1
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Li K, Lu X, Liao J, Chen H, Lin W, Zhao Y, Tang D, Li C, Tian Z, Zhu Z, Jiang H, Sun J, Zhang H, Yang C. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2410164121. [PMID: 39145927 PMCID: PMC11348301 DOI: 10.1073/pnas.2410164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Xiaoyun Lu
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Jiaqi Liao
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Yuhan Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Dongbao Tang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Congyu Li
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhenyang Tian
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jun Sun
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| |
Collapse
|
3
|
Domrazek K, Jurka P. Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals (Basel) 2024; 14:1578. [PMID: 38891625 PMCID: PMC11171117 DOI: 10.3390/ani14111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Next-Generation Sequencing (NGS) techniques have revolutionized veterinary medicine for cats and dogs, offering insights across various domains. In veterinary parasitology, NGS enables comprehensive profiling of parasite populations, aiding in understanding transmission dynamics and drug resistance mechanisms. In infectious diseases, NGS facilitates rapid pathogen identification, characterization of virulence factors, and tracking of outbreaks. Moreover, NGS sheds light on metabolic processes by elucidating gene expression patterns and metabolic pathways, essential for diagnosing metabolic disorders and designing tailored treatments. In autoimmune diseases, NGS helps identify genetic predispositions and molecular mechanisms underlying immune dysregulation. Veterinary oncology benefits from NGS through personalized tumor profiling, mutation analysis, and identification of therapeutic targets, fostering precision medicine approaches. Additionally, NGS plays a pivotal role in veterinary genetics, unraveling the genetic basis of inherited diseases and facilitating breeding programs for healthier animals. Physiological investigations leverage NGS to explore complex biological systems, unraveling gene-environment interactions and molecular pathways governing health and disease. Application of NGS in treatment planning enhances precision and efficacy by enabling personalized therapeutic strategies tailored to individual animals and their diseases, ultimately advancing veterinary care for companion animals.
Collapse
Affiliation(s)
- Kinga Domrazek
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
4
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review. Genes (Basel) 2024; 15:438. [PMID: 38674373 PMCID: PMC11049589 DOI: 10.3390/genes15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.
Collapse
Affiliation(s)
- Caitlin McDonald
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| | - Duncan Taylor
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
- Forensic Science SA, GPO Box 2790, Adelaide, SA 5001, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| |
Collapse
|
6
|
Lv P, Li J, Yao Y, Fan X, Liu C, Li H, Zhou H. A novel pyrosequencing strategy for RHD zygosity for predicting risk of hemolytic disease of the fetus and newborn. Lab Med 2024; 55:145-152. [PMID: 37307496 DOI: 10.1093/labmed/lmad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE The aim of this study was the development of an accurate and quantitative pyrosequence (PSQ) method for paternal RHD zygosity detection to help risk management of hemolytic disease of the fetus and newborn (HDFN). METHODS Blood samples from 96 individuals were genotyped for RHD zygosity using pyrosequencing assay. To validate the accuracy of pyrosequencing results, all the samples were then detected by the mismatch polymerase chain reaction with sequence-specific primers (PCR-SSP) method and Sanger DNA sequencing. Serological tests were performed to assess RhD phenotypes. RESULTS Serological results revealed that 36 cases were RhD-positive and 60 cases were RhD-negative. The concordance rate between pyrosequencing assay and mismatch PCR-SSP assay was 94.8% (91/96). There were 5 discordant results between pyrosequencing and the mismatch PCR-SSP assay. Sanger sequencing confirmed that the pyrosequencing assay correctly assigned zygosity for the 5 samples. CONCLUSION This DNA pyrosequencing method accurately detect RHD zygosity and will help risk management of pregnancies that are at risk of HDFN.
Collapse
Affiliation(s)
- Piao Lv
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jixin Li
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Yao
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxin Fan
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chixiang Liu
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Hematology, Guangdong Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine), Guangzhou, China
| | - Huayou Zhou
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Bianconi I, Aschbacher R, Pagani E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics (Basel) 2023; 12:1580. [PMID: 37998782 PMCID: PMC10668849 DOI: 10.3390/antibiotics12111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Recent advancements in sequencing technology and data analytics have led to a transformative era in pathogen detection and typing. These developments not only expedite the process, but also render it more cost-effective. Genomic analyses of infectious diseases are swiftly becoming the standard for pathogen analysis and control. Additionally, national surveillance systems can derive substantial benefits from genomic data, as they offer profound insights into pathogen epidemiology and the emergence of antimicrobial-resistant strains. Antimicrobial resistance (AMR) is a pressing global public health issue. While clinical laboratories have traditionally relied on culture-based antimicrobial susceptibility testing, the integration of genomic data into AMR analysis holds immense promise. Genomic-based AMR data can furnish swift, consistent, and highly accurate predictions of resistance phenotypes for specific strains or populations, all while contributing invaluable insights for surveillance. Moreover, genome sequencing assumes a pivotal role in the investigation of hospital outbreaks. It aids in the identification of infection sources, unveils genetic connections among isolates, and informs strategies for infection control. The One Health initiative, with its focus on the intricate interconnectedness of humans, animals, and the environment, seeks to develop comprehensive approaches for disease surveillance, control, and prevention. When integrated with epidemiological data from surveillance systems, genomic data can forecast the expansion of bacterial populations and species transmissions. Consequently, this provides profound insights into the evolution and genetic relationships of AMR in pathogens, hosts, and the environment.
Collapse
Affiliation(s)
- Irene Bianconi
- Laboratory of Microbiology and Virology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversitätvia Amba Alagi 5, 39100 Bolzano, Italy; (R.A.); (E.P.)
| | | | | |
Collapse
|
8
|
Kim JY, Lee HY, Lee SY, Kim SY, Park JL, Lee SD. DNA methylome profiling of blood to identify individuals in a pair of monozygotic twins. Genes Genomics 2023; 45:1273-1279. [PMID: 37198375 PMCID: PMC10504115 DOI: 10.1007/s13258-023-01396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short tandem repeat (STR) markers cannot be used to distinguish between genetically identical monozygotic (MZ) twins, causing problems in a case with an MZ twin as a suspect. Many studies have shown that in older MZ twins, there are significant differences in overall content and genomic distribution of methylation. OBJECTIVE In this study, we analyzed the DNA methylome profile of blood to identify recurrent differentially methylated CpG sites (DMCs) to discriminate between MZ twins. METHODS Blood samples were collected from 47 paired MZ twins. We performed the DNA methylation profiling using the HumanMethylation EPIC BeadChip platform and identified recurrent DMCs between MZ twins. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and motif enrichment analyses were performed to reveal the biological functions of recurrent DMCs. We collected DNA methylome data from the Gene Expression Omnibus (GEO) public database to verify the recurrent DMCs between MZ twins. RESULTS We identified recurrent DMCs between MZ twin samples and observed that they were enriched in immune-related genes. In addition, we verified our DMCs in a public dataset. CONCLUSION Our results suggest that the methylation level at recurrent DMCs between MZ twins may serve as a valuable biomarker for identification of individuals in a pair of MZ twins.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - So-Yeon Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
9
|
Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 2023; 195:5669-5692. [PMID: 35796946 DOI: 10.1007/s12010-022-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.
Collapse
Affiliation(s)
- Sundaram Deepika Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Aswin Dilshani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Srinivasan Rishivanthi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Pratham Khaitan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Adhinarayan Vamsidhar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
11
|
Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art. Foods 2023; 12:foods12010228. [PMID: 36613444 PMCID: PMC9818732 DOI: 10.3390/foods12010228] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Food adulteration is one of the most serious problems regarding food safety and quality worldwide. Besides misleading consumers, it poses a considerable health risk associated with the potential non-labeled allergen content. Fish and fish products are one of the most expensive and widely traded commodities, which predisposes them to being adulterated. Among all fraud types, replacing high-quality or rare fish with a less valuable species predominates. Because fish differ in their allergen content, specifically the main one, parvalbumin, their replacement can endanger consumers. This underlines the need for reliable, robust control systems for fish species identification. Various methods may be used for the aforementioned purpose. DNA-based methods are favored due to the characteristics of the target molecule, DNA, which is heat resistant, and the fact that through its sequencing, several other traits, including the recognition of genetic modifications, can be determined. Thus, they are considered to be powerful tools for identifying cases of food fraud. In this review, the major DNA-based methods applicable for fish meat and product authentication and their commercial applications are discussed, the possibilities of detecting genetic modifications in fish are evaluated, and future trends are highlighted, emphasizing the need for comprehensive and regularly updated online database resources.
Collapse
|
12
|
Church G. Picogram-Scale Interstellar Probes via Bioinspired Engineering. ASTROBIOLOGY 2022; 22:1452-1458. [PMID: 36475966 PMCID: PMC9784576 DOI: 10.1089/ast.2022.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/06/2022] [Indexed: 05/04/2023]
Abstract
For exploring nearby stars, let us consider the challenges of a picogram- to nanogram-scale probe to land, replicate, and produce a communications module based on biominerals at the destination. A billion such probes could be launched for similar cost as a single gram-scale probe. One design is a highly reflective light sail, traveling a long straight line toward the gravitational well of a destination star, and then photo-deflected to the closest nonluminous mass-ideally a planet or moon with exposed liquid water.
Collapse
Affiliation(s)
- George Church
- Wyss Institute, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Harrison CE, Knupp CK, Brenden TO, Ebener M, Loch TP. First isolation of Flavobacterium psychrophilum from wild adult Great Lakes lake whitefish (Coregonus clupeaformis). JOURNAL OF FISH DISEASES 2022; 45:1023-1032. [PMID: 35466417 PMCID: PMC9323434 DOI: 10.1111/jfd.13626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Lake whitefish (Coregonus clupeaformis; LWF) is an economically and ecologically valuable native species to the Great Lakes, but recent declines in their recruitment have generated significant concern about their future viability. Although studies have sought to identify factors contributing to declining recruitment, the potential role(s) of infectious diseases has not been thoroughly investigated. In 2018 and 2019, adult LWF were collected from Lakes Superior, Michigan, and Huron for clinical examination and bacteriological analyses. Herein, we describe the first isolation of Flavobacterium psychrophilum, aetiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), from systemically infected adult LWF. Bacterial isolates were yellow-orange, Gram-negative, filamentous bacilli that were oxidase and catalase positive, and produced a flexirubin-type pigment in 3% potassium hydroxide. Isolate identity was confirmed via F. psychrophilum-specific PCR, and multilocus sequence typing revealed three new singleton sequence types (STs) that were distinct from all previously described F. psychrophilum STs. The prevalence of F. psychrophilum infections was 3.3, 1.7, and 0.0% in Lakes Superior, Michigan and Huron respectively. Findings illustrate the potential for F. psychrophilum to cause systemic infections in adult LWF and highlight the need for future studies to investigate the bacterium's potential role in declining LWF recruitment.
Collapse
Affiliation(s)
- Courtney E. Harrison
- Department of Fisheries and WildlifeCollege of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Christopher K. Knupp
- Department of Fisheries and WildlifeCollege of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Travis O. Brenden
- Department of Fisheries and WildlifeQuantitative Fisheries CenterMichigan State UniversityEast LansingMichiganUSA
| | - Mark P. Ebener
- The Fresh Lake Whitefish CompanySault Sainte MarieMichiganUSA
| | - Thomas P. Loch
- Department of Fisheries and WildlifeCollege of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
- Department of Pathobiology and Diagnostic InvestigationCollege of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
14
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Gupta N, Verma VK. Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. MICROORGANISMS FOR SUSTAINABILITY 2019. [PMCID: PMC7122948 DOI: 10.1007/978-981-13-8844-6_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Next-generation sequencing has the ability to revolutionize almost all fields of biological science. It has drastically reduced the cost of sequencing. This allows us to study the whole genome or part of the genome to understand how the cellular functions are governed by the genetic code. The data obtained in huge quantity from sequencing upon analysis gives an insight to understand the mechanism of pathogen biology, virulence, and phenomenon of bacterial resistance, which helps in investigating the outbreak. This ultimately helps in the development of therapies for public health welfare against human pathogen and diagnostic reagents for the screening. This chapter includes the basic of Sanger’s method of DNA sequencing and next-generation sequencing, different available platforms for sequencing with their advantages, and limitations and their chemistry with an overview of downstream data analysis. Furthermore, the breadth of applications of high-throughput NGS technology for human health has been discussed.
Collapse
|
16
|
Wang C, Zhang Y, Bing G, Zhang X, Wang C, Wang M, Sun Y, Wu S, Lin X, Pu J, Liu J, Sun H. The use of pyrosequencing for detection of hemagglutinin mutations associated with increased pathogenicity of H5N1 avian influenza viruses in mammals. J Vet Diagn Invest 2018; 30:619-622. [PMID: 29633913 DOI: 10.1177/1040638718769951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) cleavage is critical for virulence of influenza viruses. The amino acid residue at the P6 position of the HA cleavage site (HACS) has been shown to be most variable and to have a direct correlation with the cleavage efficiency and pathogenicity of H5N1 avian influenza viruses (AIVs) in mammals. Among these amino acid variants, serine has been associated with the highest virulence in mammals, and its detection may serve as an indicator for H5N1 AIVs with high pathogenicity and potential public risk. We developed a rapid detection method based on reverse-transcription (RT)-PCR and pyrosequencing to detect a mutation at the HACS that is associated with increased pathogenicity of H5N1 AIVs in mammals. Herein, we provide a specific, sensitive, and reliable method for rapid detection of one of the virulence determinants associated with increased pathogenicity of H5N1 AIVs in mammals.
Collapse
Affiliation(s)
- Chenxi Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Guoxia Bing
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Xuxiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Caixia Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Shaoqiang Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Xiangmei Lin
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China (Chenxi Wang, X Zhang, M Wang, Y Sun, Pu, Liu, H Sun).,Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China (Y Zhang, Caixia Wang, Wu, Lin).,China Animal Disease Control Center, Beijing, China (Bing)
| |
Collapse
|
17
|
Crespi JA, Barrientos LS, Giovambattista G. von Willebrand disease type 1 in Doberman Pinscher dogs: genotyping and prevalence of the mutation in the Buenos Aires region, Argentina. J Vet Diagn Invest 2017; 30:310-314. [PMID: 29271313 DOI: 10.1177/1040638717750429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
von Willebrand disease (vWD) is the most common inherited coagulopathy in dogs, particularly in Doberman Pinschers. We developed a pyrosequencing-based assay to estimate the frequency of the c.7437G>A mutation associated with vWD type 1 in the Doberman Pinscher population of Buenos Aires, Argentina. We found a 0.41 frequency for the mutated allele, which varied significantly within families (family 1 = 0.43, family 2 = 0.58, unrelated animals = 0.35). The use of a popular founder male carrier of mutant allele A increased vWD incidence within a family and in the general population. The mode of inheritance was confirmed as autosomal dominant with incomplete penetrance. No differences were found between sexes and coat colors. Pyrosequencing was a good complement to clinical and coagulation tests for vWD type 1 diagnosis and a useful alternative for detecting the c.7437G>A mutation.
Collapse
Affiliation(s)
- Julian A Crespi
- Instituto de Genética Veterinaria, Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| | - Laura S Barrientos
- Instituto de Genética Veterinaria, Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| | - Guillermo Giovambattista
- Instituto de Genética Veterinaria, Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Bozan M, Akyol Ç, Ince O, Aydin S, Ince B. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl Microbiol Biotechnol 2017; 101:6849-6864. [PMID: 28779289 DOI: 10.1007/s00253-017-8438-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.
Collapse
Affiliation(s)
- Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469, Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
19
|
Steven A, Heiduk M, Recktenwald CV, Hiebl B, Wickenhauser C, Massa C, Seliger B. Colorectal Carcinogenesis: Connecting K-RAS-Induced Transformation and CREB Activity In Vitro and In Vivo. Mol Cancer Res 2015; 13:1248-62. [PMID: 25934695 DOI: 10.1158/1541-7786.mcr-14-0590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Oncogenic transformation is often associated with an increased expression of the cAMP response element binding (CREB) transcription factor controlling the expression of genes involved in cell proliferation, cell cycle, apoptosis, and tumor development, but a link between K-RAS(V12)-induced transformation and CREB has not yet been determined. Therefore, the constitutive and/or inhibitor-regulated mRNA and protein expression of CREB and signal transduction components and growth properties of parental fibroblasts, K-RAS(V12)-transformed counterparts, shCREB K-RAS(V12) transfectants and human colon carcinoma cells were determined. Increased CREB transcript and protein levels accompanied by an enhanced CREB activity was detected in K-RAS(V12)-transformed murine fibroblasts and K-RAS(V12)-mutated human tumor cells, which is dependent on the MAPK/MEK, PI3K, and/or PKC signal transduction. Immunohistochemical (IHC) staining of colorectal carcinoma lesions and murine tumors, with known KRAS gene mutation status, using antibodies specific for CREB and phospho-CREB, revealed a mechanistic link between CREB expression and K-RAS(V12)-mutated colorectal carcinoma lesions when compared with control tissues. Silencing of CREB by shRNA and/or treatment with a CREB inhibitor (KG-501) reverted the neoplastic phenotype of K-RAS(V12) transformants as demonstrated by a more fibroblast-like morphology, enhanced apoptosis sensitivity, increased doubling time, decreased migration, invasion and anchorage-independent growth, reduced tumorigenesis, and enhanced immunogenicity in vivo. The impaired shCREB-mediated invasion of K-RAS(V12) transformants was accompanied by a transcriptional downregulation of different matrix metalloproteinases (MMP) coupled with their reduced enzymatic activity. IMPLICATIONS CREB plays a key role in the K-RAS(V12)-mediated neoplastic phenotype and represents a suitable therapeutic target for murine and human K-RAS(V12)-induced tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Max Heiduk
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian V Recktenwald
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Hiebl
- Center for Medical Research, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
20
|
De Battisti C, Marciano S, Magnabosco C, Busato S, Arcangeli G, Cattoli G. Pyrosequencing as a tool for rapid fish species identification and commercial fraud detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:198-205. [PMID: 24350776 DOI: 10.1021/jf403545m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The increased consumption of fish products, as well as the occurrence of exotic fish species in the Mediterranean Sea and in the fish market, has increased the risk of commercial fraud. Furthermore, the great amount of processed seafood products has greatly limited the application of classic identification systems. DNA-based identification allows a clear and unambiguous detection of polymorphisms between species, permitting differentiation and identification of both commercial fraud and introduction of species with potential toxic effects on humans. In this study, a novel DNA-based approach for differentiation of fish species based on pyrosequencing technology has been developed. Raw and processed fish products were tested, and up to 25 species of fish belonging to Clupeiformes and Pleuronectiformes groups were uniquely and rapidly identified. The proper identification based on short and unique genetic sequence signatures demonstrates that this approach is promising and cost-effective for large-scale surveys.
Collapse
Affiliation(s)
- Cristian De Battisti
- Research & Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie , Viale dell'Università 10, 35020 Legnaro, Padova, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Schmalenberger A, O'Sullivan O, Gahan J, Cotter PD, Courtney R. Bacterial communities established in bauxite residues with different restoration histories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7110-7119. [PMID: 23745718 DOI: 10.1021/es401124w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene fragments revealed a significant separation of the untreated site and the amended sites in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed significantly lower alpha diversities in the unamended in comparison to the amended sites and hierarchical clustering separated the unamended site from the amended sites. The taxonomic analysis revealed that the restoration resulted in the accumulation of bacterial populations typical for soils including Acidobacteriaceae, Nitrosomonadaceae, and Caulobacteraceae. In contrast, the unamended site was dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadaceae, Acetobacteraceae, and Chitinophagaceae, repeatedly associated with alkaline salt lakes and sediments. While bacterial communities developed in the initially sterile bauxite residue, only the restoration treatments created diverse soil-like bacterial communities alongside diverse vegetation on the surface.
Collapse
|
22
|
Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am J Infect Control 2012; 40:e249-54. [PMID: 23006677 DOI: 10.1016/j.ajic.2012.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Most nosocomial urinary tract infections are associated with the long-term use of urinary catheters. Such urinary catheter-associated infections are caused by bacteria that reside in biofilms. We determined the distribution of fastidious/nonculturable bacteria in biofilm of urinary catheters and evaluated the availability of concurrent applying various molecular techniques. METHODS The biofilms were isolated from urinary catheters that had been installed in patients for 3 or 4 weeks and examined by the following 4 different 16S ribosomal RNA (rRNA) analysis techniques: capillary electrophoresis, terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE), and pyrosequencing. RESULTS A total of 329 isolates was identified by capillary electrophoresis. The most common genera were Edwardsiella, Enterobacter, Escherichia, and Pseudomonas. A total of 32 bacterial strains was identified by T-RFLP. Escherichia, Pseudomonas, Enterobacter, Moraxella, Proteus, Serratia, and Yersinia were the most represented genera. Similarly, Escherichia, Pseudomonas, and Enterobacter were the most prevalent according to DGGE. Burkholderia, Corynebacterium, Achromobacter, Alcaligenes, Citrobacter, Stenotrophomonas, and Streptococcus were also detected. Escherichia and Pseudomonas were abundantly detected by pyrosequencing. Enterobacter, Bacteroides, Klebsiella, Corynebacterium were also seen. CONCLUSION These 4 techniques detected different kinds of bacteria, suggesting that the simultaneous application of multiple techniques is necessary to accurately detect fastidious/nonculturable bacteria. Because bacterial growth within urinary catheter biofilms may be associated with urinary tract infections, further comprehensive studies are required.
Collapse
|
23
|
Han I, Lee TK, Han J, Doan TV, Kim SB, Park J. Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection. JOURNAL OF HAZARDOUS MATERIALS 2012; 227-228:172-178. [PMID: 22682799 DOI: 10.1016/j.jhazmat.2012.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
High-throughput 16S rRNA gene-targeted pyrosequencing was used with commonly used risk assessment techniques to evaluate the potential microbial risk in soil after inoculating genetically modified (GM) Corynebacterium glutamicum. To verify the risk, reference experiments were conducted in parallel using well-defined and frequently used GM Escherichia coli and wild-type strains. The viable cell count showed that the number of GM bacteria in the soil was reduced to below the detection limit within 10 days, while the molecular indicator for GM plasmids was detected throughout the experiment by using quantitative real-time polymerase chain reactions. Subsequent pyrosequencing showed an insignificant influence of the GM bacteria and/or their GM plasmids on the structure of the soil bacterial community this was similar to non-GM wild-type strains. However, pyrosequencing combined with kanamycin-resistant bacteria selection uncovered a potential risk of GM bacteria on the soil bacterial community and pathogens. The results of the improved methodology showed that the microbial risk attributable to GM C. glutamicum was relatively lower than that attributable to the reference GM E. coli.
Collapse
Affiliation(s)
- Il Han
- School of Civil and Environmental Engineering and WCU Center for Green Metagenomics, Yonsei University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The human body is home to more than 1 trillion microbes, with the gastrointestinal tract alone harboring a diverse array of commensal microbes that are believed to contribute to host nutrition, developmental regulation of intestinal angiogenesis, protection from pathogens, and development of the immune response. Recent advances in genome sequencing technologies and metagenomic analysis are providing a broader understanding of these resident microbes and highlighting differences between healthy and disease states. The aim of this review is to provide a detailed summary of current pediatric microbiome studies in the literature, in addition to highlighting recent findings and advancements in studies of the adult microbiome. This review also seeks to elucidate the development of, and factors that could lead to changes in, the composition and function of the human microbiome.
Collapse
Affiliation(s)
- Coreen L. Johnson
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; and
| | - James Versalovic
- Departments of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Department of Pathology, Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
25
|
Call for a quality standard for sequence-based assays in clinical microbiology: necessity for quality assessment of sequences used in microbial identification and typing. J Clin Microbiol 2010; 49:23-6. [PMID: 21068275 DOI: 10.1128/jcm.01918-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Recent advances in single-molecule sequencing. Curr Opin Biotechnol 2010; 21:4-11. [PMID: 20202812 DOI: 10.1016/j.copbio.2010.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
Abstract
Recent advances in sequencing technologies exhibit a tendency towards single-molecule sequencing, which eventually will lead to the commercial implementation of such platforms. For this purpose dye labelling is currently the foundation of most approaches and an overview is provided on the latest developments. For label-free sequencing the detection of conductivity changes using nanopores or nano-edges will be discussed as well as another promising method that is based on Raman spectroscopy. Here the most recent advance aims to utilize the high lateral resolution of tip-enhanced Raman scattering. For this sequencing procedure Raman spectra must be collected along the DNA or RNA strand, while the difference spectra will provide a direct sequence reading without prior labelling.
Collapse
|
27
|
Satoh T, Tsuruta K, Shinoda Y, Hirota R, Noda K, Kuroda A, Murakami Y. Reciprocating-flow ATP amplification system for increasing the number of amplification cycles. Anal Biochem 2009; 395:161-5. [PMID: 19699705 DOI: 10.1016/j.ab.2009.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022]
Abstract
We constructed a novel ATP amplification reactor using a reciprocating-flow system to increase the number of ATP amplification cycles without an increase in backpressure. We previously reported a continuous-flow ATP amplification system that effectively and quantitatively amplified ATP and increased the sensitivity of a quantitative bioluminescence assay. However, it was difficult to increase the number of amplification cycles due to backpressure in the system. Because addition of immobilized adenylate kinase (ADK) and pyruvate kinase (PK) columns increased backpressure, the maximum number of ATP amplification cycles within column durability was only 4. In this study, ATP amplification was performed using a reciprocating-flow system, and 10 cycles of ATP amplification could be achieved without an increase in backpressure. As a result, ATP was amplified more than 100-fold after 10 cycles of reciprocating flow. The gradient of ATP amplification was approximately 1.76(N). The backpressure on the columns was 0.03 MPa in 1-10 ATP amplification cycles, and no increases in backpressure were observed.
Collapse
Affiliation(s)
- Tetsuya Satoh
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Fukui T, Ohe Y, Tsuta K, Furuta K, Sakamoto H, Takano T, Nokihara H, Yamamoto N, Sekine I, Kunitoh H, Asamura H, Tsuchida T, Kaneko M, Kusumoto M, Yamamoto S, Yoshida T, Tamura T. Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with non-small cell lung cancer. Clin Cancer Res 2008; 14:4751-7. [PMID: 18676744 DOI: 10.1158/1078-0432.ccr-07-5207] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) mutations, especially in-frame deletions in exon 19 (DEL) and a point mutation in exon 21 (L858R), predict gefitinib sensitivity in patients with non-small cell lung cancer (NSCLC). In this study, we verified the accuracy of EGFR mutation analysis in small samples by high-resolution melting analysis (HRMA), which is a rapid method using PCR amplification with a dye to analyze the melting curves in NSCLC. EXPERIMENTAL DESIGN We designed a prospective study to compare the sensitivity and specificity of HRMA and DNA sequencing with laser capture microdissection. Eligible patients with lung lesions were screened by bronchoscopy or percutaneous needle biopsy to histologically confirm the diagnosis, followed by surgical resection of the NSCLC. Small diagnostic specimens were analyzed for EGFR mutations by HRMA, and the surgically resected specimens were examined for mutations by HRMA and DNA sequencing. RESULTS The analyses for EGFR mutations were conducted in 52 eligible cases of the 92 enrolled patients. EGFR mutations were detected in 18 (34.6%) patients. The results of HRMA from surgically resected specimens as well as DNA sequencing revealed 100% sensitivity and specificity. On the other hand, the sensitivity and specificity of HRMA from the small diagnostic specimens were 83.3% and 100%, respectively. CONCLUSIONS In this study, we showed that HRMA is a highly accurate method for detecting DEL and L858R mutations in patients with NSCLC, although it is necessary to consider the identification of patients with a false-negative result when the analysis is conducted using small samples.
Collapse
Affiliation(s)
- Tomoya Fukui
- Division of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Identification of mutations in Caenorhabditis elegans that cause resistance to high levels of dietary zinc and analysis using a genomewide map of single nucleotide polymorphisms scored by pyrosequencing. Genetics 2008; 179:811-28. [PMID: 18505880 PMCID: PMC2429876 DOI: 10.1534/genetics.107.084384] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc plays many critical roles in biological systems: zinc bound to proteins has structural and catalytic functions, and zinc is proposed to act as a signaling molecule. Because zinc deficiency and excess result in toxicity, animals have evolved sophisticated mechanisms for zinc metabolism and homeostasis. However, these mechanisms remain poorly defined. To identify genes involved in zinc metabolism, we conducted a forward genetic screen for chemically induced mutations that cause Caenorhabditis elegans to be resistant to high levels of dietary zinc. Nineteen mutations that confer significant resistance to supplemental dietary zinc were identified. To determine the map positions of these mutations, we developed a genomewide map of single nucleotide polymorphisms (SNPs) that can be scored by the high-throughput method of DNA pyrosequencing. This map was used to determine the approximate chromosomal position of each mutation, and the accuracy of this approach was verified by conducting three-factor mapping experiments with mutations that cause visible phenotypes. This is a generally applicable mapping approach that can be used to position a wide variety of C. elegans mutations. The mapping experiments demonstrate that the 19 mutations identify at least three genes that, when mutated, confer resistance to toxicity caused by supplemental dietary zinc. These genes are likely to be involved in zinc metabolism, and the analysis of these genes will provide insights into mechanisms of excess zinc toxicity.
Collapse
|
30
|
Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay. Anal Biochem 2008; 379:116-20. [PMID: 18492480 DOI: 10.1016/j.ab.2008.04.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/29/2008] [Indexed: 11/20/2022]
Abstract
We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.
Collapse
|
31
|
Gamelin L, Capitain O, Morel A, Dumont A, Traore S, Anne LB, Gilles S, Boisdron-Celle M, Gamelin E. Predictive Factors of Oxaliplatin Neurotoxicity: The Involvement of the Oxalate Outcome Pathway. Clin Cancer Res 2007; 13:6359-68. [DOI: 10.1158/1078-0432.ccr-07-0660] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Wu H, Boackle SA, Hanvivadhanakul P, Ulgiati D, Grossman JM, Lee Y, Shen N, Abraham LJ, Mercer TR, Park E, Hebert LA, Rovin BH, Birmingham DJ, Chang DM, Chen CJ, McCurdy D, Badsha HM, Thong BYH, Chng HH, Arnett FC, Wallace DJ, Yu CY, Hahn BH, Cantor RM, Tsao BP. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2007; 104:3961-6. [PMID: 17360460 PMCID: PMC1820691 DOI: 10.1073/pnas.0609101104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A genomic region on distal mouse chromosome 1 and its syntenic human counterpart 1q23-42 show strong evidence of harboring lupus susceptibility genes. We found evidence of linkage at 1q32.2 in a targeted genome scan of 1q21-43 in 126 lupus multiplex families containing 151 affected sibpairs (nonparametric linkage score 2.52, P = 0.006). A positional candidate gene at 1q32.2, complement receptor 2 (CR2), is also a candidate in the murine Sle1c lupus susceptibility locus. To explore its role in human disease, we analyzed 1,416 individuals from 258 Caucasian and 142 Chinese lupus simplex families and demonstrated that a common three-single-nucleotide polymorphism CR2 haplotype (rs3813946, rs1048971, rs17615) was associated with lupus susceptibility (P = 0.00001) with a 1.54-fold increased risk for the development of disease. Single-nucleotide polymorphism 1 (rs3813946), located in the 5' untranslated region of the CR2 gene, altered transcriptional activity, suggesting a potential mechanism by which CR2 could contribute to the development of lupus. Our findings reveal that CR2 is a likely susceptibility gene for human lupus at 1q32.2, extending previous studies suggesting that CR2 participates in the pathogenesis of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Hui Wu
- Division of Rheumatology, University of California, Los Angeles, CA 90095
| | - Susan A. Boackle
- Departments of Medicine and Immunology, University of Colorado at Denver and Health Sciences Center, Denver, CO 80217
| | | | - Daniela Ulgiati
- University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research and School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley 6000 Western Australia, Australia
| | | | - Youngho Lee
- Division of Rheumatology, University of California, Los Angeles, CA 90095
| | - Nan Shen
- Department of Rheumatology, Shanghai Renji Hospital, Shanghai Second Medical University, Shanghai 200001, China
| | - Lawrence J. Abraham
- University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research and School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley 6000 Western Australia, Australia
| | - Timothy R. Mercer
- University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research and School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley 6000 Western Australia, Australia
| | - Elly Park
- Division of Rheumatology, University of California, Los Angeles, CA 90095
| | - Lee A. Hebert
- College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Brad H. Rovin
- College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Dan J. Birmingham
- College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital National Defense Medical Center, Taipei 114, Taiwan
| | - Chung Jen Chen
- Division of Rheumatology, Allergy and Immunology, Chang-Gung University College of Medicine, Kwei-shan, Taiwan 333, Republic of China
| | - Deborah McCurdy
- Department of Pediatrics, University of California, Los Angeles, CA 90023
| | - Humeira M. Badsha
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Tan Tock Seng 308433, Republic of Singapore
| | - Bernard Y. H. Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Tan Tock Seng 308433, Republic of Singapore
| | - Hiok H. Chng
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Tan Tock Seng 308433, Republic of Singapore
| | - Frank C. Arnett
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Sciences Center, Houston, TX 77030
| | | | - C. Yung Yu
- College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Bevra H. Hahn
- Division of Rheumatology, University of California, Los Angeles, CA 90095
| | - Rita M. Cantor
- Department of Pediatrics, University of California, Los Angeles, CA 90023
- Department of Human Genetics, University of California, Los Angeles, CA 90024
| | - Betty P. Tsao
- Division of Rheumatology, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed at:
University of California, Los Angeles, 1000 Veteran Avenue, Rehabilitation Center 32-59, Los Angeles, CA 90095-1670. E-mail:
| |
Collapse
|
33
|
Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S, Gamelin E. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2007; 5:2895-904. [PMID: 17121937 DOI: 10.1158/1535-7163.mct-06-0327] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Although single nucleotide polymorphisms (SNP) of the dihydropyrimidine dehydrogenase gene (DPYD) have been reported, which affect enzyme activity and the severity of 5-fluorouracil (5-FU) toxicity, no pretherapeutic detection has thus far been developed. We investigated 22 DPYD gene SNPs, their respective incidence, their link with grade 3 to 4 toxic side effects, and their management in practice: 9 were looked for in 487 patients, whereas 13 others were investigated in 171 patients. PATIENTS AND METHODS SNPs were detected before 5-FU-based treatment in WBC using a Pyrosequencing method. Close clinical and biological follow-up was done. RESULTS Five different SNPs were found in 187 patients (IVS14 + 1G>A, 2846A>T, 1679T>G, 85T>C, -1590T>C). Three hundred patients had no SNP. Forty-four patients had grade 3 to 4 toxic side effects in either the first or second cycle. Sixty percent of patients with either IVS14 + 1G>A or 2846A>T SNPs and the only patient with 1679T>G SNP experienced early grade 3 to 4 toxicity, compared with 0%, 5.5%, and 15% of those with either -1590T>C, 85T>C SNP, or no SNP, respectively. In cases with grade 3 to 4 toxicity, treatment either had to be quickly stopped, or could be safely continued with an individual dose adjustment. Sensitivity, specificity, and positive and negative predictive values of the detection of these three major SNPs as toxicity predictive factors were 0.31, 0.98, and 0.62 and 0.94, respectively. CONCLUSION Pretreatment detection of three DPYD SNPs could help to avoid severe toxic side effects. This approach is suitable for clinical practice and should be compared or combined with pharmacologic approaches. In the case of dihydropyrimidine dehydrogenase deficiency, 5-FU administration often can be safely continued with an individual dose adjustment.
Collapse
Affiliation(s)
- Alain Morel
- Oncopharmacology and Pharmacogenetic Laboratory, Institut National de la Sante et de la Recherche Medicale U564, Centre Paul Papin, 2 rue Moll, 49933 Angers cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rabello D, Soedarsono N, Kamei H, Ishihara Y, Noguchi T, Fuma D, Suzuki M, Sakaki Y, Yamaguchi A, Kojima T. CSF1 gene associated with aggressive periodontitis in the Japanese population. Biochem Biophys Res Commun 2006; 347:791-6. [PMID: 16844084 DOI: 10.1016/j.bbrc.2006.06.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/24/2006] [Indexed: 10/24/2022]
Abstract
Aggressive periodontitis (AgP) is characterized by the early onset of the rapid and progressive destruction of the alveolar bone. We investigated the correlation of single nucleotide polymorphisms (SNPs) in candidate genes with AgP in the Japanese population in order to determine the genetic risk factors for this complex disease. Among 11 genes related to bone formation and resorption, 43 known SNPs were tested in 98 case and 88 control samples for association with AgP by using SNP genotyping techniques. Among these, three polymorphisms located in the colony stimulating factor 1 (CSF1) gene showed a positive association with AgP. This is the first case of an association between a CSF1 polymorphism and a human disease.
Collapse
Affiliation(s)
- D Rabello
- Oral Pathology, Oral Restitution, Oral Health Science, Graduate School, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen JT, Riess O, Schöls L. Mutation analysis of the neurofilament M gene in Parkinson's disease. Neurosci Lett 2004; 351:125-9. [PMID: 14583397 DOI: 10.1016/s0304-3940(03)00903-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofilament M, a major component of Lewy bodies, represents an interesting candidate in the pathogenesis of Parkinson's disease (PD). We performed detailed mutation analyses of the NF-M gene in 322 familial and sporadic PD patients. Two polymorphisms (Ala475Thr and Gly697Arg) occurred at similar frequencies in PD patients and controls. A Pro725Gln substitution and a deletion of valine in position 829 were identified in two PD patients. These substitutions affect residues of the NF-M protein that are highly conserved among different species. None of our patients carried the Gly336Ser substitution, which has been described in familial PD. Our results argue against a major role of NF-M in PD. However, rare variants of the NF-M gene may act as susceptibility factors for PD and functional analyses of the identified variations are warranted to decipher possible mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Rejko Krüger
- Department of Neurology, Neurodegeneration Laboratory, University of Tübingen, Hoppe-Seyler-Strasse 3, D-72076, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhong XB, Reynolds R, Kidd JR, Kidd KK, Jenison R, Marlar RA, Ward DC. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci U S A 2003; 100:11559-64. [PMID: 12975525 PMCID: PMC208797 DOI: 10.1073/pnas.1934783100] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.
Collapse
Affiliation(s)
- Xiao-Bo Zhong
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M, Colditz GA, Hunter DJ. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A 2002; 99:12263-8. [PMID: 12218173 PMCID: PMC129433 DOI: 10.1073/pnas.192172299] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excessive estrogen stimulation unopposed by progesterone strongly predisposes to endometrial cancer. Because the antiproliferative effect of progesterone requires the progesterone receptor (PR), which exists in two isoforms, PR-A and -B, we reasoned that variants in the PR gene may predispose to endometrial cancer. We found six variable sites, including four polymorphisms in the hPR gene and five common haplotypes. One promoter region polymorphism, +331G/A, creates a unique transcription start site. Biochemical assays showed that the +331G/A polymorphism increases transcription of the PR gene, favoring production of hPR-B in an endometrial cancer cell line. Using a case-control study nested within the Nurses' Health Study cohort, we observed a statistically significant association between the +331G/A polymorphism and the risk of endometrial cancer, which was even greater in overweight women carriers. After including a second population of controls, these associations remained intact. Our findings suggest that the +331G/A hPR gene polymorphism may contribute to endometrial cancer risk by increasing expression of the hPR-B isoform.
Collapse
Affiliation(s)
- Immaculata De Vivo
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- D R Meldrum
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195-2500, USA.
| |
Collapse
|