1
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Melzener L, Schaeken L, Fros M, Messmer T, Raina D, Kiessling A, van Haaften T, Spaans S, Doǧan A, Post MJ, Flack JE. Optimisation of cell fate determination for cultivated muscle differentiation. Commun Biol 2024; 7:1493. [PMID: 39532984 PMCID: PMC11557827 DOI: 10.1038/s42003-024-07201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Production of cultivated meat requires defined medium formulations for the robust differentiation of myogenic cells into mature skeletal muscle fibres in vitro. Although these formulations can drive myogenic differentiation levels comparable to serum-starvation-based protocols, the resulting cultures are often heterogeneous, with a significant proportion of cells not participating in myofusion, limiting maturation of the muscle. To address this problem, we employed RNA sequencing to analyse heterogeneity in differentiating bovine satellite cells at single-nucleus resolution, identifying distinct cellular subpopulations including proliferative cells that fail to exit the cell cycle and quiescent 'reserve cells' that do not commit to myogenic differentiation. Our findings indicate that the MEK/ERK, NOTCH, and RXR pathways are active during the initial stages of myogenic cell fate determination, and by targeting these pathways, we can promote cell cycle exit while reducing reserve cell formation. This optimised medium formulation consistently yields fusion indices close to 100% in 2D culture. Furthermore, we demonstrate that these conditions enhance myotube formation and actomyosin accumulation in 3D bovine skeletal muscle constructs, providing proof of principle for the generation of highly differentiated cultivated muscle with excellent mimicry to traditional muscle.
Collapse
Affiliation(s)
- Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | - Arin Doǧan
- Mosa Meat B.V., Maastricht, The Netherlands
| | - Mark J Post
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Qiu M, Zhang X, Liao L, Zhang N, Liu M. Regulatory Role of Nfix Gene in Sheep Skeletal Muscle Cell Development and Its Interaction Mechanism with MSTN. Int J Mol Sci 2024; 25:11988. [PMID: 39596059 PMCID: PMC11593348 DOI: 10.3390/ijms252211988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle development is crucial for livestock production, and understanding the molecular mechanisms involved is essential for enhancing muscle growth in sheep. This study aimed to investigate the role of Nfix, a member of the nuclear factor I (NFI) family, in regulating muscle development in sheep, filling a significant gap in the current understanding of Nfix deficiency and its impact on skeletal muscle growth, as no similar studies have been reported in this species. Bioinformatic analysis, including temporal analysis of transcriptome data, identified Nfix as a potential target gene for muscle growth regulation. The effects of Nfix overexpression and knockout on the proliferation and differentiation of sheep skeletal muscle cells were investigated. Changes in the expression of associated marker genes were assessed to explore the regulatory link between Nfix and the myostatin (MSTN) gene. Additionally, target miRNAs for Nfix and MSTN were predicted using online databases such as miRWalk, resulting in the construction of an Nfix-miRNA-MSTN interactive regulatory network. The findings revealed that Nfix promotes the proliferation and differentiation of sheep skeletal muscle cells, with further analysis indicating that Nfix may regulate muscle cell development by modulating MSTN expression. This study provides preliminary insights into the function of Nfix in sheep skeletal muscle development and its regulatory interactions, addressing a critical knowledge gap regarding Nfix deficiency and its implications for muscle growth. These findings contribute to a better understanding of muscle biology in sheep and provide a theoretical foundation for future research into the regulatory mechanisms governing muscle development.
Collapse
Affiliation(s)
- Meiyu Qiu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Xuemei Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Li Liao
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| |
Collapse
|
4
|
Liu L, Yi P, Jiang C, Hu B. Cloning and Expression Analysis of TGF-β Type I Receptor Gene in Hyriopsis cumingii. Zoolog Sci 2024; 41:436-447. [PMID: 39436005 DOI: 10.2108/zs240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 10/23/2024]
Abstract
The TGF-β signaling pathway plays an important role in wound healing and immune response. In this study, a TGF-β type I receptor (TGF-βRI) homolog was cloned and characterized from freshwater mussel Hyriopsis cumingii. The full-length cDNA of the TGF-β RI gene was 2017 bp, with a 1554 bp open reading frame (ORF), and encoded 517 amino acids. The predictive analysis further identified distinct regions within the TGF-βRI protein: a signal peptide, a membrane outer region, a transmembrane region, and an intracellular region. Real-time quantitative PCR results showed that the TGF-β RI gene was expressed in all tissues of healthy mussels. The transcripts of TGF-β RI in hemocytes and hepatopancreas were significantly up-regulated at different periods after stimulation with Aeromonas hydrophila and peptidoglycan (PGN) (P < 0.05). The mRNA expression of TGF-β RI progressively increased from day 1 to day 10 after trauma (P < 0.05), and it returned to the initial level by day 15. The expression levels of TGF-β , Smad5, MMP1/19, and TIMP1/2, but not Smad3/4, were significantly up-regulated at different time points after trauma. However, the expression levels of TGF-β , MMP1/19, and TIMP2 were decreased after treatment with the inhibitor SB431542. Furthermore, the recombinant TGF-βRI proteins were expressed in vitro and existed in the form of inclusion bodies. Western blotting results showed that TGF-βRI proteins were expressed constitutively in various tissues of mussels, and their expression was up-regulated after trauma, which was consistent with the mRNA expression trend. These results indicate that TGF-β RI is involved in the process of wound repair and immune response.
Collapse
Affiliation(s)
- Linying Liu
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Peipei Yi
- Jiangxi Aquatic Biological Conservation and Rescue Center, Nanchang 330000, China
| | - Chengyi Jiang
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- Life Science College, Nanchang University, Nanchang 330031, China,
| |
Collapse
|
5
|
Lee DY, Kwon YN, Lee K, Kim SJ, Sung JJ. Dual effects of TGF-β inhibitor in ALS - inhibit contracture and neurodegeneration. J Neurochem 2024; 168:2495-2514. [PMID: 38515326 DOI: 10.1111/jnc.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
As persistent elevation of transforming growth factor-β (TGF-β) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-β would be effective against both exacerbations. The effects of TGF-β and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-β inhibitor in ameliorating the pathogenic role of TGF-β in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-β causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-β in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-β inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-β inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangkook Lee
- Research Department, Curamys Co., Ltd., Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| |
Collapse
|
6
|
Yang SH, Yang H, Ahn BM, Lee SY, Lee SJ, Kim JS, Koo YT, Lee CH, Kim JH, Yoon Park JH, Jang YJ, Lee KW. Fermented Yak-Kong using Bifidobacterium animalis derived from Korean infant intestine effectively relieves muscle atrophy in an aging mouse model. Food Funct 2024; 15:7224-7237. [PMID: 38812412 DOI: 10.1039/d3fo04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Byeong Min Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Young Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon Joo Lee
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Jin Soo Kim
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Young Tae Koo
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Jin Jang
- Major of Food Science & Biotechnology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National. University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
8
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
9
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
10
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
da Silva HNM, Fernandes EM, Pereira VA, Mizobuti DS, Covatti C, da Rocha GL, Minatel E. LEDT and Idebenone treatment modulate autophagy and improve regenerative capacity in the dystrophic muscle through an AMPK-pathway. PLoS One 2024; 19:e0300006. [PMID: 38498472 PMCID: PMC10947673 DOI: 10.1371/journal.pone.0300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06μM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-β). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.
Collapse
Affiliation(s)
| | - Evelyn Mendes Fernandes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
12
|
Southerland KW, Xu Y, Peters DT, Lin X, Wei X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells. Genome Med 2023; 15:95. [PMID: 37950327 PMCID: PMC10636829 DOI: 10.1186/s13073-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI), a severe manifestation of peripheral arterial disease (PAD), is associated with a 1-year limb amputation rate of approximately 15-20% and substantial mortality. A key feature of CLTI is the compromised regenerative ability of skeletal muscle; however, the mechanisms responsible for this impairment are not yet fully understood. In this study, we aim to delineate pathological changes at both the cellular and transcriptomic levels, as well as in cell-cell signaling pathways, associated with compromised muscle regeneration in limb ischemia in both human tissue samples and murine models of CLTI. METHODS We performed single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients and from a murine model of CLTI. In both datasets, we analyzed gene expression changes in macrophage and muscle satellite cell (MuSC) populations as well as differential cell-cell signaling interactions and differentiation trajectories. RESULTS Single-cell transcriptomic profiling and immunofluorescence analysis of CLTI patient skeletal muscle demonstrated that ischemic-damaged tissue displays a pro-inflammatory macrophage signature. Comparable results were observed in a murine CLTI model. Moreover, integrated analyses of both human and murine datasets revealed premature differentiation of MuSCs to be a key feature of failed muscle regeneration in the ischemic limb. Furthermore, in silico inferences of intercellular communication and in vitro assays highlight the importance of macrophage-MuSC signaling in ischemia induced muscle injuries. CONCLUSIONS Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and a murine CLTI model, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.
Collapse
Affiliation(s)
- Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Derek T Peters
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Kaileen Fei
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Lindsey A Olivere
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15217, USA
| | - Jeremy M Morowitz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Development and Stem Cell Biology Program, Duke University, Durham, NC, 27710, USA
| | - James Otto
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Qunsheng Dai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher D Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int J Mol Sci 2023; 24:11139. [PMID: 37446317 DOI: 10.3390/ijms241311139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.
Collapse
Affiliation(s)
- Matteo Lucchini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Santoro
- Energy and Sustainable Economic Development, Division of Health Protection Technologies ENEA-Italian National Agency for New Technologies, 00123 Rome, Italy
| | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Aldobrando Broccolini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
14
|
Scala P, Manzo P, Longo R, Giudice V, Ciardulli MC, Serio B, Selleri C, Guadagno L, Rehak L, Maffulli N, Della Porta G. Contribution of peripheral blood mononuclear cells isolated by advanced filtration system to myogenesis of human bone marrow mesenchymal stem cells co-cultured with myoblasts. Heliyon 2023; 9:e17141. [PMID: 37484299 PMCID: PMC10361327 DOI: 10.1016/j.heliyon.2023.e17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Contribution of peripheral blood mononuclear cells (PBMCs) in myogenesis is still under debate, even though blood filtration systems are commonly used in clinical practice for successfully management of critic limb ischemia. Objectives A commercial blood filter used for autologous human PBMC transplantation procedures is characterized and used to collect PBMCs, that are then added to well-established 2D in vitro myogenic models assembled with a co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and skeletal myoblasts (hSkMs) whit the aim of investigating their potential contribution to stem cell myogenic commitment. Methods A commercial blood filter was physically and chemically studied to understand its morphological characteristics and composition. PBMCs were concentrated using this system, further isolated by Ficoll-Paque density gradient centrifugation, and then added in an upper transwell chamber to a 2D co-culture of hBM-MSCs and hSkMs. Myogenic commitment was investigated by RT-PCR, immunofluorescence, and flow cytometry immunophenotyping. Cytokine levels were monitored by ELISA assay in culture media. Results The blood filtration system was disassembled and appeared to be formed by twelve membranes of poly-butylene terephthalate fibers (diameters, 0.9-4.0 μm) with pore size distribution of 1-20 μm. Filter functional characterization was achieved by characterizing collected cells by flow cytometry. Subsequently, collected PBMCs fraction was added to an in-vitro model of hBM-MSC myogenic commitment. In the presence of PBMCs, stem cells significantly upregulated myogenic genes, such as Desmin and MYH2, as confirmed by qRT-PCR and expressed related proteins by immunofluorescence (IF) assay, while downregulated pro-inflammatory cytokines (IL12A at day 14) along the 21 days of culture. Novelty Our work highlights chemical-physical properties of commercial blood filter and suggests that blood filtrated fraction of PBMC might modulate cytokine expression in response to muscle injury and promote myogenic events, supporting their clinical use in autologous transplantation.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Paola Manzo
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Laura Rehak
- Athena Biomedical Innovations, Viale Europa 139, Florence, 50126, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| |
Collapse
|
15
|
Taye N, Singh M, Baldock C, Hubmacher D. Secreted ADAMTS-like 2 promotes myoblast differentiation by potentiating WNT signaling. Matrix Biol 2023; 120:24-42. [PMID: 37187448 PMCID: PMC10238107 DOI: 10.1016/j.matbio.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Myogenesis is the process that generates multinucleated contractile myofibers from muscle stem cells during skeletal muscle development and regeneration. Myogenesis is governed by myogenic regulatory transcription factors, including MYOD1. Here, we identified the secreted matricellular protein ADAMTS-like 2 (ADAMTSL2) as part of a Wnt-dependent positive feedback loop, which augmented or sustained MYOD1 expression and thus promoted myoblast differentiation. ADAMTSL2 depletion resulted in severe retardation of myoblast differentiation in vitro and its ablation in myogenic precursor cells resulted in aberrant skeletal muscle architecture. Mechanistically, ADAMTSL2 potentiated WNT signaling by binding to WNT ligands and WNT receptors. We identified the WNT-binding ADAMTSL2 peptide, which was sufficient to promote myogenesis in vitro. Since ADAMTSL2 was previously described as a negative regulator of TGFβ signaling in fibroblasts, ADAMTSL2 now emerges as a signaling hub that could integrate WNT, TGFβ and potentially other signaling pathways within the dynamic microenvironment of differentiating myoblasts during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mukti Singh
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
16
|
Wei D, Zhang L, Raza SHA, Zhang J, Juan Z, Al-Amrah H, Al Abdulmonem W, Alharbi YM, Zhang G, Liang X. Interaction of C/EBPβ with SMAD2 and SMAD4 genes induces the formation of lipid droplets in bovine myoblasts. Funct Integr Genomics 2023; 23:191. [PMID: 37249689 DOI: 10.1007/s10142-023-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
As a key component of Transforming growth factor-β (TGF-β) pathway, Smad2 has many crucial roles in a variety of cellular processes, but it cannot bind DNA without complex formation with Smad4. In the present study, the molecular mechanism in the progress of myogenesis underlying transcriptional regulation of SMAD2 and SMAD4 had been clarified. The result showed the inhibition between SMAD2 and SMAD4, which promotes and inhibits bovine myoblast differentiation, respectively. Further, the characterization of promoter region of SMAD2 and SMAD4 was analyzed, and identified C/EBPβ directly bound to the core region of both SMAD2 and SMAD4 genes promoter and stimulated the transcriptional activity. However, C/EBPβ has lower expression in myoblasts which plays vital function in the transcriptional networks controlling adipogenesis, while the overexpression of C/EBPβ gene in myoblasts significantly increased SMAD2 and SMAD4 gene expression, induced the formation of lipid droplet in bovine myoblasts, and promoted the expression of adipogenesis-specific genes. Collectively, our results showed that C/EBPβ may play an important role in the trans-differentiation and dynamic equilibrium of myoblasts into adipocyte cells via promoting an increase in SMAD2 and SMAD4 gene levels. These results will provide an important basis for further understanding of the TGFβ pathway and C/EBPβ gene during myogenic differentiation.
Collapse
Affiliation(s)
- Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an, 716000, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China.
| |
Collapse
|
17
|
Southerland KW, Xu Y, Peters DT, Wei X, Lin X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Pro-inflammatory macrophages impair skeletal muscle regeneration in ischemic-damaged limbs by inducing precocious differentiation of satellite cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535211. [PMID: 37066299 PMCID: PMC10103943 DOI: 10.1101/2023.04.01.535211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chronic limb-threatening ischemia (CLTI), representing the end-stage of peripheral arterial disease (PAD), is associated with a one-year limb amputation rate of ∼15-20% and significant mortality. A key characteristic of CLTI is the failure of the innate regenerative capacity of skeletal muscle, though the underlying mechanisms remain unclear. Here, single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients demonstrated that ischemic-damaged tissue is enriched with pro-inflammatory macrophages. Comparable results were also observed in a murine CLTI model. Importantly, integrated analyses of both human and murine data revealed premature differentiation of muscle satellite cells (MuSCs) in damaged tissue and indications of defects in intercellular signaling communication between MuSCs and their inflammatory niche. Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and murine models, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.
Collapse
|
18
|
Pallaoro M, Modina SC, Fiorati A, Altomare L, Mirra G, Scocco P, Di Giancamillo A. Towards a More Realistic In Vitro Meat: The Cross Talk between Adipose and Muscle Cells. Int J Mol Sci 2023; 24:ijms24076630. [PMID: 37047600 PMCID: PMC10095036 DOI: 10.3390/ijms24076630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
According to statistics and future predictions, meat consumption will increase in the coming years. Considering both the environmental impact of intensive livestock farming and the importance of protecting animal welfare, the necessity of finding alternative strategies to satisfy the growing meat demand is compelling. Biotechnologies are responding to this demand by developing new strategies for producing meat in vitro. The manufacturing of cultured meat has faced criticism concerning, above all, the practical issues of culturing together different cell types typical of meat that are partly responsible for meat’s organoleptic characteristics. Indeed, the existence of a cross talk between adipose and muscle cells has critical effects on the outcome of the co-culture, leading to a general inhibition of myogenesis in favor of adipogenic differentiation. This review aims to clarify the main mechanisms and the key molecules involved in this cross talk and provide an overview of the most recent and successful meat culture 3D strategies for overcoming this challenge, focusing on the approaches based on farm-animal-derived cells.
Collapse
Affiliation(s)
- Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
19
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
20
|
Furusawa K, Kawahana Y, Miyashita R. Construction of Engineered Muscle Tissue Consisting of Myotube Bundles in a Collagen Gel Matrix. Gels 2023; 9:gels9020141. [PMID: 36826311 PMCID: PMC9956229 DOI: 10.3390/gels9020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue engineering methods that aim to mimic the hierarchical structure of skeletal muscle tissue have been widely developed due to utilities in various fields of biology, including regenerative medicine, food technology, and soft robotics. Most methods have aimed to reproduce the microscopical morphology of skeletal muscles, such as the orientation of myotubes and the sarcomere structure, and there is still a need to develop a method to reproduce the macroscopical morphology. Therefore, in this study, we aim to establish a method to reproduce the macroscopic morphology of skeletal muscle by constructing an engineered muscle tissue (EMT) by culturing embryonic chicken myoblast-like cells that are unidirectionally aligned in collagen hydrogels with micro-channels (i.e., MCCG). Whole mount fluorescent imaging of the EMT showed that the myotubes were unidirectionally aligned and that they were bundled in the collagen gel matrix. The myotubes contracted in response to periodic electrostimulations with a frequency range of 0.5-2.0 Hz, but not at 5.0 Hz. Compression tests of the EMT showed that the EMT had anisotropic elasticity. In addition, by measuring the relaxation moduli of the EMTs, an anisotropy of relaxation strengths was observed. The observed anisotropies could be attributed to differences in maturation and connectivity of myotubes in the directions perpendicular and parallel to the long axis of the micro-channels of the MCCG.
Collapse
|
21
|
Cen H, Luo H, Luo B, Fan P, Zhang Y, Zhang Y. TBX1 regulates myogenic differentiation by activating the TGFβ-Smad2/3 pathway in myoblasts. Exp Biol Med (Maywood) 2023; 248:61-69. [PMID: 36036218 PMCID: PMC9989151 DOI: 10.1177/15353702221112087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TBX1 is systematically conserved in the T-box transcription factor family and regulates craniofacial muscle development during various stages of myogenesis, including commitment, proliferation, terminal differentiation, and survival. However, the role and mechanism by which TBX1 regulates the myogenic development of myoblasts remains unclear. In our study, we overexpressed TBX1 in mouse C2C12 myoblasts using a lentivirus method. We found that TBX1 inhibited cell proliferation and muscle differentiation, which had no effect on apoptosis. During myogenic differentiation, we also found that TBX1 overexpressing cells regulate myogenic differentiation by upregulating the expression levels of Smad2 and Smad3 and downregulating the expression level of MEF2C. After treatment with a specific inhibitor of Smad3 (SIS3), the myogenic differentiation of wild-type and TBX1 overexpressing cells increased. Thus, TBX1 may regulate myoblast muscle differentiation by enhancing the expression of Smad2 and Smad3. TBX1 may be a therapeutic target for muscular dystrophy.
Collapse
Affiliation(s)
- Haimei Cen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Hong Luo
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Bin Luo
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Pin Fan
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yusheng Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
22
|
Chong GLW, Böhmert B, Lee LEJ, Bols NC, Dowd GC. A continuous myofibroblast precursor cell line from the tail muscle of Australasian snapper (Chrysophrys auratus) that responds to transforming growth factor beta and fibroblast growth factor. In Vitro Cell Dev Biol Anim 2022; 58:922-935. [PMID: 36378268 PMCID: PMC9780137 DOI: 10.1007/s11626-022-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFβ), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFβ exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.
Collapse
Affiliation(s)
- Gavril L. W. Chong
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Björn Böhmert
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Lucy E. J. Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8 Canada
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| |
Collapse
|
23
|
Aguilar-García D, Fernández-Sarmiento JA, del Mar Granados Machuca M, Rodríguez JM, Rascón PM, Calvo RN, Ruiz YM, Poveda JMC, Castañeda JM, Bertomeu RC, Domínguez Pérez JM. Histological and biochemical evaluation of plasma rich in growth factors treatment for grade II muscle injuries in sheep. BMC Vet Res 2022; 18:400. [DOI: 10.1186/s12917-022-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractThe purpose of this study was to perform a histological and biochemical evaluation of the influence of plasma rich in growth factors (PRGF) on muscle regeneration process after a surgically induced grade II muscle laceration. A randomized, single blind, controlled experimental research was conducted including twenty-one adult healthy sheep, randomly divided in three groups (n = 7). A grade II surgical section was performed in the biceps femoris muscle of both hindlimbs. After two days (basal time), intralesional infiltration of autologous PRGF or Saline solution was randomly administered in both hindlimbs. Treatment was repeated once a week. Animal groups were euthanized at 1 (T1), 2 (T2) or 4 (T4) weeks. Histological assessment showed that PRGF intralesional injection induced a significant decrease of inflammatory cells density, significant higher centrally nucleated fibers percentage and significantly smaller fibrotic areas compared to Saline-treated muscles at T1, T2 and T4. Also, lower vascular density, with lower capillaries cross-sectional area, in PRGF group compared to Saline was observed. Biochemical analysis revealed a significant higher expression level of MYOD1, MYF5 and MYOG genes in PRGF groups at T1 compared to Saline treated muscles. At ultrastructural level, PRGF groups presented scarce edema and loss of connective tissue structure, as well as higher mitochondrial density adequately associated to the sarcomere unit in contrast to the Saline group. In conclusion, histological, biochemical, and ultrastructural results showed that PRGF treatment improved muscle regeneration process leading to more mature histological aspect in newly formed muscle tissue after a surgically induced grade II muscle injury.
Collapse
|
24
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
25
|
Effect of Pinoresinol and Vanillic Acid Isolated from Catalpa bignonioides on Mouse Myoblast Proliferation via the Akt/mTOR Signaling Pathway. Molecules 2022; 27:molecules27175397. [PMID: 36080161 PMCID: PMC9457826 DOI: 10.3390/molecules27175397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, we evaluated muscle growth with several compounds extracted from Catalpa bignonioides Walt. Among these compounds, pinoresinol and vanillic acid increased C2C12, a mouse myoblast cell line, proliferation being the most without cytotoxicity. These substances activated the Akt/mammalian target of the rapamycin (mTOR) pathway, which positively regulates the proliferation of muscle cells. In addition, the results of in silico molecular docking study showed that they may bind to the active site of insulin-like growth factor 1 receptor (IGF-1R), which is an upstream of the Akt/mTOR pathway, indicating that both pinoresinol and vanillic acid stimulate myoblast proliferation through direct interaction with IGF-1R. These results suggest that pinoresinol and vanillic acid may be a natural supplement to improve the proliferation of skeletal muscle via IGF-1R/Akt/mTOR signaling and thus strengthen muscles.
Collapse
|
26
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
27
|
Clayton SW, Angermeier A, Halbrooks JE, McCardell R, Serra R. TGFβ signaling is required for sclerotome resegmentation during development of the spinal column in Gallus gallus. Dev Biol 2022; 488:120-130. [PMID: 35644252 PMCID: PMC9552462 DOI: 10.1016/j.ydbio.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
We previously showed the importance of TGFβ signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFβ signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFβRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFβ signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFβRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFβ signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.
Collapse
Affiliation(s)
- Sade W Clayton
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA; Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Allyson Angermeier
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Jacob E Halbrooks
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Ronisha McCardell
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA; Dillard University, Greensburg, LA, USA
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
28
|
A microRNA Signature for the Diagnosis of Statins Intolerance. Int J Mol Sci 2022; 23:ijms23158146. [PMID: 35897722 PMCID: PMC9330734 DOI: 10.3390/ijms23158146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout of this treatment. There is an urgent need to identify new biomarkers with discriminative precision for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI (n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and validated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with clinical value.
Collapse
|
29
|
Lopez MA, Si Y, Hu X, Williams V, Qushair F, Carlyle J, Alesce L, Conklin M, Gilbert S, Bamman MM, Alexander MS, King PH. Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b. Int J Mol Sci 2022; 23:7515. [PMID: 35886863 PMCID: PMC9323105 DOI: 10.3390/ijms23147515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
Collapse
Affiliation(s)
- Michael A. Lopez
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Xianzhen Hu
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Valentyna Williams
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Fuad Qushair
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Jackson Carlyle
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
| | - Michael Conklin
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Shawn Gilbert
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Marcas M. Bamman
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Cell, Development and Integrative Biology, Birmingham, AL 35233, USA
| | - Matthew S. Alexander
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- UAB Civitan International Research Center (CIRC), Birmingham, AL 35233, USA
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
30
|
Enhanced Muscle Fibers of Epinephelus coioides by Myostatin Autologous Nucleic Acid Vaccine. Int J Mol Sci 2022; 23:ijms23136997. [PMID: 35805999 PMCID: PMC9266527 DOI: 10.3390/ijms23136997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Epinephelus coioides is a fish species with high economic value due to its delicious meat, high protein content, and rich fatty acid nutrition. It has become a high-economic fish in southern parts of China and some other Southeast Asian countries. In this study, the myostatin nucleic acid vaccine was constructed and used to immunize E. coioides. The results from body length and weight measurements indicated the myostatin nucleic acid vaccine promoted E. coioides growth performance by increasing muscle fiber size. The results from RT-qPCR analysis showed that myostatin nucleic acid vaccine upregulated the expression of myod, myog and p21 mRNA, downregulated the expression of smad3 and mrf4 mRNA. This preliminary study is the first report that explored the role of myostatin in E. coioides and showed positive effects of autologous nucleic acid vaccine on the muscle growth of E. coioides. Further experiments with increased numbers of animals and different doses are needed for its application to E. coiodes aquaculture production.
Collapse
|
31
|
Yang F, Liu S, Qu J, Zhang Q. Identification and functional characterization of Pomstna in Japanese flounder (Paralichthys olivaceus). Gene 2022; 837:146675. [PMID: 35738447 DOI: 10.1016/j.gene.2022.146675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Myostatin (MSTN) as a negative regulator of muscle growth has been identified in Japanese flounder. Yet, most fish experienced the teleost specific genome duplication and possess at least two mstn genes. In current study, the second mstn gene named Pomstna is identified in Japanese flounder. Pomstna is clustered with other mstn2 of teleosts and owned highly conserved TGF-beta domain. In addition to muscle, Pomstna also highly expressed in brain and spleen. Using the primarily cultured muscle cells of Japanese flounder, we found that Pomstna could inhibit the proliferation and differentiation of muscle cells in vitro. As a ligand of TGF-beta signaling pathway, Pomstnb could regulate the expression of p21 and myod by activating the TGF-beta signaling pathway. Different from the function of Pomstnb, Pomstna could not activate the TGF-beta signaling pathway in vitro. During the differentiation of PoM cells, the expression of Pomstnb decreased significantly but the expression of Pomstna showed no change. Our study suggests that Pomstna could negatively regulate the growth and differentiation of muscle like Pomstnb yet through a different regulatory mechanism than Pomstnb. The present study suggests that muscle proliferation and differentiation were regulated by mstn not only through the TGF-beta signaling pathway but also other unknown mechanisms.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Process, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237 Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, 572000 Sanya, China.
| |
Collapse
|
32
|
Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas. Cells 2022; 11:cells11091589. [PMID: 35563894 PMCID: PMC9102156 DOI: 10.3390/cells11091589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle stem cells are essential to muscle homeostasis and regeneration after injury, and have emerged as a promising cell source for treating skeletal disorders. An attractive approach to obtain these cells utilizes differentiation of pluripotent stem cells (PSCs). We recently reported that teratomas derived from mouse PSCs are a rich source of skeletal muscle stem cells. Here, we showed that teratoma formation is also capable of producing skeletal myogenic progenitors from human PSCs. Using single-cell transcriptomics, we discovered several distinct skeletal myogenic subpopulations that represent progressive developmental stages of the skeletal myogenic lineage and recapitulate human embryonic skeletal myogenesis. We further discovered that ERBB3 and CD82 are effective surface markers for prospective isolation of the skeletal myogenic lineage in human PSC-derived teratomas. Therefore, teratoma formation provides an accessible model for obtaining human skeletal myogenic progenitors from PSCs.
Collapse
|
33
|
Chiu HY, Loh AHP, Taneja R. Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 2022; 13:419. [PMID: 35490194 PMCID: PMC9056521 DOI: 10.1038/s41419-022-04835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractEmbryonal rhabdomyosarcoma (ERMS) is characterised by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homoeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the mitochondrial calcium uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGFβ signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGFβ signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homoeostasis could be a therapeutic avenue in ERMS.
Collapse
|
34
|
Hillege MMG, Shi A, Galli RA, Wu G, Bertolino P, Hoogaars WMH, Jaspers RT. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife 2022; 11:77610. [PMID: 35323108 PMCID: PMC9005187 DOI: 10.7554/elife.77610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
In skeletal muscle, transforming growth factor-β (TGF-β) family growth factors, TGF-β1 and myostatin, are involved in atrophy and muscle wasting disorders. Simultaneous interference with their signalling pathways may improve muscle function; however, little is known about their individual and combined receptor signalling. Here, we show that inhibition of TGF-β signalling by simultaneous muscle-specific knockout of TGF-β type I receptors Tgfbr1 and Acvr1b in mice, induces substantial hypertrophy, while such effect does not occur by single receptor knockout. Hypertrophy is induced by increased phosphorylation of Akt and p70S6K and reduced E3 ligases expression, while myonuclear number remains unaltered. Combined knockout of both TGF-β type I receptors increases the number of satellite cells, macrophages and improves regeneration post cardiotoxin-induced injury by stimulating myogenic differentiation. Extra cellular matrix gene expression is exclusively elevated in muscle with combined receptor knockout. Tgfbr1 and Acvr1b are synergistically involved in regulation of myofibre size, regeneration, and collagen deposition.
Collapse
Affiliation(s)
- Michèle M G Hillege
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andi Shi
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricardo A Galli
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, UMR INSERM U1052, CNRS 5286, Lyon, France
| | - Willem M H Hoogaars
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Wang K, Zhang M, Zhao S, Xie Z, Zhang Y, Liu J, Zhang Y, Yang X, Wu N. Mutational spectrum of syndromic genes in sporadic brain arteriovenous malformation. Chin Neurosurg J 2022; 8:4. [PMID: 35209959 PMCID: PMC8867132 DOI: 10.1186/s41016-022-00270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain arteriovenous malformations (BAVMs) are abnormal vessels that are apt to rupture, causing life-threatening intracranial hemorrhage (ICH). The estimated prevalence of BAVMs is 0.05% among otherwise healthy individuals. In this study, we aim to investigate the mutational spectrum of syndromic genes in sporadic BAVM. Methods We recruited a cohort of 150 patients with BAVM and performed whole-exome sequencing on their peripheral blood DNA. To explore the mutational spectrum of syndromic genes in sporadic brain arteriovenous malformation, we selected six genes according to the Online Mendelian Inheritance in Man (OMIM) and literature. All variants in the six candidate genes were extracted and underwent filtering for qualifying variants. Results There are a total of four patients with rare variants in hereditary hemorrhagic telangiectasia-related genes. In addition, we identified two patients have the variant of RASA1 gene in our database, which are also rare mutations that are absent from population databases. However, we did not find any patients with GNAQ mutations in our database. Conclusions In conclusion, we demonstrated that variants in syndromic vascular malformations play important roles in the etiology of sporadic BAVM.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Zhixin Xie
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
36
|
Zhao S, Zhang Y, Hallgrimsdottir S, Zuo Y, Li X, Batkovskyte D, Liu S, Lindelöf H, Wang S, Hammarsjö A, Yang Y, Ye Y, Wang L, Yan Z, Lin J, Yu C, Chen Z, Niu Y, Wang H, Zhao Z, Liu P, Qiu G, Posey JE, Wu Z, Lupski JR, Micule I, Anderlid BM, Voss U, Sulander D, Kuchinskaya E, Nordgren A, Nilsson O, Zhang TJ, Grigelioniene G, Wu N. Expanding the mutation and phenotype spectrum of MYH3-associated skeletal disorders. NPJ Genom Med 2022; 7:11. [PMID: 35169139 PMCID: PMC8847563 DOI: 10.1038/s41525-021-00273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-β signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-β signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-β signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sigrun Hallgrimsdottir
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sen Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Hillevi Lindelöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongyu Ye
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zihui Yan
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Departments of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ieva Micule
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, Vienibas gatve 45, Riga, LV-1004, Latvia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dennis Sulander
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden.,School of Medical Sciences, Örebro University and Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China.
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Jayawardena TU, Nagahawatta D, Lu YA, Yang HW, Je JG, Kim SY, Jeon YJ. Ishige okamurae and diphloroethohydoxycarmalol inhibit palmitic acid-impaired skeletal myogenesis and improve muscle regenerative potential. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Molina E, Hong L, Chefetz I. NUAK Kinases: Brain-Ovary Axis. Cells 2021; 10:cells10102760. [PMID: 34685740 PMCID: PMC8535158 DOI: 10.3390/cells10102760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Liver kinase B (LKB1) and adenosine monophosphate (AMP)-activated protein kinase (AMPK) are two major kinases that regulate cellular metabolism by acting as adenosine triphosphate (ATP) sensors. During starvation conditions, LKB1 and AMPK activate different downstream pathways to increase ATP production, while decreasing ATP consumption, which abrogates cellular proliferation and cell death. Initially, LKB1 was considered to be a tumor suppressor due to its loss of expression in various tumor types. Additional studies revealed amplifications in LKB1 and AMPK kinases in several cancers, suggesting a role in tumor progression. The AMPK-related proteins were described almost 20 years ago as a group of key kinases involved in the regulation of cellular metabolism. As LKB1-downstream targets, AMPK-related proteins were also initially considered to function as tumor suppressors. However, further research demonstrated that AMPK-related kinases play a major role not only in cellular physiology but also in tumor development. Furthermore, aside from their role as regulators of metabolism, additional functions have been described for these proteins, including roles in the cell cycle, cell migration, and cell death. In this review, we aim to highlight the major role of AMPK-related proteins beyond their functions in cellular metabolism, focusing on cancer progression based on their role in cell migration, invasion, and cell survival. Additionally, we describe two main AMPK-related kinases, Novel (nua) kinase family 1 (NUAK1) and 2 (NUAK2), which have been understudied, but play a major role in cellular physiology and tumor development.
Collapse
Affiliation(s)
- Ester Molina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Linda Hong
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-507-437-9624
| |
Collapse
|
39
|
Shen X, Liu Z, Wang C, Xu F, Zhang J, Li M, Lei Y, Wang A, Bi C, Zhu G. Inhibition of Postn Rescues Myogenesis Defects in Myotonic Dystrophy Type 1 Myoblast Model. Front Cell Dev Biol 2021; 9:710112. [PMID: 34490258 PMCID: PMC8417118 DOI: 10.3389/fcell.2021.710112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3' untranslated region (3'UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Lei
- Wuhu Center for Disease Control and Prevention, Wuhu, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
40
|
Anderson LB, Ravara B, Hameed S, Latour CD, Latour SM, Graham VM, Hashmi MN, Cobb B, Dethrow N, Urazaev AK, Davie JK, Albertin G, Carraro U, Zampieri S, Pond AL. MERG1A Protein Abundance Increases in the Atrophied Skeletal Muscle of Denervated Mice, But Does Not Affect NFκB Activity. J Neuropathol Exp Neurol 2021; 80:776-788. [PMID: 34363662 DOI: 10.1093/jnen/nlab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle atrophy may occur with disease, injury, decreased muscle use, starvation, and normal aging. No reliably effective treatments for atrophy are available, thus research into the mechanisms contributing to muscle loss is essential. The ERG1A K+ channel contributes to muscle loss by increasing ubiquitin proteasome proteolysis (UPP) in the skeletal muscle of both unweighted and cachectic mice. Because the mechanisms which produce atrophy vary based upon the initiating factor, here we investigate atrophy produced by denervation. Using immunohistochemistry and immunoblots, we demonstrate that ERG1A protein abundance increases significantly in the Gastrocnemius muscle of rodents 7 days after both sciatic nerve transection and hind limb unweighting. Further, we reveal that ectopic expression of a Merg1a encoded plasmid in normal mouse Gastrocnemius muscle has no effect on activity of the NFκB transcription factor family, a group of proteins which contribute to muscle atrophy by modulation of the UPP. Further, although NFκB activity increases significantly after denervation, we show that expression of a plasmid encoding a dominant negative Merg1a mutant in Gastrocnemius muscle prior to denervation, has no effect on NFκB activity. Thus, although the ERG1A K+ channel increases UPP, it does not do so through modulation of NFκB transcription factors.
Collapse
Affiliation(s)
- Luke B Anderson
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Barbara Ravara
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ).,Department of Neuroscience (DNS), University of Padova, Padova, Italy (BR, GA).,A&C M-C Foundation for Translational Myology, Padova, Italy (BR, UC)
| | - Sohaib Hameed
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Chase D Latour
- Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA (CDL)
| | - Sawyer M Latour
- Doisey School of Health, Saint Louis University, St. Louis, Missouri, USA (SML, VMG)
| | - Valerie M Graham
- Doisey School of Health, Saint Louis University, St. Louis, Missouri, USA (SML, VMG)
| | - Mariam N Hashmi
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Brittan Cobb
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Nicole Dethrow
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Albert K Urazaev
- School of Arts, Sciences and Education, Ivy Technical Community College, Lafayette, Indiana, USA (AKU)
| | - Judy K Davie
- Biochemistry Department, Southern Illinois University, Carbondale, Illinois, USA(JKD)
| | - Giovanna Albertin
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ).,Department of Neuroscience (DNS), University of Padova, Padova, Italy (BR, GA)
| | - Ugo Carraro
- A&C M-C Foundation for Translational Myology, Padova, Italy (BR, UC)
| | - Sandra Zampieri
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ)
| | - Amber L Pond
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| |
Collapse
|
41
|
van de Vis RAJ, Moustakas A, van der Heide LP. NUAK1 and NUAK2 Fine-Tune TGF-β Signaling. Cancers (Basel) 2021; 13:cancers13133377. [PMID: 34282782 PMCID: PMC8268639 DOI: 10.3390/cancers13133377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary TGF-β is a growth factor implicated in a plethora of processes and malignancies, which include cancer and fibrosis. Via binding to its receptor, TGF-β activates a complex intracellular signal transduction pathway, which is controlled by many forms of positive as well as negative feedback. The integrated sum of this feedback determines the outcome and cellular response to TGF-β. In this review, we discuss the role of NUAK1 and NUAK2, a subgroup of the 5′AMP-activated protein kinase family, in providing feedback on intracellular TGF-β signaling. In addition, we discuss how NUAKs mechanistically augment or attenuate the TGF-β response to steer the cell towards a specific output. Understanding the role of NUAKs may aid in developing specific therapeutic agents to combat TGF-β-dependent disease. Abstract Transforming growth factor-β (TGF-β) signaling plays a key role in governing various cellular processes, extending from cell proliferation and apoptosis to differentiation and migration. Due to this extensive involvement in the regulation of cellular function, aberrant TGF-β signaling is frequently implicated in the formation and progression of tumors. Therefore, a full understanding of the mechanisms of TGF-β signaling and its key components will provide valuable insights into how this intricate signaling cascade can shift towards a detrimental course. In this review, we discuss the interplay between TGF-β signaling and the AMP-activated protein kinase (AMPK)-related NUAK kinase family. We highlight the function and regulation of these kinases with focus on the pivotal role NUAK1 and NUAK2 play in regulating TGF-β signaling. Specifically, TGF-β induces the expression of NUAK1 and NUAK2 that regulates TGF-β signaling output in an opposite manner. Besides the focus on the TGF-β pathway, we also present a broader perspective on the expression and signaling interactions of the NUAK kinases to outline the broader functions of these protein kinases.
Collapse
Affiliation(s)
- Reinofke A. J. van de Vis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-75123 Uppsala, Sweden;
| | - Lars P. van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-5257061
| |
Collapse
|
42
|
Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells. Cells 2021; 10:cells10071649. [PMID: 34209364 PMCID: PMC8303216 DOI: 10.3390/cells10071649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding the signaling pathways that regulate the final differentiation of human myoblasts is essential for successful cell transplantation and drug screening for the treatment of muscular dystrophy. In an effort to improve myotube formation from hiPSC-derived myoblasts, we validated a collection of 13 small molecules in a newly established in vitro screening platform for the assessment of myotube formation. The analysis of myotube formation as measured by the fusion index showed that the combinational inhibition of the TGFβ signaling with NOTCH signaling enhances the ability of multi-nucleated myotube production. Combinational treatment of inhibitors for TGFβ and NOTCH signaling pathways improved myotube formation in a dose-dependent manner. This effect was achieved by inhibiting the combinatorial mechanism of signaling. The combination treatment of small molecules effective in inducing multinucleated myotubes was validated in healthy human primary myoblasts. In addition, it was also applied to DMD patient iPSC-derived myoblasts to enhance the generation of multinucleated myotubes.
Collapse
|
43
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
44
|
Oh M, Kim SY, Park S, Kim KN, Kim SH. Phytochemicals in Chinese Chive ( Allium tuberosum) Induce the Skeletal Muscle Cell Proliferation via PI3K/Akt/mTOR and Smad Pathways in C2C12 Cells. Int J Mol Sci 2021; 22:2296. [PMID: 33669060 PMCID: PMC7956299 DOI: 10.3390/ijms22052296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Chinese chive (Allium tuberosum) is a medicinal food that is cultivated and consumed mainly in Asian countries. Its various phytochemicals and physiological effects have been reported, but only a few phytochemicals are available for skeletal muscle cell proliferation. Herein, we isolated a new compound, kaempferol-3-O-(6″-feruloyl)-sophoroside (1), along with one known flavonoid glycoside (2) and six amino acid (3-8) compounds from the water-soluble fraction of the shoot of the Chinese chive. The isolated compounds were identified using extensive spectroscopic methods, including 1D and 2D NMR, and evaluated for their proliferation activity on skeletal muscle cells. Among the tested compounds, newly isolated flavonoid (1) and 5-aminouridine (7) up-regulated PI3K/Akt/mTOR pathways, which implies a positive effect on skeletal muscle growth and differentiation. In particular, compound 1 down-regulated the Smad pathways, which are negative regulators of skeletal muscle growth. Collectively, we suggest that major constituents of Chinese chive, flavonoids and amino acids, might be used in dietary supplements that aid skeletal muscle growth.
Collapse
Affiliation(s)
- Mira Oh
- College of pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - Seung Hyun Kim
- College of pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| |
Collapse
|
45
|
Lamarche É, AlSudais H, Rajgara R, Fu D, Omaiche S, Wiper-Bergeron N. SMAD2 promotes myogenin expression and terminal myogenic differentiation. Development 2021; 148:dev.195495. [PMID: 33462116 DOI: 10.1242/dev.195495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022]
Abstract
SMAD2 is a transcription factor, the activity of which is regulated by members of the transforming growth factor β (TGFβ) superfamily. Although activation of SMAD2 and SMAD3 downstream of TGFβ or myostatin signaling is known to inhibit myogenesis, we found that SMAD2 in the absence of TGFβ signaling promotes terminal myogenic differentiation. We found that, during myogenic differentiation, SMAD2 expression is induced. Knockout of SMAD2 expression in primary myoblasts did not affect the efficiency of myogenic differentiation but produced smaller myotubes with reduced expression of the terminal differentiation marker myogenin. Conversely, overexpression of SMAD2 stimulated myogenin expression, and enhanced both differentiation and fusion, and these effects were independent of classical activation by the TGFβ receptor complex. Loss of Smad2 in muscle satellite cells in vivo resulted in decreased muscle fiber caliber and impaired regeneration after acute injury. Taken together, we demonstrate that SMAD2 is an important positive regulator of myogenic differentiation, in part through the regulation of Myog.
Collapse
Affiliation(s)
- Émilie Lamarche
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Rashida Rajgara
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Saadeddine Omaiche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
46
|
Melendez J, Sieiro D, Salgado D, Morin V, Dejardin MJ, Zhou C, Mullen AC, Marcelle C. TGFβ signalling acts as a molecular brake of myoblast fusion. Nat Commun 2021; 12:749. [PMID: 33531476 PMCID: PMC7854724 DOI: 10.1038/s41467-020-20290-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/21/2020] [Indexed: 01/30/2023] Open
Abstract
Fusion of nascent myoblasts to pre-existing myofibres is critical for skeletal muscle growth and repair. The vast majority of molecules known to regulate myoblast fusion are necessary in this process. Here, we uncover, through high-throughput in vitro assays and in vivo studies in the chicken embryo, that TGFβ (SMAD2/3-dependent) signalling acts specifically and uniquely as a molecular brake on muscle fusion. While constitutive activation of the pathway arrests fusion, its inhibition leads to a striking over-fusion phenotype. This dynamic control of TGFβ signalling in the embryonic muscle relies on a receptor complementation mechanism, prompted by the merging of myoblasts with myofibres, each carrying one component of the heterodimer receptor complex. The competence of myofibres to fuse is likely restored through endocytic degradation of activated receptors. Altogether, this study shows that muscle fusion relies on TGFβ signalling to regulate its pace.
Collapse
Affiliation(s)
- Julie Melendez
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Daniel Sieiro
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
- Plexus Ventures LLC, Boston, MA, USA
| | - David Salgado
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
- Marseille Medical Genetics (MMG), Aix Marseille University, INSERM U1251, Marseille, France
| | - Valérie Morin
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Marie-Julie Dejardin
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alan C Mullen
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christophe Marcelle
- Institut NeuroMyoGène (INMG), University Claude Bernard Lyon1, CNRS UMR 5310, INSERM U1217, Lyon, France.
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia.
| |
Collapse
|
47
|
Girardi F, Taleb A, Ebrahimi M, Datye A, Gamage DG, Peccate C, Giordani L, Millay DP, Gilbert PM, Cadot B, Le Grand F. TGFβ signaling curbs cell fusion and muscle regeneration. Nat Commun 2021; 12:750. [PMID: 33531466 PMCID: PMC7854756 DOI: 10.1038/s41467-020-20289-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFβ) pathway is active in adult muscle cells throughout fusion. We find TGFβ signaling reduces cell fusion, regardless of the cells' ability to move and establish cell-cell contacts. In contrast, inhibition of TGFβ signaling enhances cell fusion and promotes branching between myotubes in mouse and human. Exogenous addition of TGFβ protein in vivo during muscle regeneration results in a loss of muscle function while inhibition of TGFβR2 induces the formation of giant myofibers. Transcriptome analyses and functional assays reveal that TGFβ controls the expression of actin-related genes to reduce cell spreading. TGFβ signaling is therefore requisite to limit mammalian myoblast fusion, determining myonuclei numbers and myofiber size.
Collapse
Affiliation(s)
- Francesco Girardi
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Anissa Taleb
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Majid Ebrahimi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Asiman Datye
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cécile Peccate
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Bruno Cadot
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Fabien Le Grand
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France.
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 69008, Lyon, France.
| |
Collapse
|
48
|
Dang TTH, Yun JW. BMP10 positively regulates myogenic differentiation in C2C12 myoblasts via the Smad 1/5/8 signaling pathway. Mol Cell Biochem 2021; 476:2085-2097. [PMID: 33517521 DOI: 10.1007/s11010-021-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.
Collapse
Affiliation(s)
- Trang Thi Huyen Dang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
49
|
Magarotto F, Sgrò A, Dorigo Hochuli AH, Andreetta M, Grassi M, Saggioro M, Nogara L, Tolomeo AM, Francescato R, Collino F, Germano G, Caicci F, Maghin E, Piccoli M, Jurga M, Blaauw B, Gamba P, Muraca M, Pozzobon M. Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model. Biomaterials 2021; 269:120653. [PMID: 33461058 DOI: 10.1016/j.biomaterials.2021.120653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 12/23/2022]
Abstract
Biological scaffolds derived from decellularized tissues are being investigated as a promising approach to repair volumetric muscle losses (VML). Indeed, extracellular matrix (ECM) from decellularized tissues is highly biocompatible and mimics the original tissue. However, the development of fibrosis and the muscle stiffness still represents a major problem. Intercellular signals mediating tissue repair are conveyed via extracellular vesicles (EVs), biologically active nanoparticles secreted by the cells. This work aimed at using muscle ECM and human EVs derived from Wharton Jelly mesenchymal stromal cells (MSC EVs) to boost tissue regeneration in a VML murine model. Mice transplanted with muscle ECM and treated with PBS or MSC EVs were analyzed after 7 and 30 days. Flow cytometry, tissue analysis, qRT-PCR and physiology test were performed. We demonstrated that angiogenesis and myogenesis were enhanced while fibrosis was reduced after EV treatment. Moreover, the inflammation was directed toward tissue repair. M2-like, pro-regenerative macrophages were significantly increased in the MSC EVs treated group compared to control. Strikingly, the histological improvements were associated with enhanced functional recovery. These results suggest that human MSC EVs can be a naturally-derived boost able to ameliorate the efficacy of tissue-specific ECM in muscle regeneration up to the restored tissue function.
Collapse
Affiliation(s)
- Fabio Magarotto
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy; Department of Women and Children Health, University of Padova, Italy
| | - Alberto Sgrò
- Department of Women and Children Health, University of Padova, Italy
| | | | - Marina Andreetta
- Department of Women and Children Health, University of Padova, Italy
| | - Michele Grassi
- Department of Women and Children Health, University of Padova, Italy
| | - Mattia Saggioro
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy; Department of Women and Children Health, University of Padova, Italy
| | - Leonardo Nogara
- Biomedical Sciences Department, University of Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Maria Tolomeo
- Department of Women and Children Health, University of Padova, Italy; L.i.f.e.L.a.b. Program, Consorzio per La Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
| | - Riccardo Francescato
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-urology, Fondazione Ca' Granada IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Giuseppe Germano
- Institute of Pediatric Research Città Della Speranza, Padova, Italy
| | | | - Edoardo Maghin
- Department of Women and Children Health, University of Padova, Italy; Tissue Engineering Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy
| | | | - Bert Blaauw
- Biomedical Sciences Department, University of Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Piergiorgio Gamba
- Department of Women and Children Health, University of Padova, Italy
| | - Maurizio Muraca
- Department of Women and Children Health, University of Padova, Italy; Institute of Pediatric Research Città Della Speranza, Padova, Italy; L.i.f.e.L.a.b. Program, Consorzio per La Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città Della Speranza, Padova, Italy; Department of Women and Children Health, University of Padova, Italy.
| |
Collapse
|
50
|
Upstream Regulator Analysis of Wooden Breast Myopathy Proteomics in Commercial Broilers and Comparison to Feed Efficiency Proteomics in Pedigree Male Broilers. Foods 2021; 10:foods10010104. [PMID: 33419207 PMCID: PMC7825620 DOI: 10.3390/foods10010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
In an effort to understand the apparent trade-off between the continual push for growth performance and the recent emergence of muscle pathologies, shotgun proteomics was conducted on breast muscle obtained at ~8 weeks from commercial broilers with wooden breast (WB) myopathy and compared with that in pedigree male (PedM) broilers exhibiting high feed efficiency (FE). Comparison of the two proteomic datasets was facilitated using the overlay function of Ingenuity Pathway Analysis (IPA) (Qiagen, CA, USA). We focused on upstream regulator analysis and disease-function analysis that provides predictions of activation or inhibition of molecules based on (a) expression of downstream target molecules, (b) the IPA scientific citation database. Angiopoeitin 2 (ANGPT2) exhibited the highest predicted activation Z-score of all molecules in the WB dataset, suggesting that the proteomic landscape of WB myopathy would promote vascularization. Overlaying the FE proteomics data on the WB ANGPT2 upstream regulator network presented no commonality of protein expression and no prediction of ANGPT2 activation. Peroxisome proliferator coactivator 1 alpha (PGC1α) was predicted to be inhibited, suggesting that mitochondrial biogenesis was suppressed in WB. PGC1α was predicted to be activated in high FE pedigree male broilers. Whereas RICTOR (rapamycin independent companion of mammalian target of rapamycin) was predicted to be inhibited in both WB and FE datasets, the predictions were based on different downstream molecules. Other transcription factors predicted to be activated in WB muscle included epidermal growth factor (EGFR), X box binding protein (XBP1), transforming growth factor beta 1 (TGFB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Inhibitions of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT) and estrogen related receptor gamma (ESRRG) were also predicted in the WB muscle. These findings indicate that there are considerable differences in upstream regulators based on downstream protein expression observed in WB myopathy and in high FE PedM broilers that may provide additional insight into the etiology of WB myopathy.
Collapse
|