd1 null mice. In contrast, ANKRD1 does not play a role in haemodynamic overload as Ankrd1 null mice subjected to transverse aortic constriction developed cardiac hypertrophy comparable to wild-type mice. CONCLUSION Our study reveals a novel role for ANKRD1 as a selective regulator of PE-induced signalling whereby ANKRD1 recruits and localizes GATA4 and ERK1/2 in a sarcomeric macro-molecular complex to enhance GATA4 phosphorylation with subsequent nuclear translocation of the ANKRD1 complex to induce hypertrophic gene expression.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Manuel Chiusa
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Adrian G Cadar
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Angel Lin
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Susan Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Chee C Lim
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
49
|
Yamak A, Georges RO, Sheikh-Hassani M, Morin M, Komati H, Nemer M. Novel exons in the tbx5 gene locus generate protein isoforms with distinct expression domains and function. J Biol Chem 2015; 290:6844-56. [PMID: 25623069 DOI: 10.1074/jbc.m114.634451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBX5 is the gene mutated in Holt-Oram syndrome, an autosomal dominant disorder with complex heart and limb deformities. Its protein product is a member of the T-box family of transcription factors and an evolutionarily conserved dosage-sensitive regulator of heart and limb development. Understanding TBX5 regulation is therefore of paramount importance. Here we uncover the existence of novel exons and provide evidence that TBX5 activity may be extensively regulated through alternative splicing to produce protein isoforms with differing N- and C-terminal domains. These isoforms are also present in human heart, indicative of an evolutionarily conserved regulatory mechanism. The newly identified isoforms have different transcriptional properties and can antagonize TBX5a target gene activation. Droplet Digital PCR as well as immunohistochemistry with isoform-specific antibodies reveal differential as well as overlapping expression domains. In particular, we find that the predominant isoform in skeletal myoblasts is Tbx5c, and we show that it is dramatically up-regulated in differentiating myotubes and is essential for myotube formation. Mechanistically, TBX5c antagonizes TBX5a activation of pro-proliferative signals such as IGF-1, FGF-10, and BMP4. The results provide new insight into Tbx5 regulation and function that will further our understanding of its role in health and disease. The finding of new exons in the Tbx5 locus may also be relevant to mutational screening especially in the 30% of Holt-Oram syndrome patients with no mutations in the known TBX5a exons.
Collapse
Affiliation(s)
- Abir Yamak
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Romain O Georges
- the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Massomeh Sheikh-Hassani
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Martin Morin
- the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Hiba Komati
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Mona Nemer
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| |
Collapse
|
50
|
Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate. Cell Death Dis 2014; 5:e1566. [PMID: 25501827 PMCID: PMC4649840 DOI: 10.1038/cddis.2014.524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs.
Collapse
|