1
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Wang Z, Song B, Yao J, Li X, Zhang Y, Tang Z, Yi G. Whole-genome analysis reveals distinct adaptation signatures to diverse environments in Chinese domestic pigs. J Anim Sci Biotechnol 2024; 15:97. [PMID: 38982489 PMCID: PMC11234542 DOI: 10.1186/s40104-024-01053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones. Nevertheless, the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear. RESULTS Here, we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical, high-altitude, and frigid regions. Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds. Analysis of selection signals revealed regions under selection for adaptation in tropical (55.5 Mb), high-altitude (43.6 Mb), and frigid (17.72 Mb) regions. The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments, including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments. Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation. These pathways included blood circulation, protein degradation, and inflammation for adaptation to tropical environments; heart and lung development, hypoxia response, and DNA damage repair for high-altitude adaptation; and thermogenesis, cold-induced vasodilation (CIVD), and the cell cycle for adaptation to frigid environments. By examining the chromatin state of the selection signatures, we identified the lung and ileum as two candidate functional tissues for environmental adaptation. Finally, we identified a mutation (chr1: G246,175,129A) in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments. CONCLUSIONS In this study, we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical, high-altitude, and frigid environments. Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Bangmin Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Jianyu Yao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| |
Collapse
|
3
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
4
|
Hogan MP, Holding ML, Nystrom GS, Colston TJ, Bartlett DA, Mason AJ, Ellsworth SA, Rautsaw RM, Lawrence KC, Strickland JL, He B, Fraser P, Margres MJ, Gilbert DM, Gibbs HL, Parkinson CL, Rokyta DR. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A 2024; 121:e2313440121. [PMID: 38578985 PMCID: PMC11032440 DOI: 10.1073/pnas.2313440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.
Collapse
Affiliation(s)
- Michael P. Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR00681
| | - Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99164
| | - Kylie C. Lawrence
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Biology, University of South Alabama, Mobile, AL36688
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| | - David M. Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA92121
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC29634
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
5
|
Manahan DN, Nachman MW. Alternative splicing and environmental adaptation in wild house mice. Heredity (Edinb) 2024; 132:133-141. [PMID: 38012302 PMCID: PMC10923775 DOI: 10.1038/s41437-023-00663-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
A major goal of evolutionary genetics is to understand the genetic and molecular mechanisms underlying adaptation. Previous work has established that changes in gene regulation may contribute to adaptive evolution, but most studies have focused on mRNA abundance and only a few studies have investigated the role of post-transcriptional processing. Here, we use a combination of exome sequences and short-read RNA-Seq data from wild house mice (Mus musculus domesticus) collected along a latitudinal transect in eastern North America to identify candidate genes for local adaptation through alternative splicing. First, we identified alternatively spliced transcripts that differ in frequency between mice from the northern-most and southern-most populations in this transect. We then identified the subset of these transcripts that exhibit clinal patterns of variation among all populations in the transect. Finally, we conducted association studies to identify cis-acting splicing quantitative trait loci (cis-sQTL), and we identified cis-sQTL that overlapped with previously ascertained targets of selection from genome scans. Together, these analyses identified a small set of alternatively spliced transcripts that may underlie environmental adaptation in house mice. Many of these genes have known phenotypes associated with body size, a trait that varies clinally in these populations. We observed no overlap between these genes and genes previously identified by changes in mRNA abundance, indicating that alternative splicing and changes in mRNA abundance may provide separate molecular mechanisms of adaptation.
Collapse
Affiliation(s)
- David N Manahan
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA.
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Liu S, Luo H, Zhang P, Li Y, Hao D, Zhang S, Song T, Xu T, He S. Adaptive Selection of Cis-regulatory Elements in the Han Chinese. Mol Biol Evol 2024; 41:msae034. [PMID: 38377343 PMCID: PMC10917166 DOI: 10.1093/molbev/msae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Cis-regulatory elements have an important role in human adaptation to the living environment. However, the lag in population genomic cohort studies and epigenomic studies, hinders the research in the adaptive analysis of cis-regulatory elements in human populations. In this study, we collected 4,013 unrelated individuals and performed a comprehensive analysis of adaptive selection of genome-wide cis-regulatory elements in the Han Chinese. In total, 12.34% of genomic regions are under the influence of adaptive selection, where 1.00% of enhancers and 2.06% of promoters are under positive selection, and 0.06% of enhancers and 0.02% of promoters are under balancing selection. Gene ontology enrichment analysis of these cis-regulatory elements under adaptive selection reveals that many positive selections in the Han Chinese occur in pathways involved in cell-cell adhesion processes, and many balancing selections are related to immune processes. Two classes of adaptive cis-regulatory elements related to cell adhesion were in-depth analyzed, one is the adaptive enhancers derived from neanderthal introgression, leads to lower hyaluronidase level in skin, and brings better performance on UV-radiation resistance to the Han Chinese. Another one is the cis-regulatory elements regulating wound healing, and the results suggest the positive selection inhibits coagulation and promotes angiogenesis and wound healing in the Han Chinese. Finally, we found that many pathogenic alleles, such as risky alleles of type 2 diabetes or schizophrenia, remain in the population due to the hitchhiking effect of positive selections. Our findings will help deepen our understanding of the adaptive evolution of genome regulation in the Han Chinese.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaxia Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijia Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
8
|
Brown EA, Kales S, Boyle MJ, Vitti J, Kotliar D, Schaffner S, Tewhey R, Sabeti PC. Three linked variants have opposing regulatory effects on isovaleryl-CoA dehydrogenase gene expression. Hum Mol Genet 2024; 33:270-283. [PMID: 37930192 PMCID: PMC10800014 DOI: 10.1093/hmg/ddad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
While genome-wide association studies (GWAS) and positive selection scans identify genomic loci driving human phenotypic diversity, functional validation is required to discover the variant(s) responsible. We dissected the IVD gene locus-which encodes the isovaleryl-CoA dehydrogenase enzyme-implicated by selection statistics, multiple GWAS, and clinical genetics as important to function and fitness. We combined luciferase assays, CRISPR/Cas9 genome-editing, massively parallel reporter assays (MPRA), and a deletion tiling MPRA strategy across regulatory loci. We identified three regulatory variants, including an indel, that may underpin GWAS signals for pulmonary fibrosis and testosterone, and that are linked on a positively selected haplotype in the Japanese population. These regulatory variants exhibit synergistic and opposing effects on IVD expression experimentally. Alleles at these variants lie on a haplotype tagged by the variant most strongly associated with IVD expression and metabolites, but with no functional evidence itself. This work demonstrates how comprehensive functional investigation and multiple technologies are needed to discover the true genetic drivers of phenotypic diversity.
Collapse
Affiliation(s)
- Elizabeth A Brown
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Susan Kales
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Michael James Boyle
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Joseph Vitti
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Dylan Kotliar
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Steve Schaffner
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Ryan Tewhey
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Pardis C Sabeti
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
- Howard Hughes Medical Institute, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
9
|
Pettie KP, Mumbach M, Lea AJ, Ayroles J, Chang HY, Kasowski M, Fraser HB. Chromatin activity identifies differential gene regulation across human ancestries. Genome Biol 2024; 25:21. [PMID: 38225662 PMCID: PMC10789071 DOI: 10.1186/s13059-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maxwell Mumbach
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maya Kasowski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Mani S, Tlusty T. Gene birth in a model of non-genic adaptation. BMC Biol 2023; 21:257. [PMID: 37957718 PMCID: PMC10644530 DOI: 10.1186/s12915-023-01745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Over evolutionary timescales, genomic loci can switch between functional and non-functional states through processes such as pseudogenization and de novo gene birth. Particularly, de novo gene birth is a widespread process, and many examples continue to be discovered across diverse evolutionary lineages. However, the general mechanisms that lead to functionalization are poorly understood, and estimated rates of de novo gene birth remain contentious. Here, we address this problem within a model that takes into account mutations and structural variation, allowing us to estimate the likelihood of emergence of new functions at non-functional loci. RESULTS Assuming biologically reasonable mutation rates and mutational effects, we find that functionalization of non-genic loci requires the realization of strict conditions. This is in line with the observation that most de novo genes are localized to the vicinity of established genes. Our model also provides an explanation for the empirical observation that emerging proto-genes are often lost despite showing signs of adaptation. CONCLUSIONS Our work elucidates the properties of non-genic loci that make them fertile for adaptation, and our results offer mechanistic insights into the process of de novo gene birth.
Collapse
Affiliation(s)
- Somya Mani
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Zhang K, Yang Q, Du M, Zhang Z, Wang W, Zhang G, Li A, Li L. Genome-wide mapping of regulatory variants for temperature- and salinity-adaptive genes reveals genetic basis of genotype-by-environment interaction in Crassostrea ariakensis. ENVIRONMENTAL RESEARCH 2023; 236:116614. [PMID: 37442261 DOI: 10.1016/j.envres.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Regulatory variants in gene expression serve as bridges linking genetic variation and phenotypic plasticity. Environmental conditions typically influence the effects of regulatory variants on phenotypic plasticity; however, such genotype-by-environment interactions (G × E) are poorly understood. This study aimed to investigate the genetic basis of G × E in estuarine oyster (Crassostrea ariakensis), which is an important model animal for studying environmental adaption owing to its high plasticity and large intraspecific divergence. Genome-wide mapping of expression quantitative trait loci (eQTLs) for 23 environmental adaptive genes was performed for 256 estuarine oysters. We identified 1194 eQTL single nucleotide polymorphisms (eSNPs), including 433 cis-eSNPs in four genes and 722 trans-eSNPs in eight genes. The expression variation explanation of cis-eSNPs (9.95%) was significantly higher than that of trans-eSNPs (9.15%). We specifically showed cis- and trans-eSNPs with high linkage disequilibrium (LD) for Traf7, Slc6a5, Ggt, and Dap3. For example, we identified a cis-regulatory LD block containing 68 cis-eSNP and a trans-regulatory LD block, including 20 trans-eSNPs in Traf7. A high proportion (85%) of 40 vital eSNPs exhibited significant G × E effects. We identified crossing and nonparallel interactions of G × E, with the tag cis-eSNPs of Baat and Slc6a5 as representatives. Our results indicated that cis-eQTLs are highly conserved. This study provides insights into the understanding of adaptive evolutionary mechanisms and phenotypic response prediction to variable environments, as well as the genetic improvement for superior adaptive traits for genetic resource conservation and aquaculture.
Collapse
Affiliation(s)
- Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China.
| |
Collapse
|
12
|
Petak C, Frati L, Brennan RS, Pespeni MH. Whole-Genome Sequencing Reveals That Regulatory and Low Pleiotropy Variants Underlie Local Adaptation to Environmental Variability in Purple Sea Urchins. Am Nat 2023; 202:571-586. [PMID: 37792925 DOI: 10.1086/726013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractOrganisms experience environments that vary across both space and time. Such environmental heterogeneity shapes standing genetic variation and may influence species' capacity to adapt to rapid environmental change. However, we know little about the kind of genetic variation that is involved in local adaptation to environmental variability. To address this gap, we sequenced the whole genomes of 140 purple sea urchins (Strongylocentrotus purpuratus) from seven populations that vary in their degree of pH variability. Despite no evidence of global population structure, we found a suite of single-nucleotide polymorphisms (SNPs) tightly correlated with local pH variability (outlier SNPs), which were overrepresented in regions putatively involved in gene regulation (long noncoding RNA and enhancers), supporting the idea that variation in regulatory regions is important for local adaptation to variability. In addition, outliers in genes were found to be (i) enriched for biomineralization and ion homeostasis functions related to low pH response, (ii) less central to the protein-protein interaction network, and (iii) underrepresented among genes highly expressed during early development. Taken together, these results suggest that loci that underlie local adaptation to pH variability in purple sea urchins fall in regions with potentially low pleiotropic effects (based on analyses involving regulatory regions, network centrality, and expression time) involved in low pH response (based on functional enrichment).
Collapse
|
13
|
Ballinger MA, Mack KL, Durkin SM, Riddell EA, Nachman MW. Environmentally robust cis-regulatory changes underlie rapid climatic adaptation. Proc Natl Acad Sci U S A 2023; 120:e2214614120. [PMID: 37725649 PMCID: PMC10523592 DOI: 10.1073/pnas.2214614120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Changes in gene expression are thought to play a major role in adaptive evolution. While it is known that gene expression is highly sensitive to the environment, very few studies have determined the influence of genetic and environmental effects on adaptive gene expression differences in natural populations. Here, we utilize allele-specific expression to characterize cis and trans gene regulatory divergence in temperate and tropical house mice in two metabolic tissues under two thermal conditions. First, we show that gene expression divergence is pervasive between populations and across thermal conditions, with roughly 5 to 10% of genes exhibiting genotype-by-environment interactions. Second, we found that most expression divergence was due to cis-regulatory changes that were stable across temperatures. In contrast, patterns of expression plasticity were largely attributable to trans-effects, which showed greater sensitivity to temperature. Nonetheless, we found a small subset of temperature-dependent cis-regulatory changes, thereby identifying loci underlying expression plasticity. Finally, we performed scans for selection in wild house mice to identify genomic signatures of rapid adaptation. Genomic outliers were enriched in genes with evidence for cis-regulatory divergence. Notably, these genes were associated with phenotypes that affected body weight and metabolism, suggesting that cis-regulatory changes are a possible mechanism for adaptive body size evolution between populations. Our results show that gene expression plasticity, largely controlled in trans, may facilitate the colonization of new environments, but that evolved changes in gene expression are largely controlled in cis, illustrating the genetic and nongenetic mechanisms underlying the establishment of populations in new environments.
Collapse
Affiliation(s)
- Mallory A. Ballinger
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Biology, Utah State University, Logan, UT84322
| | - Katya L. Mack
- Department of Biology, Stanford University, Stanford, CA94305
| | - Sylvia M. Durkin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Eric A. Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA50011
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
| |
Collapse
|
14
|
Wang B, Starr AL, Fraser HB. Cell type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541747. [PMID: 37292820 PMCID: PMC10245923 DOI: 10.1101/2023.05.22.541747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
15
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Livnat A, Melamed D. Evolutionary honing in and mutational replacement: how long-term directed mutational responses to specific environmental pressures are possible. Theory Biosci 2023; 142:87-105. [PMID: 36899155 PMCID: PMC10209271 DOI: 10.1007/s12064-023-00387-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023]
Abstract
Recent results have shown that the human malaria-resistant hemoglobin S mutation originates de novo more frequently in the gene and in the population where it is of adaptive significance, namely, in the hemoglobin subunit beta gene compared to the nonresistant but otherwise identical 20A[Formula: see text]T mutation in the hemoglobin subunit delta gene, and in sub-Saharan Africans, who have been subject to intense malarial pressure for many generations, compared to northern Europeans, who have not. This finding raises a fundamental challenge to the traditional notion of accidental mutation. Here, we address this finding with the replacement hypothesis, according to which preexisting genetic interactions can lead directly and mechanistically to mutations that simplify and replace them. Thus, an evolutionary process under selection can gradually hone in on interactions of importance for the currently evolving adaptations, from which large-effect mutations follow that are relevant to these adaptations. We exemplify this hypothesis using multiple types of mutation, including gene fusion mutations, gene duplication mutations, A[Formula: see text]G mutations in RNA-edited sites and transcription-associated mutations, and place it in the broader context of a system-level view of mutation origination called interaction-based evolution. Potential consequences include that similarity of mutation pressures may contribute to parallel evolution in genetically related species, that the evolution of genome organization may be driven by mutational mechanisms, that transposable element movements may also be explained by replacement, and that long-term directed mutational responses to specific environmental pressures are possible. Such mutational phenomena need to be further tested by future studies in natural and artificial settings.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
17
|
Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics 2023; 224:iyad034. [PMID: 36869688 PMCID: PMC10474930 DOI: 10.1093/genetics/iyad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptome analysis of several animal clades suggests that male reproductive tract gene expression evolves quickly. However, the factors influencing the abundance and distribution of within-species variation, the ultimate source of interspecific divergence, are poorly known. Drosophila melanogaster, an ancestrally African species that has recently spread throughout the world and colonized the Americas in the last roughly 100 years, exhibits phenotypic and genetic latitudinal clines on multiple continents, consistent with a role for spatially varying selection in shaping its biology. Nevertheless, geographic expression variation in the Americas is poorly described, as is its relationship to African expression variation. Here, we investigate these issues through the analysis of two male reproductive tissue transcriptomes [testis and accessory gland (AG)] in samples from Maine (USA), Panama, and Zambia. We find dramatic differences between these tissues in differential expression between Maine and Panama, with the accessory glands exhibiting abundant expression differentiation and the testis exhibiting very little. Latitudinal expression differentiation appears to be influenced by the selection of Panama expression phenotypes. While the testis shows little latitudinal expression differentiation, it exhibits much greater differentiation than the accessory gland in Zambia vs American population comparisons. Expression differentiation for both tissues is non-randomly distributed across the genome on a chromosome arm scale. Interspecific expression divergence between D. melanogaster and D. simulans is discordant with rates of differentiation between D. melanogaster populations. Strongly heterogeneous expression differentiation across tissues and timescales suggests a complex evolutionary process involving major temporal changes in the way selection influences expression evolution in these organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Colin E Contino
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
18
|
Bracci AN, Dallmann A, Ding Q, Hubisz MJ, Caballero M, Koren A. The evolution of the human DNA replication timing program. Proc Natl Acad Sci U S A 2023; 120:e2213896120. [PMID: 36848554 PMCID: PMC10013799 DOI: 10.1073/pnas.2213896120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
DNA is replicated according to a defined spatiotemporal program that is linked to both gene regulation and genome stability. The evolutionary forces that have shaped replication timing programs in eukaryotic species are largely unknown. Here, we studied the molecular causes and consequences of replication timing evolution across 94 humans, 95 chimpanzees, and 23 rhesus macaques. Replication timing differences recapitulated the species' phylogenetic tree, suggesting continuous evolution of the DNA replication timing program in primates. Hundreds of genomic regions had significant replication timing variation between humans and chimpanzees, of which 66 showed advances in replication origin firing in humans, while 57 were delayed. Genes overlapping these regions displayed correlated changes in expression levels and chromatin structure. Many human-chimpanzee variants also exhibited interindividual replication timing variation, pointing to ongoing evolution of replication timing at these loci. Association of replication timing variation with genetic variation revealed that DNA sequence evolution can explain replication timing variation between species. Taken together, DNA replication timing shows substantial and ongoing evolution in the human lineage that is driven by sequence alterations and could impact regulatory evolution at specific genomic sites.
Collapse
Affiliation(s)
- Alexa N. Bracci
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Anissa Dallmann
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Melissa J. Hubisz
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY14853
| | - Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
19
|
Mack KL, Square TA, Zhao B, Miller CT, Fraser HB. Evolution of Spatial and Temporal cis-Regulatory Divergence in Sticklebacks. Mol Biol Evol 2023; 40:7048494. [PMID: 36805962 PMCID: PMC10015619 DOI: 10.1093/molbev/msad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Biology, Stanford University, Stanford, CA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Bin Zhao
- Department of Biology, Stanford University, Stanford, CA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | | |
Collapse
|
20
|
Kelly DE, Ramdas S, Ma R, Rawlings-Goss RA, Grant GR, Ranciaro A, Hirbo JB, Beggs W, Yeager M, Chanock S, Nyambo TB, Omar SA, Woldemeskel D, Belay G, Li H, Brown CD, Tishkoff SA. The genetic and evolutionary basis of gene expression variation in East Africans. Genome Biol 2023; 24:35. [PMID: 36829244 PMCID: PMC9951478 DOI: 10.1186/s13059-023-02874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.
Collapse
Affiliation(s)
- Derek E Kelly
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Ramdas
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Ma
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jibril B Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Beggs
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith Yeager
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, MD, USA
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, Dar Es Salaam, Tanzania
| | - Sabah A Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dawit Woldemeskel
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hongzhe Li
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Brown
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah A Tishkoff
- Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
21
|
Starr AL, Gokhman D, Fraser HB. Accounting for cis-regulatory constraint prioritizes genes likely to affect species-specific traits. Genome Biol 2023; 24:11. [PMID: 36658652 PMCID: PMC9850818 DOI: 10.1186/s13059-023-02846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Measuring allele-specific expression in interspecies hybrids is a powerful way to detect cis-regulatory changes underlying adaptation. However, it remains difficult to identify genes most likely to explain species-specific traits. Here, we outline a simple strategy that leverages population-scale allele-specific RNA-seq data to identify genes that show constrained cis-regulation within species yet show divergence between species. Applying this strategy to data from human-chimpanzee hybrid cortical organoids, we identify signatures of lineage-specific selection on genes related to saccharide metabolism, neurodegeneration, and primary cilia. We also highlight cis-regulatory divergence in CUX1 and EDNRB that may shape the trajectory of human brain development.
Collapse
Affiliation(s)
| | - David Gokhman
- Department of Biology, Stanford University, Stanford, CA, USA
- Present Address: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Ma J, Zhang L, Shen F, Geng Y, Huang Y, Wu H, Fan Z, Hou R, Song Z, Yue B, Zhang X. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genomics 2023; 24:23. [PMID: 36647013 PMCID: PMC9843897 DOI: 10.1186/s12864-023-09111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.
Collapse
Affiliation(s)
- Jinnan Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.410739.80000 0001 0723 6903College of Continuing Education, Yunnan Normal University, Kunming, 650092 China
| | - Liang Zhang
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Fujun Shen
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Yang Geng
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Rong Hou
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Zhaobin Song
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Xiuyue Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| |
Collapse
|
23
|
Kiemel K, Gurke M, Paraskevopoulou S, Havenstein K, Weithoff G, Tiedemann R. Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species. Sci Rep 2022; 12:22626. [PMID: 36587065 PMCID: PMC9805463 DOI: 10.1038/s41598-022-27137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.
Collapse
Affiliation(s)
- K. Kiemel
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| | - M. Gurke
- grid.422371.10000 0001 2293 9957Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Department of Biology, Humboldt-University, Invalidenstraße 42, 10115 Berlin, Germany
| | - S. Paraskevopoulou
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Microbiology Group, Sölvegatan 35, 223 62 Lund, Sweden
| | - K. Havenstein
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| | - G. Weithoff
- grid.11348.3f0000 0001 0942 1117Unit of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - R. Tiedemann
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Vendrami DLJ, Hoffman JI, Wilding CS. Heterogeneous Genomic Divergence Landscape in Two Commercially Important European Scallop Species. Genes (Basel) 2022; 14:14. [PMID: 36672754 PMCID: PMC9858869 DOI: 10.3390/genes14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Two commercially important scallop species of the genus Pecten are found in Europe: the north Atlantic Pecten maximus and the Mediterranean Pecten jacobaeus whose distributions abut at the Almeria-Orán front. Whilst previous studies have quantified genetic divergence between these species, the pattern of differentiation along the Pecten genome is unknown. Here, we mapped RADseq data from 235 P. maximus and 27 P. jacobaeus to a chromosome-level reference genome, finding a heterogeneous landscape of genomic differentiation. Highly divergent genomic regions were identified across 14 chromosomes, while the remaining five showed little differentiation. Demographic and comparative genomics analyses suggest that this pattern resulted from an initial extended period of isolation, which promoted divergence, followed by differential gene flow across the genome during secondary contact. Single nucleotide polymorphisms present within highly divergent genomic regions were located in areas of low recombination and contrasting patterns of LD decay were found between the two species, hinting at the presence of chromosomal inversions in P. jacobaeus. Functional annotations revealed that highly differentiated regions were enriched for immune-related processes and mRNA modification. While future work is necessary to characterize structural differences, this study provides new insights into the speciation genomics of P. maximus and P. jacobaeus.
Collapse
Affiliation(s)
- David L. J. Vendrami
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
25
|
Li B, Gschwend AR, Hovick SM, Gutek A, McHale L, Harrison SK, Regnier EE. Evolution of weedy giant ragweed ( Ambrosia trifida): Multiple origins and gene expression variability facilitates weediness. Ecol Evol 2022; 12:e9590. [PMID: 36514541 PMCID: PMC9731915 DOI: 10.1002/ece3.9590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Agricultural weeds may originate from wild populations, but the origination patterns and genetics underlying this transition remain largely unknown. Analysis of weedy-wild paired populations from independent locations may provide evidence to identify key genetic variation contributing to this adaptive shift. We performed genetic variation and expression analyses on transcriptome data from 67 giant ragweed samples collected from different locations in Ohio, Iowa, and Minnesota and found geographically separated weedy populations likely originated independently from their adjacent wild populations, but subsequent spreading of weedy populations also occurred locally. By using eight closely related weedy-wild paired populations, we identified thousands of unique transcripts in weedy populations that reflect shared or specific functions corresponding, respectively, to both convergently evolved and population-specific weediness processes. In addition, differential expression of specific groups of genes was detected between weedy and wild giant ragweed populations using gene expression diversity and gene co-expression network analyses. Our study suggests an integrated route of weedy giant ragweed origination, consisting of independent origination combined with the subsequent spreading of certain weedy populations, and provides several lines of evidence to support the hypothesis that gene expression variability plays a key role in the evolution of weedy species.
Collapse
Affiliation(s)
- Bo Li
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Andrea R. Gschwend
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Stephen M. Hovick
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda Gutek
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leah McHale
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - S. Kent Harrison
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Emilie E. Regnier
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
26
|
Fu TT, Sun YB, Gao W, Long CB, Yang CH, Yang XW, Zhang Y, Lan XQ, Huang S, Jin JQ, Murphy RW, Zhang Y, Lai R, Hillis DM, Zhang YP, Che J. The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proc Natl Acad Sci U S A 2022; 119:e2212406119. [PMID: 36346846 PMCID: PMC9674958 DOI: 10.1073/pnas.2212406119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.
Collapse
Affiliation(s)
- Ting-Ting Fu
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Yan-Bo Sun
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Gao
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cheng-Bo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chun-Hua Yang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Wang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Qiang Lan
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Hillis
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
27
|
Yu Y, Bergland AO. Distinct signals of clinal and seasonal allele frequency change at eQTLs in Drosophila melanogaster. Evolution 2022; 76:2758-2768. [PMID: 36097359 PMCID: PMC9710195 DOI: 10.1111/evo.14617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
Abstract
Populations of short-lived organisms can respond to spatial and temporal environmental heterogeneity through local adaptation. Local adaptation can be reflected on both phenotypic and genetic levels, and it has been documented in many organisms. Although complex fitness-related phenotypes have been shown to vary across latitudinal clines and seasons in similar ways in Drosophila melanogaster populations, the comparative signals of local adaptation across space and time remain poorly understood. Here, we examined patterns of allele frequency change across a latitudinal cline and between seasons at previously reported expression quantitative trait loci (eQTLs). We divided eQTLs into groups by using differential expression profiles of fly populations collected across latitudinal clines or exposed to different environmental conditions. In general, we find that eQTLs are enriched for clinally varying polymorphisms, and that these eQTLs change in frequency in concordant ways across the cline and in response to starvation and chill-coma. The enrichment of eQTLs among seasonally varying polymorphisms is more subtle, and the direction of allele frequency change at eQTLs appears to be somewhat idiosyncratic. Taken together, we suggest that clinal adaptation at eQTLs is at least partially distinct from seasonal adaptation.
Collapse
Affiliation(s)
- Yang Yu
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| | - Alan O. Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| |
Collapse
|
28
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|
29
|
Ozerov M, Noreikiene K, Kahar S, Huss M, Huusko A, Kõiv T, Sepp M, López M, Gårdmark A, Gross R, Vasemägi A. Whole-genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Mol Ecol 2022; 31:2367-2383. [PMID: 35202502 PMCID: PMC9314028 DOI: 10.1111/mec.16409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mikhail Ozerov
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Kristina Noreikiene
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Siim Kahar
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Ari Huusko
- Natural resources Institute Finland (Luke)PaltamoFinland
| | - Toomas Kõiv
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Margot Sepp
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - María‐Eugenia López
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Riho Gross
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Anti Vasemägi
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
30
|
Quiver MH, Lachance J. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. HGG ADVANCES 2022; 3:100083. [PMID: 35047867 PMCID: PMC8756519 DOI: 10.1016/j.xhgg.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years. Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role in recent human evolution.
Collapse
Affiliation(s)
- Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
31
|
Morphological Uniqueness: The Concept and Its Relationship to Indicators of Biological Quality of Human Faces from Equatorial Africa. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Facial symmetry, averageness, and the level of sex-typical development of dimorphic traits are traditionally associated with various biological quality indicators and should be, therefore, preferred in mate choice. The aim of this study is to propose a concept of morphological uniqueness and uncover its possible associations to putative phenotypic cues of biological quality. In contrast to typicality expressed by averageness, morphological uniqueness quantifies the degree of possessing characteristics unique to particular groups. I employed a combination of geometric morphometric and Bayesian multiple regression to analyze 300 Cameroonian faces, while an additional 1153 faces from eight distinct populations from across four continents were used as a reference sample of the global population to calculate the morphological uniqueness of Cameroonians. I found that morphological uniqueness is positively associated with a feminine facial shape in women and negatively with morphological masculinity in men. Facial symmetry was positively associated with female faces with greater levels of uniqueness; the result for male faces was inconclusive. The faces of both sexes perceived as more attractive had lower levels of morphological uniqueness. Facial distinctiveness showed no relationship to morphological uniqueness in either sex, which indicates that morphological uniqueness and distinctiveness are two complementary approaches to studying facial typicality. In the conclusion, the evolutionary significance of the proposed concept and its potential applicability is discussed.
Collapse
|
32
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Abstract
Understanding the genetic architecture of complex traits is a major objective in biology. The standard approach for doing so is genome-wide association studies (GWAS), which aim to identify genetic polymorphisms responsible for variation in traits of interest. In human genetics, consistency across studies is commonly used as an indicator of reliability. However, if traits are involved in adaptation to the local environment, we do not necessarily expect reproducibility. On the contrary, results may depend on where you sample, and sampling across a wide range of environments may decrease the power of GWAS because of increased genetic heterogeneity. In this study, we examine how sampling affects GWAS in the model plant species Arabidopsis thaliana. We show that traits like flowering time are indeed influenced by distinct genetic effects in local populations. Furthermore, using gene expression as a molecular phenotype, we show that some genes are globally affected by shared variants, whereas others are affected by variants specific to subpopulations. Remarkably, the former are essentially all cis-regulated, whereas the latter are predominately affected by trans-acting variants. Our result illustrate that conclusions about genetic architecture can be extremely sensitive to sampling and population structure.
Collapse
Affiliation(s)
| | - Stephan Reinert
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H. Chromosome X-wide Analysis of Positive Selection in Human Populations: Common and Private Signals of Selection and its Impact on Inactivated Genes and Enhancers. Front Genet 2021; 12:714491. [PMID: 34646300 PMCID: PMC8502928 DOI: 10.3389/fgene.2021.714491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The ability of detecting adaptive (positive) selection in the genome has opened the possibility of understanding the genetic basis of population-specific adaptations genome-wide. Here, we present the analysis of recent selective sweeps, specifically in the X chromosome, in human populations from the third phase of the 1,000 Genomes Project using three different haplotype-based statistics. We describe instances of recent positive selection that fit the criteria of hard or soft sweeps, and detect a higher number of events among sub-Saharan Africans than non-Africans (Europe and East Asia). A global enrichment of neural-related processes is observed and numerous genes related to fertility appear among the top candidates, reflecting the importance of reproduction in human evolution. Commonalities with previously reported genes under positive selection are found, while particularly strong new signals are reported in specific populations or shared across different continental groups. We report an enrichment of signals in genes that escape X chromosome inactivation, which may contribute to the differentiation between sexes. We also provide evidence of a widespread presence of soft-sweep-like signatures across the chromosome and a global enrichment of highly scoring regions that overlap potential regulatory elements. Among these, enhancers-like signatures seem to present putative signals of positive selection which might be in concordance with selection in their target genes. Also, particularly strong signals appear in regulatory regions that show differential activities, which might point to population-specific regulatory adaptations.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| |
Collapse
|
35
|
Chen W, Mao X. Extensive alternative splicing triggered by mitonuclear mismatch in naturally introgressed Rhinolophus bats. Ecol Evol 2021; 11:12003-12010. [PMID: 34522356 PMCID: PMC8427577 DOI: 10.1002/ece3.7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial function needs strong interactions of mitochondrial and nuclear (mitonuclear) genomes, which can be disrupted by mitonuclear mismatch due to mitochondrial DNA (mtDNA) introgression between two formerly isolated populations or taxa. This mitonuclear disruption may cause severe cellular stress in mismatched individuals. Gene expression changes and alternative splicing (AS) are two important transcriptional regulations to respond to environmental or cellular stresses. We previously identified a naturally introgressed population in the intermediate horseshoe bat (Rhinolophus affinis). Individuals from this population belong to R. a. himalayanus and share almost identical nuclear genetic background; however, some of them had mtDNA from another subspecies (R. a. macrurus). With this unique natural system, we examined gene expression changes in six tissues between five mitonuclear mismatched and five matched individuals. A small number of differentially expressed genes (DEGs) were identified, and functional enrichment analysis revealed that most DEGs were related to immune response although some may be involved in response to oxidative stress. In contrast, we identified extensive AS events and alternatively spliced genes (ASGs) between mismatched and matched individuals. Functional enrichment analysis revealed that multiple ASGs were directly or indirectly associated with energy production in mitochondria which is vital for survival of organism. To our knowledge, this is the first study to examine the role of AS in responding to cellular stress caused by mitonuclear mismatch in natural populations. Our results suggest that AS may play a more important role than gene expression regulation in responding to severe environmental or cellular stresses.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Xiuguang Mao
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| |
Collapse
|
36
|
Weller CA, Tilk S, Rajpurohit S, Bergland AO. Accurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations. G3-GENES GENOMES GENETICS 2021; 11:6156828. [PMID: 33677482 PMCID: PMC8759814 DOI: 10.1093/g3journal/jkab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/19/2021] [Indexed: 11/27/2022]
Abstract
Genetic association studies seek to uncover the link between genotype and phenotype, and often utilize inbred reference panels as a replicable source of genetic variation. However, inbred reference panels can differ substantially from wild populations in their genotypic distribution, patterns of linkage-disequilibrium, and nucleotide diversity. As a result, associations discovered using inbred reference panels may not reflect the genetic basis of phenotypic variation in natural populations. To address this problem, we evaluated a mapping population design where dozens to hundreds of inbred lines are outbred for few generations, which we call the Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce sequencing costs and make the Hybrid Swarm approach feasible, we developed a computational pipeline that reconstructs accurate whole genomes from ultra-low-coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors with phased haplotypes. We evaluate reconstructions using genetic variation from the Drosophila Genetic Reference Panel as well as variation from neutral simulations. We compared the power and precision of Genome-Wide Association Studies using the Hybrid Swarm, inbred lines, recombinant inbred lines (RILs), and highly outbred populations across a range of allele frequencies, effect sizes, and genetic architectures. Our simulations show that these different mapping panels vary in their power and precision, largely depending on the architecture of the trait. The Hybrid Swam and RILs outperform inbred lines for quantitative traits, but not for monogenic ones. Taken together, our results demonstrate the feasibility of the Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.
Collapse
Affiliation(s)
- Cory A Weller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susanne Tilk
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Subhash Rajpurohit
- Department of Biological and Life Sciences, Ahmedabad University, Ahmedabad 380009, India
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
37
|
Rowan TN, Durbin HJ, Seabury CM, Schnabel RD, Decker JE. Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle. PLoS Genet 2021; 17:e1009652. [PMID: 34292938 PMCID: PMC8297814 DOI: 10.1371/journal.pgen.1009652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Selection on complex traits can rapidly drive evolution, especially in stressful environments. This polygenic selection does not leave intense sweep signatures on the genome, rather many loci experience small allele frequency shifts, resulting in large cumulative phenotypic changes. Directional selection and local adaptation are changing populations; but, identifying loci underlying polygenic or environmental selection has been difficult. We use genomic data on tens of thousands of cattle from three populations, distributed over time and landscapes, in linear mixed models with novel dependent variables to map signatures of selection on complex traits and local adaptation. We identify 207 genomic loci associated with an animal's birth date, representing ongoing selection for monogenic and polygenic traits. Additionally, hundreds of additional loci are associated with continuous and discrete environments, providing evidence for historical local adaptation. These candidate loci highlight the nervous system's possible role in local adaptation. While advanced technologies have increased the rate of directional selection in cattle, it has likely been at the expense of historically generated local adaptation, which is especially problematic in changing climates. When applied to large, diverse cattle datasets, these selection mapping methods provide an insight into how selection on complex traits continually shapes the genome. Further, understanding the genomic loci implicated in adaptation may help us breed more adapted and efficient cattle, and begin to understand the basis for mammalian adaptation, especially in changing climates. These selection mapping approaches help clarify selective forces and loci in evolutionary, model, and agricultural contexts.
Collapse
Affiliation(s)
- Troy N. Rowan
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, United States of America
- College of Veterinary Medicine, Large Animal Clinical Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Harly J. Durbin
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Robert D. Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - Jared E. Decker
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
38
|
Petit‐Marty N, Nagelkerken I, Connell SD, Schunter C. Natural CO 2 seeps reveal adaptive potential to ocean acidification in fish. Evol Appl 2021; 14:1794-1806. [PMID: 34295364 PMCID: PMC8288007 DOI: 10.1111/eva.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. While many species are challenged by reduced-pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared with those from ambient CO2 sites. Up-regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up-regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes, which would allow a fine-tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced-pH environment could provide for adaptive potential to near-future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics, which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.
Collapse
Affiliation(s)
- Natalia Petit‐Marty
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| | - Ivan Nagelkerken
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Sean D. Connell
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
39
|
Weiss CV, Harshman L, Inoue F, Fraser HB, Petrov DA, Ahituv N, Gokhman D. The cis-regulatory effects of modern human-specific variants. eLife 2021; 10:e63713. [PMID: 33885362 PMCID: PMC8062137 DOI: 10.7554/elife.63713] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.
Collapse
Affiliation(s)
- Carly V Weiss
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Hunter B Fraser
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David Gokhman
- Department of Biology, Stanford University, StanfordStanfordUnited States
| |
Collapse
|
40
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
41
|
Human-chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat Genet 2021; 53:467-476. [PMID: 33731941 PMCID: PMC8038968 DOI: 10.1038/s41588-021-00804-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for non-genetic confounding factors. We differentiated these cells into cranial neural crest cells (CNCCs), the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific 6-fold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.
Collapse
|
42
|
Ahmad F, Debes PV, Nousiainen I, Kahar S, Pukk L, Gross R, Ozerov M, Vasemägi A. The strength and form of natural selection on transcript abundance in the wild. Mol Ecol 2020; 30:2724-2737. [PMID: 33219570 PMCID: PMC8246785 DOI: 10.1111/mec.15743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
Gene transcription variation is known to contribute to disease susceptibility and adaptation, but we currently know very little about how contemporary natural selection shapes transcript abundance. Here, we propose a novel analytical framework to quantify the strength and form of ongoing natural selection at the transcriptome level in a wild vertebrate. We estimated selection on transcript abundance in a cohort of a wild salmonid fish (Salmo trutta) affected by an extracellular myxozoan parasite (Tetracapsuloides bryosalmonae) through mark–recapture field sampling and the integration of RNA‐sequencing with classical regression‐based selection analysis. We show, based on fin transcriptomes of the host, that infection by the parasite and subsequent host survival is linked to upregulation of mitotic cell cycle process. We also detect a widespread signal of disruptive selection on transcripts linked to host immune defence, host–pathogen interactions, cellular repair and maintenance. Our results provide insights into how selection can be measured at the transcriptome level to dissect the molecular mechanisms of contemporary evolution driven by climate change and emerging anthropogenic threats. We anticipate that the approach described here will enable critical information on the molecular processes and targets of natural selection to be obtained in real time. see also the Perspective by Matthew P. Josephson and James K. Bull.
Collapse
Affiliation(s)
- Freed Ahmad
- Department of Biology, University of Turku, Turku, Finland
| | - Paul V Debes
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Ilkka Nousiainen
- Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Siim Kahar
- Department of Biology, University of Turku, Turku, Finland.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Lilian Pukk
- Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikhail Ozerov
- Department of Biology, University of Turku, Turku, Finland.,Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Anti Vasemägi
- Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.,Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
43
|
Tangwancharoen S, Semmens BX, Burton RS. Allele-Specific Expression and Evolution of Gene Regulation Underlying Acute Heat Stress Response and Local Adaptation in the Copepod Tigriopus californicus. J Hered 2020; 111:539-547. [PMID: 33141173 DOI: 10.1093/jhered/esaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
Geographic variation in environmental temperature can select for local adaptation among conspecific populations. Divergence in gene expression across the transcriptome is a key mechanism for evolution of local thermal adaptation in many systems, yet the genetic mechanisms underlying this regulatory evolution remain poorly understood. Here we examine gene expression in 2 locally adapted Tigriopus californicus populations (heat tolerant San Diego, SD, and less tolerant Santa Cruz, SC) and their F1 hybrids during acute heat stress response. Allele-specific expression (ASE) in F1 hybrids was used to determine cis-regulatory divergence. We found that the number of genes showing significant allelic imbalance increased under heat stress compared to unstressed controls. This suggests that there is significant population divergence in cis-regulatory elements underlying heat stress response. Specifically, the number of genes showing an excess of transcripts from the more thermal tolerant (SD) population increased with heat stress while that number of genes with an SC excess was similar in both treatments. Inheritance patterns of gene expression also revealed that genes displaying SD-dominant expression phenotypes increase in number in response to heat stress; that is, across loci, gene expression in F1's following heat stress showed more similarity to SD than SC, a pattern that was absent in the control treatment. The observed patterns of ASE and inheritance of gene expression provide insight into the complex processes underlying local adaptation and thermal stress response.
Collapse
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA.,Department of Biology, University of Vermont, Burlington, VT
| | - Brice X Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| |
Collapse
|
44
|
Němcová L, Marková S, Kotlík P. Gene Expression Variation of Candidate Endogenous Control Genes Across Latitudinal Populations of the Bank Vole (Clethrionomys glareolus). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in the winter ant (Prenolepis imparis). PLoS One 2020; 15:e0239558. [PMID: 33002025 PMCID: PMC7529264 DOI: 10.1371/journal.pone.0239558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Climate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis). We quantified gene expression during heat and cold stress relative to a control temperature. From each of our conditions, we sequenced the transcriptome of three individuals. Our de novo assembly included 13,324 contigs that were annotated against the nr and SwissProt databases. We performed gene ontology and enrichment analyses to gain insight into the physiological processes involved in the stress response. We identified a total of 643 differentially expressed genes across both treatments. Of these, only seven genes were differentially expressed in the cold-stressed ants, which could indicate that the temperature we chose for trials did not induce a strong stress response, perhaps due to the cold adaptations of this species. Conversely, we found a strong response to heat: 426 upregulated genes and 210 downregulated genes. Of these, ten were expressed at a greater than ten-fold change relative to the control. The transcripts we could identify included those encoding for protein folding genes, heat shock proteins, histones, and Ca2+ ion transport. One of these transcripts, hsc70-4L was found to be under positive selection. We also characterized the functional categories of differentially expressed genes. These candidate genes may be functionally conserved and relevant for related species that will deal with rapid climate change.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, United States of America
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
46
|
Laso‐Jadart R, Sugier K, Petit E, Labadie K, Peterlongo P, Ambroise C, Wincker P, Jamet J, Madoui M. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol Evol 2020; 10:8894-8905. [PMID: 32884665 PMCID: PMC7452778 DOI: 10.1002/ece3.6588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Acclimation allowed by variation in gene or allele expression in natural populations is increasingly understood as a decisive mechanism, as much as adaptation, for species evolution. However, for small eukaryotic organisms, as species from zooplankton, classical methods face numerous challenges. Here, we propose the concept of allelic differential expression at the population-scale (psADE) to investigate the variation in allele expression in natural populations. We developed a novel approach to detect psADE based on metagenomic and metatranscriptomic data from environmental samples. This approach was applied on the widespread marine copepod, Oithona similis, by combining samples collected during the Tara Oceans expedition (2009-2013) and de novo transcriptome assemblies. Among a total of 25,768 single nucleotide variants (SNVs) of O. similis, 572 (2.2%) were affected by psADE in at least one population (FDR < 0.05). The distribution of SNVs under psADE in different populations is significantly shaped by population genomic differentiation (Pearson r = 0.87, p = 5.6 × 10-30), supporting a partial genetic control of psADE. Moreover, a significant amount of SNVs (0.6%) were under both selection and psADE (p < .05), supporting the hypothesis that natural selection and psADE tends to impact common loci. Population-scale allelic differential expression offers new insights into the gene regulation control in populations and its link with natural selection.
Collapse
Affiliation(s)
- Romuald Laso‐Jadart
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Kevin Sugier
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Emmanuelle Petit
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | - Karine Labadie
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | | | | | - Patrick Wincker
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Jean‐Louis Jamet
- Mediterranean Institute of Oceanology (MIO)AMU‐UTLN UM110CNRS UMR7294, IRDUMR235Equipe Ecologie Marine et Biodiversité (EMBIO)Université de ToulonToulon Cedex 9France
| | - Mohammed‐Amin Madoui
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| |
Collapse
|
47
|
Koch EL, Guillaume F. Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum. PLoS Genet 2020; 16:e1008768. [PMID: 32379753 PMCID: PMC7238888 DOI: 10.1371/journal.pgen.1008768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 05/19/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Gene expression is known to be highly responsive to the environment and important for adjustment of metabolism but there is also growing evidence that differences in gene regulation contribute to species divergence and differences among locally adapted populations. However, most studies so far investigated populations when divergence had already occurred. Selection acting on expression levels at the onset of adaptation to an environmental change has not been characterized. Understanding the mechanisms is further complicated by the fact that environmental change is often multivariate, meaning that organisms are exposed to multiple stressors simultaneously with potentially interactive effects. Here we use a novel approach by combining fitness and whole-transcriptome data in a large-scale experiment to investigate responses to drought, heat and their combination in Tribolium castaneum. We found that fitness was reduced by both stressors and their combined effect was almost additive. Expression data showed that stressor responses were acting independently and did not interfere physiologically. Since we measured expression and fitness within the same individuals, we were able to estimate selection on gene expression levels. We found that variation in fitness can be attributed to gene expression variation and that selection pressures were environment dependent and opposite between control and stress conditions. We could further show that plastic responses of expression were largely adaptive, i.e. in the direction that should increase fitness.
Collapse
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
- Department of Animal and Plant Science, University of Sheffield, Western
Bank, Sheffield, United Kingdom
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Josephs EB, Lee YW, Wood CW, Schoen DJ, Wright SI, Stinchcombe JR. The Evolutionary Forces Shaping Cis- and Trans-Regulation of Gene Expression within a Population of Outcrossing Plants. Mol Biol Evol 2020; 37:2386-2393. [DOI: 10.1093/molbev/msaa102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Understanding the persistence of genetic variation within populations has long been a goal of evolutionary biology. One promising route toward achieving this goal is using population genetic approaches to describe how selection acts on the loci associated with trait variation. Gene expression provides a model trait for addressing the challenge of the maintenance of variation because it can be measured genome-wide without information about how gene expression affects traits. Previous work has shown that loci affecting the expression of nearby genes (local or cis-eQTLs) are under negative selection, but we lack a clear understanding of the selective forces acting on variants that affect the expression of genes in trans. Here, we identify loci that affect gene expression in trans using genomic and transcriptomic data from one population of the obligately outcrossing plant, Capsella grandiflora. The allele frequencies of trans-eQTLs are consistent with stronger negative selection acting on trans-eQTLs than cis-eQTLs, and stronger negative selection acting on trans-eQTLs associated with the expression of multiple genes. However, despite this general pattern, we still observe the presence of a trans-eQTL at intermediate frequency that affects the expression of a large number of genes in the same coexpression module. Overall, our work highlights the different selective pressures shaping variation in cis- and trans-regulation.
Collapse
Affiliation(s)
- Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
| | | | - Corlett W Wood
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
50
|
Heckwolf MJ, Meyer BS, Häsler R, Höppner MP, Eizaguirre C, Reusch TBH. Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. SCIENCE ADVANCES 2020; 6:eaaz1138. [PMID: 32219167 PMCID: PMC7083608 DOI: 10.1126/sciadv.aaz1138] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/26/2019] [Indexed: 05/30/2023]
Abstract
Epigenetic inheritance has been proposed to contribute to adaptation and acclimation via two information channels: (i) inducible epigenetic marks that enable transgenerational plasticity and (ii) noninducible epigenetic marks resulting from random epimutations shaped by selection. We studied both postulated channels by sequencing methylomes and genomes of Baltic three-spined sticklebacks (Gasterosteus aculeatus) along a salinity cline. Wild populations differing in salinity tolerance revealed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. A two-generation experiment demonstrated that 62% of these pop-DMS were noninducible by salinity manipulation, suggesting that they are the result of either direct selection or associated genomic divergence at cis- or trans-regulatory sites. Two-thirds of the remaining inducible pop-DMS increased in similarity to patterns detected in wild populations from corresponding salinities. The level of similarity accentuated over consecutive generations, indicating a mechanism of transgenerational plasticity. While we can attribute natural DNA methylation patterns to the two information channels, their interplay with genomic variation in salinity adaptation is still unresolved.
Collapse
Affiliation(s)
- Melanie J. Heckwolf
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Britta S. Meyer
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P. Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|