1
|
Chen S, Cai Y, Yang H, Zhang B, Li N, Ren G. PBOX-sRNA-seq uncovers novel features of miRNA modification and identifies selected 5'-tRNA fragments bearing 2'-O-modification. Nucleic Acids Res 2024; 52:e65. [PMID: 38908023 PMCID: PMC11317152 DOI: 10.1093/nar/gkae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
The concomitant cloning of RNA degradation products is a major concern in standard small RNA-sequencing practices. This not only complicates the characterization of bona fide sRNAs but also hampers cross-batch experimental replicability and sometimes even results in library construction failure. Given that all types of plant canonical small RNAs possess the 3' end 2'-O-methylation modification, a new small RNA sequencing (sRNA-seq) method, designated as PBOX-sRNA-seq, has been developed specifically to capture this modification. PBOX-sRNA-seq, as its name implies, relies on the sequential treatment of RNA samples with phenylboronic acid-polyacrylamide gel electrophoresis (PBA-PAGE) and sodium periodate (NaIO4) oxidation, before sRNA library construction and sequencing. PBOX-sRNA-seq outperformed separate treatments (i.e. PBA-PAGE only or NaIO4 only) in terms of the depletion of unmethylated RNA species and capture 2'-O-modified sRNAs with extra-high purity. Using PBOX-sRNA-seq, we discovered that nascent miRNA-5p/-3p duplexes may undergo mono-cytidylation/uridylation before 2'-O-methylation. We also identified two highly conserved types of 5'-tRNA fragments (tRF) bearing HEN1-independent 2'-O modification (mainly the 13-nt tRF-5aAla and the 26-nt tRF-5bGly). We believe that PBOX-sRNA-seq is powerful for both qualitative and quantitative analyses of sRNAs in plants and piRNAs in animals.
Collapse
Affiliation(s)
- Susu Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200438, China
| | - Yuchen Cai
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huiru Yang
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bin Zhang
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Rosatti S, Rojas AML, Moro B, Suarez IP, Bologna NG, Chorostecki U, Palatnik JF. Principles of miRNA/miRNA* function in plant MIRNA processing. Nucleic Acids Res 2024; 52:8356-8369. [PMID: 38850162 DOI: 10.1093/nar/gkae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.
Collapse
Affiliation(s)
- Santiago Rosatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Arantxa M L Rojas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Belén Moro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona 08193, Spain
| | - Irina P Suarez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Nicolas G Bologna
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona 08193, Spain
| | - Uciel Chorostecki
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Catalunya 08195, Spain
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
3
|
Rodrigues JCM, Carrijo J, Anjos RM, Cunha NB, Grynberg P, Aragão FJL, Vianna GR. The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development. Transgenic Res 2024; 33:159-174. [PMID: 38856866 DOI: 10.1007/s11248-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.
Collapse
Affiliation(s)
- J C M Rodrigues
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.
| | - J Carrijo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - R M Anjos
- University of Brasília, Brasília, Brazil
| | - N B Cunha
- University of Brasília, Brasília, Brazil
| | - P Grynberg
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - F J L Aragão
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - G R Vianna
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
4
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Yan X, Li C, Liu K, Zhang T, Xu Q, Li X, Zhu J, Wang Z, Yusuf A, Cao S, Peng X, Cai JJ, Zhang X. Parallel degradome-seq and DMS-MaPseq substantially revise the miRNA biogenesis atlas in Arabidopsis. NATURE PLANTS 2024; 10:1126-1143. [PMID: 38918606 DOI: 10.1038/s41477-024-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
MicroRNAs (miRNAs) are produced from highly structured primary transcripts (pri-miRNAs) and regulate numerous biological processes in eukaryotes. Due to the extreme heterogeneity of these structures, the initial processing sites of plant pri-miRNAs and the structural rules that determine their processing have been predicted for many miRNAs but remain elusive for others. Here we used semi-active DCL1 mutants and advanced degradome-sequencing strategies to accurately identify the initial processing sites for 147 of 326 previously annotated Arabidopsis miRNAs and to illustrate their associated pri-miRNA cleavage patterns. Elucidating the in vivo RNA secondary structures of 73 pri-miRNAs revealed that about 95% of them differ from in silico predictions, and that the revised structures offer clearer interpretation of the processing sites and patterns. Finally, DCL1 partners Serrate and HYL1 could synergistically and independently impact processing patterns and in vivo RNA secondary structures of pri-miRNAs. Together, our work sheds light on the precise processing mechanisms of plant pri-miRNAs.
Collapse
Affiliation(s)
- Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Kaiye Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- National Key Laboratory for Tropical Crop Breeding, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Tianru Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Xindi Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ziying Wang
- Department of Biology, Texas A&M University, College Station, TX, USA
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anikah Yusuf
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Doctor of Osteopathic Medicine Program, Des Moines University, West Des Moines, IA, USA
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xu Peng
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Liu J, Ren Y, Sun Y, Yin Y, Han B, Zhang L, Song Y, Zhang Z, Xu Y, Fan D, Li J, Liu H, Ma C. Identification and Analysis of the MIR399 Gene Family in Grapevine Reveal Their Potential Functions in Abiotic Stress. Int J Mol Sci 2024; 25:2979. [PMID: 38474225 PMCID: PMC10931670 DOI: 10.3390/ijms25052979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Sun
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Yonggang Yin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Bin Han
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
8
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
9
|
Li Q, Ding Y, Zhang Y. Capture the in vivo intact RNA structurome by CAP-STRUCTURE-seq. Methods Enzymol 2023; 691:127-152. [PMID: 37914443 DOI: 10.1016/bs.mie.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA decay serves as a crucial mechanism for maintaining cellular homeostasis and regulating gene expression. Large-scale analyses indicate that altered rates of decay contribute significantly to changes in mRNA levels, with up to half of these changes attributed to decay. The regulation of RNA decay is, at least in part, through structured RNA elements, especially in the non-coding regions of the mRNAs. The development of next-generation sequencing, and in vivo chemical probing techniques has allowed for unprecedented understanding of RNA folding in vivo and genome-wide. To explore the RNA structure elements that are responsible for RNA cleavage, we need to capture the RNA structure before cleavage. In this method, we introduce a new experimental procedure called CAP-STRUCTURE-seq, a modified STRUCTURE-Seq approach combining with the enrichment of in intact mRNAs by the use of terminator exonuclease treatment (5'-Phosphate-Dependent Exonuclease) that digests RNA containing 5-monophosphate ends. This approach is designed to investigate the RNA structure for these intact RNAs, providing a means to study the impact of RNA structure on RNA decay in greater detail. This method can provide insights into the function of RNA structure in RNA decay and help advance our understanding of biological processes.
Collapse
Affiliation(s)
- Qianqian Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
10
|
Bielewicz D, Dolata J, Bajczyk M, Szewc L, Gulanicz T, Bhat SS, Karlik A, Jozwiak M, Jarmolowski A, Szweykowska-Kulinska Z. Hyponastic Leaves 1 Interacts with RNA Pol II to Ensure Proper Transcription of MicroRNA Genes. PLANT & CELL PHYSIOLOGY 2023; 64:571-582. [PMID: 37040378 DOI: 10.1093/pcp/pcad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
Hyponastic Leaves 1 (HYL1) [also known as Double-stranded RNA-Binding protein 1 (DRB1)] is a double-stranded RNA-binding protein involved in microRNA (miRNA) processing in plants. It is a core component of the Microprocessor complex and enhances the efficiency and precision of miRNA processing by the Dicer-Like 1 protein. In this work, we report a novel function of the HYL1 protein in the transcription of miRNA (MIR) genes. HYL1 colocalizes with RNA polymerase II and affects its distribution along MIR genes. Moreover, proteomic experiments revealed that the HYL1 protein interacts with many transcription factors. Finally, we show that the action of HYL1 is not limited to MIR genes and impacts the expression of many other genes, a majority of which are involved in plastid organization. These discoveries indicate HYL1 as an additional player in gene regulation at the transcriptional level, independent of its role in miRNA biogenesis.
Collapse
Affiliation(s)
- Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Lukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Susheel S Bhat
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Anna Karlik
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Monika Jozwiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| |
Collapse
|
11
|
Tripathi AM, Singh R, Verma AK, Singh A, Mishra P, Dwivedi V, Narayan S, Gandhivel VHS, Shirke PA, Shivaprasad PV, Roy S. Indian Himalayan natural Arabidopsis thaliana accessions with abolished miR158 levels exhibit robust miR173-initiated trans-acting cascade silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:855-874. [PMID: 36883862 DOI: 10.1111/tpj.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Kumar Verma
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parneeta Mishra
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Varun Dwivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vivek Hari Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Sribash Roy
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Jaganathan D, Rajakani R, Doddamani D, Saravanan D, Pulipati S, Hari Sundar G V, Sellamuthu G, Jayabalan S, Kumari K, Parthasarathy P, S P, Ramalingam S, Shivaprasad PV, Venkataraman G. A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance. Sci Rep 2023; 13:2195. [PMID: 36750679 PMCID: PMC9905475 DOI: 10.1038/s41598-023-28836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant precursor miRNAs (pre-miRNA) have conserved evolutionary footprints that correlate with mode of miRNA biogenesis. In plants, base to loop and loop to base modes of biogenesis have been reported. Conserved structural element(s) in pre-miRNA play a major role in turn over and abundance of mature miRNA. Pre-miR396c sequences and secondary structural characteristics across Oryza species are presented. Based on secondary structure, twelve Oryza pre-miR396c sequences are divided into three groups, with the precursor from halophytic Oryza coarctata forming a distinct group. The miRNA-miRNA* duplex region is completely conserved across eleven Oryza species as are other structural elements in the pre-miRNA, suggestive of an evolutionarily conserved base-to-loop mode of miRNA biogenesis. SNPs within O. coarctata mature miR396c sequence and miRNA* region have the potential to alter target specificity and association with the RNA-induced silencing complex. A conserved SNP variation, rs10234287911 (G/A), identified in O. sativa pre-miR396c sequences alters base pairing above the miRNA-miRNA* duplex. The more stable structure conferred by the 'A10234287911' allele may promote better processing vis-à-vis the structure conferred by 'G10234287911' allele. We also examine pri- and pre-miR396c expression in cultivated rice under heat and salinity and their correlation with miR396c expression.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Divya Saravanan
- Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Vivek Hari Sundar G
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Punitha S
- GIS and Remote Sensing Laboratory, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.
| |
Collapse
|
13
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
14
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
15
|
Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020342. [PMID: 36679055 PMCID: PMC9864873 DOI: 10.3390/plants12020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.
Collapse
|
16
|
Arabidopsis AAR2, a conserved splicing factor in eukaryotes, acts in microRNA biogenesis. Proc Natl Acad Sci U S A 2022; 119:e2208415119. [PMID: 36191209 PMCID: PMC9565372 DOI: 10.1073/pnas.2208415119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast and humans, AAR2 is involved in pre-messenger RNA (pre-mRNA) splicing through regulating U5 snRNP assembly. This study shows that Arabidopsis AAR2 promotes microRNA (miRNA) accumulation in addition to its conserved role in pre-mRNA splicing. AAR2 is associated with the microprocessor component HYL1 and promotes its dephosphorylation to produce the active form in miRNA biogenesis. The study also reveals a previously unknown role of HYL1 in causing the degradation of the primary precursors to miRNAs (pri-miRNAs) and a role of AAR2 in protecting pri-miRNAs from HYL1-depedent degradation. Taken together, our findings provide insights into the role of a conserved splicing factor in miRNA biogenesis in plants. MicroRNAs (miRNAs) play an essential role in plant growth and development, and as such, their biogenesis is fine-tuned via regulation of the core microprocessor components. Here, we report that Arabidopsis AAR2, a homolog of a U5 snRNP assembly factor in yeast and humans, not only acts in splicing but also promotes miRNA biogenesis. AAR2 interacts with the microprocessor component hyponastic leaves 1 (HYL1) in the cytoplasm, nucleus, and dicing bodies. In aar2 mutants, abundance of nonphosphorylated HYL1, the active form of HYL1, and the number of HYL1-labeled dicing bodies are reduced. Primary miRNA (pri-miRNA) accumulation is compromised despite normal promoter activities of MIR genes in aar2 mutants. RNA decay assays show that the aar2-1 mutation leads to faster degradation of pri-miRNAs in a HYL1-dependent manner, which reveals a previously unknown and negative role of HYL1 in miRNA biogenesis. Taken together, our findings reveal a dual role of AAR2 in miRNA biogenesis and pre-messenger RNA splicing.
Collapse
|
17
|
Imran M, Liu T, Wang Z, Wang M, Liu S, Gao X, Wang A, Liu S, Tian Z, Zhang M. Nested miRNA Secondary Structure Is a Unique Determinant of miR159 Efficacy in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:905264. [PMID: 35720551 PMCID: PMC9201385 DOI: 10.3389/fpls.2022.905264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are 20- to 24-nucleotide small RNAs, and whenever a pri-miRNA precursor includes another miRNA precursor, and both of these precursors may generate independent non overlapping mature miRNAs, we called them nested miRNAs. However, the functional and regulatory roles of nested miRNA structures in plants are still unknown. In this study, the Arabidopsis nested miR159a structure, which consists of two nested miRNAs, miR159a.1, and miR159a.2, was used as a model to determine miRNA-mediated gene silencing in plants. Complementation analysis of nested miR159a structures revealed that the miR159a structure can differentially complement the mir159ab phenotype, and a duplex nested structure in the tail end region of the pre-miR159a fold back may have a possible dominant function, indicating the importance of the flanking sequence of the stem in the cleavage of the mature miRNA. Furthermore, continuously higher expression of the miR159a.2 duplex in the severe leaf curl phenotype indicates that miR159a.2 is functional in Arabidopsis and suggests that in plants, a miRNA precursor may encode multiple regulatory small RNAs. Taken together, our study demonstrates that the nested miR159a structure regulated by duplex mutations of miR159a has a unique pattern and provides novel insight into silencing efficacy of Arabidopsis miR159a.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xinyan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songfeng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Zhang BS, Li YC, Guo HS, Zhao JH. Verticillium dahliae Secretes Small RNA to Target Host MIR157d and Retard Plant Floral Transition During Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:847086. [PMID: 35519822 PMCID: PMC9062233 DOI: 10.3389/fpls.2022.847086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 05/24/2023]
Abstract
Bidirectional trans-kingdom RNA silencing [or RNA interference (RNAi)] plays a key role in plant-pathogen interactions. It has been shown that plant hosts export specific endogenous miRNAs into pathogens to inhibit their virulence, whereas pathogens deliver small RNAs (sRNAs) into plant cells to disturb host immunity. Here, we report a trans-kingdom fungal sRNA retarding host plant floral transition by targeting a miRNA precursor. From Arabidopsis plants infected with Verticillium dahliae, a soil-borne hemibiotrophic pathogenic fungus that causes wilt diseases in a wide range of plant hosts, we obtained a number of possible trans-kingdom V. dahliae sRNAs (VdsRNAs) by sequencing AGO1-immunoprecipitated sRNAs. Among these, a 24-nt VdsRNA derived from V. dahliae rRNA, VdrsR-1, was shown to be an actual trans-kingdom VdsRNA that targets the miR157d precursor MIR157d, resulting in increased rather than reduced miR157d accumulation in V. dahliae-infected plants. Consistent with the miR157 family in the regulation of vegetative and floral transitions by targeting SPL genes in several plant species, we detected two SPL genes, SPL13A/B, that were notably reduced in V. dahliae-infected and VdrsR-1-expressing plants compared with control plants. Furthermore, V. dahliae-infected and VdrsR-1-expressing plants also displayed delayed vegetative phase change and floral transition compared to control plants. Taken together, we disclosed a novel mode of action for a trans-kingdom fungal sRNA, VdrsR-1, which was secreted into host cells to modulate plant floral transition by employing the miR157d/SPL13A/B regulatory module, leading to prolonged host vegetative growth that would undoubtedly benefit fungal propagation.
Collapse
Affiliation(s)
- Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A, Smolinski DJ, Mammarella MF, Ariel FD, Marquardt S, Szweykowska-Kulinska Z, Jarmolowski A, Manavella PA. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. NATURE PLANTS 2022; 8:402-418. [PMID: 35449404 PMCID: PMC9023350 DOI: 10.1038/s41477-022-01125-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.
Collapse
Affiliation(s)
- Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ileana Tossolini
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
| | - Anna Kasprowicz-Maluski
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Dariusz Jan Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - María Florencia Mammarella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
20
|
Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, Gao S. Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:844149. [PMID: 35350301 PMCID: PMC8957957 DOI: 10.3389/fpls.2022.844149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, non-coding RNAs, which is 20-24 nucleotide long, regulate the expression of its target genes post-transcriptionally and play critical roles in plant normal growth, development, and biotic and abiotic stresses. In cells, miRNA biogenesis and stability control are important in regulating intracellular miRNA abundance. In addition, research on these two aspects has achieved fruitful results. In this review, we focus on the recent research progress in our understanding of miRNA biogenesis and their stability control in plants.
Collapse
Affiliation(s)
- Lu Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Xiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shengbo Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Min Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xianda Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhuoli He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
21
|
Hirata R, Makabe T, Mishiba KI, Koizumi N, Hamdan SM, Iwata Y. Unpaired nucleotides on the stem of microRNA precursor are important for precise cleavage by Dicer-Like1 in Arabidopsis. Genes Cells 2022; 27:280-292. [PMID: 35143697 DOI: 10.1111/gtc.12927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Dicer-Like1 (DCL1) is a core component of the plant microRNA (miRNA) biogenesis machinery. MiRNA is transcribed as a precursor RNA, termed primary miRNA (pri-miRNA), which is cleaved by DCL1 in two steps to generate miRNA/miRNA* duplex. Pri-miRNA is a single-stranded RNA that forms a hairpin structure with a number of unpaired bases, hereafter called mismatches, on its stem. In the present study, by using purified recombinant Arabidopsis DCL1, we presented evidence that mismatches on the stem of pri-miRNA are important for precise DCL1 cleavage. We showed that a mismatch at the loop-distal side of the end of miRNA/miRNA* duplex is important for efficient cleavage of pri-miRNA in vitro, as previously suggested in planta. On the other hand, mismatches distant from the miRNA/miRNA* duplex region are important for determining the cleavage position by DCL1. The purified DCL1 proteins cleaved mutant pri-miRNA variants without such mismatches at a position at which wild-type pri-miRNA variants are not usually cleaved, resulting in an increased accumulation of small RNA different from miRNA. Therefore, our results suggest that, in addition to the distance from the ssRNA-dsRNA junction, mismatches on the stem of pri-miRNA function as a determinant for precise processing of pri-miRNA by DCL1 in plants.
Collapse
Affiliation(s)
- Rikako Hirata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Tomoya Makabe
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.,Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta-Oecho, Otsu, Shiga, 520-2194, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Samir M Hamdan
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
22
|
Hao K, Wang Y, Zhu Z, Wu Y, Chen R, Zhang L. miR160: An Indispensable Regulator in Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:833322. [PMID: 35392506 PMCID: PMC8981303 DOI: 10.3389/fpls.2022.833322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA), recognized as crucial regulators of gene expression at the posttranscriptional level, have been found to be involved in the biological processes of plants. Some miRNAs are up- or down-regulated during plant development, stress response, and secondary metabolism. Over the past few years, it has been proved that miR160 is directly related to the developments of different tissues and organs in multifarious species, as well as plant-environment interactions. This review highlights the recent progress on the contributions of the miR160-ARF module to important traits of plants and the role of miR160-centered gene regulatory network in coordinating growth with endogenous and environmental factors. The manipulation of miR160-guided gene regulation may provide a new method to engineer plants with improved adaptability and yield.
Collapse
Affiliation(s)
- Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
23
|
Dalmadi Á, Miloro F, Bálint J, Várallyay É, Havelda Z. Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res 2021; 49:12912-12928. [PMID: 34850097 PMCID: PMC8682782 DOI: 10.1093/nar/gkab1138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022] Open
Abstract
Micro RNAs (miRNAs) are processed from precursor RNA molecules with precisely defined secondary stem-loop structures. ARGONAUTE1 (AGO1) is the main executor component of miRNA pathway and its expression is controlled via the auto-regulatory feedback loop activity of miR168 in plants. Previously we have shown that AGO1 loading of miR168 is strongly restricted leading to abundant cytoplasmic accumulation of AGO-unbound miR168. Here, we report, that intrinsic RNA secondary structure of MIR168a precursor not only defines the processing of miR168, but also precisely adjusts AGO1 loading efficiency determining the biologically active subset of miR168 pool. Our results show, that modification of miRNA duplex structure of MIR168a precursor fragment or expression from artificial precursors can alter the finely adjusted loading efficiency of miR168. In dcl1-9 mutant where, except for miR168, production of most miRNAs is severely reduced this mechanism ensures the elimination of unloaded AGO1 proteins via enhanced AGO1 loading of miR168. Based on this data, we propose a new competitive loading mechanism model for miR168 action: the miR168 surplus functions as a molecular buffer for controlled AGO1 loading continuously adjusting the amount of AGO1 protein in accordance with the changing size of the cellular miRNA pool.
Collapse
Affiliation(s)
- Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| | - Fabio Miloro
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| | - Jeannette Bálint
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert Street 4, Gödöllő 2100, Hungary
| | - Éva Várallyay
- Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Ménesi Street 44, Budapest 1118, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| |
Collapse
|
24
|
Li N, Ren G. Systematic Characterization of MicroRNA Processing Modes in Plants With Parallel Amplification of RNA Ends. FRONTIERS IN PLANT SCIENCE 2021; 12:793549. [PMID: 34950175 PMCID: PMC8688358 DOI: 10.3389/fpls.2021.793549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 05/30/2023]
Abstract
In plants, the RNase III-type enzyme Dicer-like 1 (DCL1) processes most microRNAs (miRNAs) from their primary transcripts called pri-miRNAs. Four distinct processing modes (i.e., short base to loop, sequential base to loop, short loop to base, and sequential loop to base) have been characterized in Arabidopsis, mainly by the Specific Parallel Amplification of RNA Ends (SPARE) approach. However, SPARE is a targeted cloning method which requires optimization of cloning efficiency and specificity for each target. PARE (Parallel Amplification of RNA Ends) is an untargeted method per se and is widely used to identify miRNA mediated target slicing events. A major concern with PARE in characterizing miRNA processing modes is the potential contamination of mature miRNAs. Here, we provide a method to estimate miRNA contamination levels and showed that most publicly available PARE libraries have negligible miRNA contamination. Both the numbers and processing modes detected by PARE were similar to those identified by SPARE in Arabidopsis. PARE also determined the processing modes of 36 Arabidopsis miRNAs that were unexplored by SPARE, suggesting that it can complement the SPARE approach. Using publicly available PARE datasets, we identified the processing modes of 36, 91, 90, and 54 miRNAs in maize, rice, soybean, and tomato, respectively, and demonstrated that the processing mode was conserved overall within each miRNA family. Through its power of tracking miRNA processing remnants, PARE also facilitated miRNA characterization and annotation.
Collapse
Affiliation(s)
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Sophiarani Y, Chakraborty S. Prediction of microRNAs in Pseudomonas syringae pv. tomato DC3000 and their potential target prediction in Solanum lycopersicum. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
27
|
Jodder J. Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. PLANT CELL REPORTS 2021; 40:783-798. [PMID: 33454802 DOI: 10.1007/s00299-020-02660-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
miRNAs in plant plays crucial role in controlling proper growth, development and fitness by modulating the expression of their target genes. Therefore to modulate the expression of any stress/development related gene specifically, it is better to modulate expression of the miRNA that can target that gene. To modulate the expression level of miRNA, it is prerequisite to uncover the underlying molecular mechanism of its biogenesis. The biogenesis pathway consists of two major steps, transcription of MIR gene to pri-MIRNA and processing of pri-MIRNA into mature miRNA via sequential cleavage steps. Both of these pathways are tightly controlled by several different factors involving structural and functional molecules. This review is mainly focused on different aspects of pri-MIRNA processing mechanism to emphasize on the fact that to modulate the level of a miRNA in the cell only over-expression or knock-down of that MIR gene is not always sufficient rather it is also crucial to take processing regulation into consideration. The data collected from the recent and relevant literatures depicts that processing regulation is controlled by several aspects like structure and size of the pri-MIRNA, presence of introns in MIR gene and their location, interaction of processing factors with the core components of processing machinery etc. These detailed information can be utilized to figure out the particular point which can be utilized to modulate the expression of the miRNA which would ultimately be beneficial for the scientist and researcher working in this field to generate protocol for engineering plant with improved yield and stress tolerance.
Collapse
Affiliation(s)
- Jayanti Jodder
- School of Biotechnology, Presidency University (Rajarhat Campus), Canal Bank 7 Road, DG Block, Action Area 1D, Newtown, Kolkata, West Bengal, 700156, India.
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
29
|
Giudicatti AJ, Tomassi AH, Manavella PA, Arce AL. Extensive Analysis of miRNA Trimming and Tailing Indicates that AGO1 Has a Complex Role in miRNA Turnover. PLANTS 2021; 10:plants10020267. [PMID: 33573197 PMCID: PMC7911489 DOI: 10.3390/plants10020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.
Collapse
|
30
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
31
|
Betti F, Ladera-Carmona MJ, Perata P, Loreti E. RNAi Mediated Hypoxia Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E9394. [PMID: 33321742 PMCID: PMC7764064 DOI: 10.3390/ijms21249394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.
Collapse
Affiliation(s)
- Federico Betti
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Maria José Ladera-Carmona
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
32
|
Rojas AML, Drusin SI, Chorostecki U, Mateos JL, Moro B, Bologna NG, Bresso EG, Schapire A, Rasia RM, Moreno DM, Palatnik JF. Identification of key sequence features required for microRNA biogenesis in plants. Nat Commun 2020; 11:5320. [PMID: 33087730 PMCID: PMC7577975 DOI: 10.1038/s41467-020-19129-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis. The secondary structure of miRNA precursor sequences is known to affect processing by DICER-like proteins. Here Rojas et al. show that additional sequence features also play a regulatory role in plants with nucleotide identity at unpaired positions substantially impacting processing efficiency.
Collapse
Affiliation(s)
- Arantxa M L Rojas
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Salvador I Drusin
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Física, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Santa Fe, Argentina
| | - Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Barcelona Supercomputing Centre (BSC-CNS), Barcelona, (08034), Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, (08028), Spain
| | - Julieta L Mateos
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, (1428), Argentina
| | - Belén Moro
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Nicolas G Bologna
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Edgardo G Bresso
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Arnaldo Schapire
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodolfo M Rasia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK, Rosario, Santa Fe, Argentina.,Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina. .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
33
|
Tomassi AH, Re DA, Romani F, Cambiagno DA, Gonzalo L, Moreno JE, Arce AL, Manavella PA. The Intrinsically Disordered Protein CARP9 Bridges HYL1 to AGO1 in the Nucleus to Promote MicroRNA Activity. PLANT PHYSIOLOGY 2020; 184:316-329. [PMID: 32636339 PMCID: PMC7479909 DOI: 10.1104/pp.20.00258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
In plants, small RNAs are loaded into ARGONAUTE (AGO) proteins to fulfill their regulatory functions. MicroRNAs (miRNAs), one of the most abundant classes of endogenous small RNAs, are preferentially loaded into AGO1. Such loading, long believed to happen exclusively in the cytoplasm, was recently proposed to also occur in the nucleus. Here, we identified CONSTITUTIVE ALTERATIONS IN THE SMALL RNAS PATHWAYS9 (CARP9), a nuclear-localized, intrinsically disordered protein, as a factor promoting miRNA activity in Arabidopsis (Arabidopsis thaliana). Mutations in the CARP9-encoding gene led to a mild reduction of miRNAs levels, impaired gene silencing, and characteristic morphological defects, including young leaf serration and altered flowering time. Intriguingly, we found that CARP9 was able to interact with HYPONASTIC LEAVES1 (HYL1), but not with other proteins of the miRNA biogenesis machinery. In the same way, CARP9 appeared to interact with mature miRNA, but not with primary miRNA, positioning it after miRNA processing in the miRNA pathway. CARP9 was also able to interact with AGO1, promoting its interaction with HYL1 to facilitate miRNA loading in AGO1. Plants deficient in CARP9 displayed reduced levels of AGO1-loaded miRNAs, partial retention of miRNA in the nucleus, and reduced levels of AGO1. Collectively, our data suggest that CARP9 might modulate HYL1-AGO1 cross talk, acting as a scaffold for the formation of a nuclear post-primary miRNA-processing complex that includes at least HYL1, AGO1, and HEAT SHOCK PROTEIN 90. In such a complex, CARP9 stabilizes AGO1 and mature miRNAs, allowing the proper loading of miRNAs in the effector complex.
Collapse
Affiliation(s)
- Ariel H Tomassi
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Delfina A Re
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Facundo Romani
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Lucía Gonzalo
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| |
Collapse
|
34
|
Abstract
Biogenesis of plant microRNAs (miRNAs) takes place in nuclear dicing bodies (D-bodies), where the ribonulease III-type enzyme Dicer-like 1 (DCL1) processes primary transcripts of miRNAs (pri-miRNAs) into miRNA/miRNA* (*, passenger strand) duplexes from either base-to-loop or loop-to-base directions. Hyponastic Leaves 1 (HYL1), a double-stranded RNA-binding protein, is crucial for efficient and accurate processing. However, whether HYL1 has additional function remains unknown. Here, we report that HYL1 plays a noncanonical role in protecting pri-miRNAs from nuclear exosome attack in addition to ensuring processing. Loss of functions in SOP1 or HEN2, two cofactors of the nucleoplasmic exosome, significantly suppressed the morphological phenotypes of hyl1-2 Remarkably, mature miRNAs generated from loop-to-base processing were partially but preferentially restored in the hyl1 sop1 and hyl1 hen2 double mutants. Accordingly, loop-to-base-processed pri-miRNAs accumulated to higher levels in double mutants. In addition, dysfunction of HEN2, but not of SOP1, in hyl1-2 resulted in overaccumulation of many base-to-loop-processed pri-miRNAs, with most of their respective miRNAs unaffected. In summary, our findings reveal an antagonistic action of exosome in pri-miRNA biogenesis and uncover dual roles of HYL1 in stabilizing and processing of pri-miRNAs.
Collapse
|
35
|
Bi H, Fei Q, Li R, Liu B, Xia R, Char SN, Meyers BC, Yang B. Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1526-1536. [PMID: 31821678 PMCID: PMC7292542 DOI: 10.1111/pbi.13315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 05/12/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotides (nt) small RNAs functioning in eukaryotes. The length and sequence of miRNAs are not only related to the biogenesis of miRNAs but are also important for downstream physiological processes like ta-siRNA production. To investigate these roles, it is informative to create small mutations within mature miRNA sequences. We used both TALENs (transcription activator-like effector nucleases) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to introduce heritable base pair mutations in mature miRNA sequences. For rice, TALEN constructs were built targeting five different mature miRNA sequences and yielding heritable mutations. Among the resulting mutants, mir390 mutant showed a severe defect in the shoot apical meristem (SAM), a shootless phenotype, which could be rescued by the wild-type MIR390. Small RNA sequencing showed the two base pair deletion in mir390 substantially interfered with miR390 biogenesis. In Arabidopsis, CRISPR/Cas9-mediated editing of the miR160* strand confirmed that the asymmetric structure of miRNA is not a necessary determinant for secondary siRNA production. CRISPR/Cas9 with double-guide RNAs successfully generated mir160a null mutants with fragment deletions, at a higher efficiency than a single-guide RNA. The difference between the phenotypic severity of miR160a mutants in Col-0 versus Ler backgrounds highlights a diverged role for miR160a in different ecotypes. Overall, we demonstrated that TALENs and CRISPR/Cas9 are both effective in modifying miRNA precursor structure, disrupting miRNA processing and generating miRNA null mutant plants.
Collapse
Affiliation(s)
- Honghao Bi
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Qili Fei
- Department of Plant and Soil SciencesDelaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
Agricultural Genomics Institute at ShenzhenThe Chinese Academy of Agricultural SciencesShenzhenChina
| | - Riqing Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Bo Liu
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of HorticultureSouth China Agricultural UniversityGuangzhouGuangdongChina
| | - Si Nian Char
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Bing Yang
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
36
|
Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley ( Hordeum vulgare L.). Biomolecules 2020; 10:biom10060929. [PMID: 32570964 PMCID: PMC7356095 DOI: 10.3390/biom10060929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Barley (Hordeum vulgare L.) is an economically important crop cultivated in temperate climates all over the world. Adverse environmental factors negatively affect its survival and productivity. RNA silencing is a conserved pathway involved in the regulation of growth, development and stress responses. The key components of RNA silencing are the Dicer-like proteins (DCLs), Argonautes (AGOs) and RNA-dependent RNA polymerases (RDRs). Despite its economic importance, there is no available comprehensive report on barley RNA silencing machinery and its regulation. In this study, we in silico identified five DCL (HvDCL), eleven AGO (HvAGO) and seven RDR (HvRDR) genes in the barley genome. Genomic localization, phylogenetic analysis, domain organization and functional/catalytic motif identification were also performed. To understand the regulation of RNA silencing, we experimentally analysed the transcriptional changes in response to moderate, persistent or gradient heat stress treatments: transcriptional accumulation of siRNA- but not miRNA-based silencing factor was consistently detected. These results suggest that RNA silencing is dynamically regulated and may be involved in the coordination of development and environmental adaptation in barley. In summary, our work provides information about barley RNA silencing components and will be a ground for the selection of candidate factors and in-depth functional/mechanistic analyses.
Collapse
|
37
|
Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 2020; 738:144460. [PMID: 32045659 DOI: 10.1016/j.gene.2020.144460] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA390 (miR390), an ancient and highly conserved miRNA family in land plants, plays multiple roles in plant growth, development and stress responses. In this study, we isolated and identified MIR390, miR390, TAS3a/b/c, tasiARF-1/2/3 (trans-acting small interfering RNAs influencing Auxin Response Factors) and ARF2/3/4 in Jerusalem artichoke (Helianthus tuberosus L.). Treatment with 100 mM NaCl induced expression of miR390, increased cleavage of TAS3, produced high levels of tasiARFs, and subsequently enhanced cleavage of ARF3/4, which was most likely associated with salt tolerance of the plants. In contrast, treatment with 300 mM NaCl inhibited expression of miR390, attenuated cleavage of TAS3, produced a small amount of tasiARFs, and reduced cleavage of ARF3/4. We proposed that ARF2, one of the targets of tasiARFs, induced under salinity was likely to play an active role in salt tolerance of Jerusalem artichoke. The study of the miR390-TAS3-ARF model in Jerusalem artichoke may broaden our understanding of salt tolerance mechanisms, and provides a theoretical support for further genetic identification and breeding crops with increased tolerance to salt stress.
Collapse
|
38
|
Rao S, Balyan S, Jha S, Mathur S. Novel insights into expansion and functional diversification of MIR169 family in tomato. PLANTA 2020; 251:55. [PMID: 31974682 DOI: 10.1007/s00425-020-03346-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Expansion of MIR169 members by duplication and new mature forms, acquisition of new promoters, differential precursor-miRNA processivity and engaging novel targets increase the functional diversification of MIR169 in tomato. MIR169 family is an evolutionarily conserved miRNA family in plants. A systematic in-depth analysis of MIR169 family in tomato is lacking. We report 18 miR169 precursors, annotating new loci for MIR169a, b and d, as well as 3 novel mature isoforms (MIR169f/g/h). The family has expanded by both tandem- and segmental-duplication events during evolution. A tandem-pair MIR169b/b-1 and MIR169b-2/h is polycistronic in nature coding for three MIR169b isoforms and a new variant miR169h, that is evidently absent in the wild relatives S. pennellii and S. pimpinellifolium. Seven novel miR169 targets including RNA-binding protein, protein-phosphatase, aminotransferase, chaperone, tetratricopeptide-repeat-protein, and transcription factors ARF-9B and SEPELLATA-3 were established by efficient target cleavage in the presence of specific precursors as well as increased target abundance upon miR169 chelation by short-tandem-target-mimic construct in transient assays. Comparative antagonistic expression profiles of MIR169:target pairs suggest MIR169 family as ubiquitous regulator of various abiotic stresses (heat, cold, dehydration and salt) and developmental pathways. This regulation is partly brought about by acquisition of new promoters as demonstrated by promoter MIR169:GUS reporter assays as well as differential processivity of different precursors and miRNA cleavage efficiencies. Thus, the current study augments the functional horizon of MIR169 family with applications for stress tolerance in crops.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sarita Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
39
|
Gramzow L, Lobbes D, Innard N, Theißen G. Independent origin of MIRNA genes controlling homologous target genes by partial inverted duplication of antisense-transcribed sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:401-419. [PMID: 31571291 DOI: 10.1111/tpj.14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Some microRNAs (miRNAs) are key regulators of developmental processes, mainly by controlling the accumulation of transcripts encoding transcription factors that are important for morphogenesis. MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants. Here we study the convergent evolution of two MIRNA (MIR) gene families, named MIR444 and MIR824, targeting members of the same clade of MIKCC -group MADS-box genes. We show that these two MIR genes most likely originated independently in monocots (MIR444) and in Brassicales (eudicots, MIR824). We provide evidence that, in both cases, the future target gene was transcribed in antisense prior to the evolution of the MIR genes. Both MIR genes then likely originated by a partial inverted duplication of their target genes, resulting in natural antisense organization of the newly evolved MIR gene and its target gene at birth. We thus propose a model for the origin of MIR genes, MEPIDAS (MicroRNA Evolution by Partial Inverted Duplication of Antisense-transcribed Sequences). MEPIDAS is a refinement of the inverted duplication hypothesis. According to MEPIDAS, a MIR gene evolves at a genomic locus at which the future target gene is also transcribed in the antisense direction. A partial inverted duplication at this locus causes the antisense transcript to fold into a stem-loop structure that is recognized by the miRNA biogenesis machinery to produce a miRNA that regulates the gene at this locus. Our analyses exemplify how to elucidate the origin of conserved miRNAs by comparative genomics and will guide future studies. OPEN RESEARCH BADGE: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Dajana Lobbes
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Nathan Innard
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
40
|
Song J, Wang X, Song B, Gao L, Mo X, Yue L, Yang H, Lu J, Ren G, Mo B, Chen X. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. NATURE PLANTS 2019; 5:1260-1272. [PMID: 31792392 DOI: 10.1038/s41477-019-0562-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/28/2019] [Indexed: 05/22/2023]
Abstract
A key step in microRNA biogenesis is the processing of a primary precursor RNA by the microprocessor into a precursor miRNA (pre-miRNA) intermediate. In plants, little is known about the processes that act on pre-miRNAs to influence miRNA biogenesis. Here, we performed 3' rapid amplification of complementary DNA ends sequencing to profile pre-miRNA 3' ends in Arabidopsis. 3' end heterogeneity was prevalent, and the three microprocessor components promoted 3' end precision. Extensive cytidylation and uridylation of precise and imprecise pre-miRNA 3' ends were uncovered. The nucleotidyl transferase HESO1 uridylated pre-miRNAs in vitro and was responsible for most pre-miRNA uridylation in vivo. HESO1, NTP6 and NTP7 contribute to pre-miRNA cytidylation. Tailing of pre-miRNAs tended to restore trimmed pre-miRNAs to their intact length to promote further processing. In addition, HESO1-mediated uridylation led to the degradation of certain imprecisely processed pre-miRNAs. Thus, we uncovered widespread cytidylation and uridylation of pre-miRNAs and demonstrated diverse functions of pre-miRNA tailing in plants.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayun Lu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
41
|
Manavella PA, Yang SW, Palatnik J. Keep calm and carry on: miRNA biogenesis under stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:832-843. [PMID: 31025462 DOI: 10.1111/tpj.14369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. Their biogenesis relies on the cleavage of longer precursors by a nuclear localized processing machinery. The evolutionary preference of plant miRNAs to silence transcription factors turned these small molecules into key actors during growth and adaptive responses. Furthermore, during their life cycle plants are subject to changes in the environmental conditions surrounding them. In order to face these changes, plants display unique adaptive capacities based on an enormous developmental plasticity, where miRNAs play central roles. Many individual miRNAs have been shown to modulate the plant response to different environmental cues and stresses. In the last few years, increasing evidence has shown that not only individual genes encoding miRNAs but also the miRNA pathway as a whole is subject to regulation in response to external stimulus. In this review, we discuss the current knowledge about the miRNA pathway. We dissect the pathway to analyze the events leading to the generation of these small RNAs and emphasize the regulation of core components of the miRNA biogenesis machinery.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL-FBCB), Santa Fe, 3000, Argentina
| | - Seong W Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Javier Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, 2000, Argentina
| |
Collapse
|
42
|
Moro B, Chorostecki U, Arikit S, Suarez IP, Höbartner C, Rasia RM, Meyers BC, Palatnik JF. Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Res 2019; 46:10709-10723. [PMID: 30289546 PMCID: PMC6237749 DOI: 10.1093/nar/gky853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Many evolutionarily conserved microRNAs (miRNAs) in plants regulate transcription factors with key functions in development. Hence, mutations in the core components of the miRNA biogenesis machinery cause strong growth defects. An essential aspect of miRNA biogenesis is the precise excision of the small RNA from its precursor. In plants, miRNA precursors are largely variable in size and shape and can be processed by different modes. Here, we optimized an approach to detect processing intermediates during miRNA biogenesis. We characterized a miRNA whose processing is triggered by a terminal branched loop. Plant miRNA processing can be initiated by internal bubbles, small terminal loops or branched loops followed by dsRNA segments of 15–17 bp. Interestingly, precision and efficiency vary with the processing modes. Despite the various potential structural determinants present in a single a miRNA precursor, DCL1 is mostly guided by a predominant structural region in each precursor in wild-type plants. However, our studies in fiery1, hyl1 and se mutants revealed the existence of cleavage signatures consistent with the recognition of alternative processing determinants. The results provide a general view of the mechanisms underlying the specificity of miRNA biogenesis in plants.
Collapse
Affiliation(s)
- Belén Moro
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Siwaret Arikit
- Department of Agronomy, Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Irina P Suarez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Claudia Höbartner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rodolfo M Rasia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.,Department of Plant Science, University of Missouri - Columbia, MO 65211, USA
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina.,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
43
|
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 2019; 20:488. [PMID: 31195958 PMCID: PMC6567507 DOI: 10.1186/s12864-019-5799-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background With rising global temperature, understanding plants’ adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. Results Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. Conclusion The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5799-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.,Present address: Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
44
|
Wang J, Mei J, Ren G. Plant microRNAs: Biogenesis, Homeostasis, and Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:360. [PMID: 30972093 PMCID: PMC6445950 DOI: 10.3389/fpls.2019.00360] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, tiny, non-coding RNAs, are master regulators of gene expression among most eukaryotes. Intracellular miRNA abundance is regulated under multiple levels of control including transcription, processing, RNA modification, RNA-induced silencing complex (RISC) assembly, miRNA-target interaction, and turnover. In this review, we summarize our current understanding of the molecular components and mechanisms that influence miRNA biogenesis, homeostasis, and degradation in plants. We also make comparisons with findings from other organisms where necessary.
Collapse
Affiliation(s)
| | | | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Ré DA, Lang PLM, Yones C, Arce AL, Stegmayer G, Milone D, Manavella PA. Alternative use of miRNA-biogenesis co-factors in plants at low temperatures. Development 2019; 146:dev172932. [PMID: 30760482 DOI: 10.1242/dev.172932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
Plants use molecular mechanisms to sense temperatures, trigger quick adaptive responses and thereby cope with environmental changes. MicroRNAs (miRNAs) are key regulators of plant development under such conditions. The catalytic action of DICER LIKE 1 (DCL1), in conjunction with HYPONASTIC LEAVES 1 (HYL1) and SERRATE (SE), produces miRNAs from double-stranded RNAs. As plants lack a stable internal temperature to which enzymatic reactions could be optimized during evolution, reactions such as miRNA processing have to be adjusted to fluctuating environmental temperatures. Here, we report that with decreasing ambient temperature, the plant miRNA biogenesis machinery becomes more robust, producing miRNAs even in the absence of the key DCL1 co-factors HYL1 and SE. This reduces the morphological and reproductive defects of se and hyl1 mutants, restoring seed production. Using small RNA-sequencing and bioinformatics analyses, we have identified specific miRNAs that become HYL1/SE independent for their production in response to temperature decrease. We found that the secondary structure of primary miRNAs is key for this temperature recovery. This finding may have evolutionary implications as a potential adaptation-driving mechanism to a changing climate.
Collapse
Affiliation(s)
- Delfina A Ré
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Patricia L M Lang
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
- Max Planck Institute for Developmental Biology, Tübingen D-72076, Germany
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence [sinc(i)], Research Institute for Signals, Systems and Computational Intelligence (CONICET-UNL), Ciudad Universitaria, Santa Fe 3000, Argentina
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Georgina Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence [sinc(i)], Research Institute for Signals, Systems and Computational Intelligence (CONICET-UNL), Ciudad Universitaria, Santa Fe 3000, Argentina
| | - Diego Milone
- Research Institute for Signals, Systems and Computational Intelligence [sinc(i)], Research Institute for Signals, Systems and Computational Intelligence (CONICET-UNL), Ciudad Universitaria, Santa Fe 3000, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.
Collapse
|
47
|
Pegler JL, Grof CPL, Eamens AL. The Plant microRNA Pathway: The Production and Action Stages. Methods Mol Biol 2019; 1932:15-39. [PMID: 30701489 DOI: 10.1007/978-1-4939-9042-9_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional regulation of gene expression in plant development and environmental stress adaptation or in response to pathogen challenge. The plant microRNA pathway is readily separated into two distinct stages: (1) the production stage, which is localized to the plant cell nucleus and where the microRNA small RNA is processed from a double-stranded RNA precursor transcript, and (2) the action stage, which is localized to the plant cell cytoplasm and where the mature microRNA small RNA is loaded into an effector complex and is used by the complex as a sequence specificity guide to direct expression repression of target genes harboring highly complementary microRNA target sequences. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway requiring a small set of core machinery proteins. However, contemporary research has demonstrated that the plant microRNA pathway is highly dynamic, and to allow for this flexibility, a large and highly functionally diverse set of machinery proteins is now known to be required. For example, recent research has shown that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism of RNA silencing: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, here we report on both the core and auxiliary sets of machinery proteins now known to be required for both microRNA production and microRNA action in plants.
Collapse
Affiliation(s)
- Joseph L Pegler
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P L Grof
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew L Eamens
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
48
|
Yu D, Xu M, Ito H, Shao W, Ma X, Wang H, Meng Y. Tracking microRNA Processing Signals by Degradome Sequencing Data Analysis. Front Genet 2018; 9:546. [PMID: 30487815 PMCID: PMC6246748 DOI: 10.3389/fgene.2018.00546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/26/2018] [Indexed: 11/23/2022] Open
Abstract
Degradome sequencing (degradome-seq) was widely used for cleavage site mapping on the microRNA (miRNA) targets. Here, the application value of degradome-seq data in tracking the miRNA processing intermediates was reported. By adopting the parameter “signal/noise” ratio, prominent degradome signals on the miRNA precursors were extracted. For the 15 species analyzed, the processing of many miRNA precursors were supported by the degradome-seq data. We found that the supporting ratio of the “high-confidence” miRNAs annotated in miRBase was much higher than that of the “low-confidence.” For a specific species, the percentage of the miRNAs with degradome-supported processing signals was elevated by the increment of degradome sampling diversity. More interestingly, the tissue- or cell line-specific processing patterns of the miRNA precursors partially contributed to the accumulation patterns of the mature miRNAs. In this study, we also provided examples to show the value of the degradome-seq data in miRNA annotation. Based on the distribution of the processing signals, a renewed model was proposed that the stems of the miRNA precursors were diced through a “single-stranded cropping” mode, and “loop-to-base” processing was much more prevalent than previously thought. Together, our results revealed the remarkable capacity of degradome-seq in tracking miRNA processing signals.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Weishan Shao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
49
|
Lee CH, Carroll BJ. Evolution and Diversification of Small RNA Pathways in Flowering Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2169-2187. [PMID: 30169685 DOI: 10.1093/pcp/pcy167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Small regulatory RNAs guide gene silencing at the DNA or RNA level through repression of complementary sequences. The two main forms of small RNAs are microRNA (miRNA) and small interfering RNA (siRNAs), which are generated from the processing of different forms of double-stranded RNA (dsRNA) precursors. These two forms of small regulatory RNAs function in distinct but overlapping gene silencing pathways in plants. Gene silencing pathways in eukaryotes evolved from an ancient prokaryotic mechanism involved in genome defense against invasive genetic elements, but has since diversified to also play a crucial role in regulation of endogenous gene expression. Here, we review the biogenesis of the different forms of small RNAs in plants, including miRNAs, phased, secondary siRNAs (phasiRNAs) and heterochromatic siRNAs (hetsiRNAs), with a focus on their functions in genome defense, transcriptional and post-transcriptional gene silencing, RNA-directed DNA methylation, trans-chromosomal methylation and paramutation. We also discuss the important role that gene duplication has played in the functional diversification of gene silencing pathways in plants, and we highlight recently discovered components of gene silencing pathways in plants.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
50
|
Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Sci Rep 2018; 8:15538. [PMID: 30341377 PMCID: PMC6195573 DOI: 10.1038/s41598-018-34012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
miRNAs are fundamental endogenous regulators of gene expression in higher organisms. miRNAs modulate multiple biological processes in plants. Consequently, miRNA accumulation is strictly controlled through miRNA precursor accumulation and processing. Members of the miRNA319 family are ancient ribo-regulators that are essential for plant development and stress responses and exhibit an unusual biogenesis that is characterized by multiple processing of their precursors. The significance of the high conservation of these non-canonical biogenesis pathways remains unknown. Here, we analyze data obtained by massive sRNA sequencing and 5′ - RACE to explore the accumulation and infer the processing of members of the miR319 family in melon plants exposed to adverse environmental conditions. Sequence data showed that miR319c was down regulated in response to low temperature. However, the level of its precursor was increased by cold, indicating that miR319c accumulation is not related to the stem loop levels. Furthermore, we found that a decrease in miR319c was inversely correlated with the stable accumulation of an alternative miRNA (#miR319c) derived from multiple processing of the miR319c precursor. Interestingly, the alternative accumulation of miR319c and #miR319c was associated with an additional and non-canonical partial cleavage of the miR319c precursor during its loop-to-base-processing. Analysis of the transcriptional activity showed that miR319c negatively regulated the accumulation of HY5 via TCP2 in melon plants exposed to cold, supporting its involvement in the low temperature signaling pathway associated with anthocyanin biosynthesis. Our results provide new insights regarding the versatility of plant miRNA processing and the mechanisms regulating them as well as the hypothetical mechanism for the response to cold-induced stress in melon, which is based on the alternative regulation of miRNA biogenesis.
Collapse
|