1
|
O'Reilly GD, Manlik O, Vardeh S, Sinclair J, Cannell B, Lawler ZP, Sherwin WB. A new method for ecologists to estimate heterozygote excess and deficit for multi-locus gene families. Ecol Evol 2024; 14:e11561. [PMID: 39045501 PMCID: PMC11264353 DOI: 10.1002/ece3.11561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/25/2024] Open
Abstract
The fixation index, F IS, has been a staple measure to detect selection, or departures from random mating in populations. However, current Next Generation Sequencing (NGS) cannot easily estimate F IS, in multi-locus gene families that contain multiple loci having similar or identical arrays of variant sequences of ≥1 kilobase (kb), which differ at multiple positions. In these families, high-quality short-read NGS data typically identify variants, but not the genomic location, which is required to calculate F IS (based on locus-specific observed and expected heterozygosity). Thus, to assess assortative mating, or selection on heterozygotes, from NGS of multi-locus gene families, we need a method that does not require knowledge of which variants are alleles at which locus in the genome. We developed such a method. Like F IS, our novel measure, 1 H IS, is based on the principle that positive assortative mating, or selection against heterozygotes, and some other processes reduce within-individual variability relative to the population. We demonstrate high accuracy of 1 H IS on a wide range of simulated scenarios and two datasets from natural populations of penguins and dolphins. 1 H IS is important because multi-locus gene families are often involved in assortative mating or selection on heterozygotes. 1 H IS is particularly useful for multi-locus gene families, such as toll-like receptors, the major histocompatibility complex in animals, homeobox genes in fungi and self-incompatibility genes in plants.
Collapse
Affiliation(s)
- Gabe D. O'Reilly
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Department of BioinformaticsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Oliver Manlik
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Biology DepartmentUnited Arab Emirates UniversityAl Ain, Abu DhabiUAE
| | - Sandra Vardeh
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Bundesamt für NaturschutzBonnNordrhein‐WestfalenGermany
| | - Jennifer Sinclair
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Cape Bernier VineyardBream CreekTasmaniaAustralia
| | - Belinda Cannell
- Oceans Institute/School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Environmental and Conservation SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Zachary P. Lawler
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- The University of NewcastleNewcastleNew South WalesAustralia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Lesack KJ, Wasmuth JD. The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data. PeerJ 2024; 12:e17101. [PMID: 38500526 PMCID: PMC10946394 DOI: 10.7717/peerj.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Background Structural variant (SV) calling from DNA sequencing data has been challenging due to several factors, including the ambiguity of short-read alignments, multiple complex SVs in the same genomic region, and the lack of "truth" datasets for benchmarking. Additionally, caller choice, parameter settings, and alignment method are known to affect SV calling. However, the impact of FASTQ read order on SV calling has not been explored for long-read data. Results Here, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different SV callers on FASTQ read order. Comparisons of variant call format files generated from the original and permutated FASTQ files demonstrated that the order of input data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive to the order of the input data, especially at the highest depths where over 70% of the SV calls generated from pairs of differently ordered FASTQ files were in disagreement. These demonstrate that read order sensitivity is a complex, multifactorial process, as the differences observed both within and between species varied considerably according to the specific combination of aligner, SV caller, and sequencing depth. In addition to the SV callers being sensitive to the input data order, the SAMtools alignment sorting algorithm was identified as a source of variability following read order randomization. Conclusion The results of this study highlight the sensitivity of SV calling on the order of reads encoded in FASTQ files, which has not been recognized in long-read approaches. These findings have implications for the replication of SV studies and the development of consistent SV calling protocols. Our study suggests that researchers should pay attention to the input order sensitivity of read alignment sorting methods when analyzing long-read sequencing data for SV calling, as mitigating a source of variability could facilitate future replication work. These results also raise important questions surrounding the relationship between SV caller read order sensitivity and tool performance. Therefore, tool developers should also consider input order sensitivity as a potential source of variability during the development and benchmarking of new and improved methods for SV calling.
Collapse
Affiliation(s)
- Kyle J. Lesack
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
4
|
Assis R, Conant G, Holland B, Liberles DA, O'Reilly MM, Wilson AE. Models for the retention of duplicate genes and their biological underpinnings. F1000Res 2024; 12:1400. [PMID: 38173826 PMCID: PMC10762295 DOI: 10.12688/f1000research.141786.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 01/05/2024] Open
Abstract
Gene content in genomes changes through several different processes, with gene duplication being an important contributor to such changes. Gene duplication occurs over a range of scales from individual genes to whole genomes, and the dynamics of this process can be context dependent. Still, there are rules by which genes are retained or lost from genomes after duplication, and probabilistic modeling has enabled characterization of these rules, including their context-dependence. Here, we describe the biology and corresponding mathematical models that are used to understand duplicate gene retention and its contribution to the set of biochemical functions encoded in a genome.
Collapse
Affiliation(s)
- Raquel Assis
- Florida Atlantic University, Boca Raton, Florida, USA
| | - Gavin Conant
- North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
5
|
Wilson AE, Liberles DA. Expectations of duplicate gene retention under the gene duplicability hypothesis. BMC Ecol Evol 2023; 23:76. [PMID: 38097959 PMCID: PMC10720195 DOI: 10.1186/s12862-023-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Gene duplication is an important process in evolution. What causes some genes to be retained after duplication and others to be lost is a process not well understood. The most prevalent theory is the gene duplicability hypothesis, that something about the function and number of interacting partners (number of subunits of protein complex, etc.), determines whether copies have more opportunity to be retained for long evolutionary periods. Some genes are also more susceptible to dosage balance effects following WGD events, making them more likely to be retained for longer periods of time. One would expect these processes that affect the retention of duplicate copies to affect the conditional probability ratio after consecutive whole genome duplication events. The probability that a gene will be retained after a second whole genome duplication event (WGD2), given that it was retained after the first whole genome duplication event (WGD1) versus the probability a gene will be retained after WGD2, given it was lost after WGD1 defines the probability ratio that is calculated. RESULTS Since duplicate gene retention is a time heterogeneous process, the time between the events (t1) and the time since the most recent event (t2) are relevant factors in calculating the expectation for observation in any genome. Here, we use a survival analysis framework to predict the probability ratio for genomes with different values of t1 and t2 under the gene duplicability hypothesis, that some genes are more susceptible to selectable functional shifts, some more susceptible to dosage compensation, and others only drifting. We also predict the probability ratio with different values of t1 and t2 under the mutational opportunity hypothesis, that probability of retention for certain genes changes in subsequent events depending upon how they were previously retained. These models are nested such that the mutational opportunity model encompasses the gene duplicability model with shifting duplicability over time. Here we present a formalization of the gene duplicability and mutational opportunity hypotheses to characterize evolutionary dynamics and explanatory power in a recently developed statistical framework. CONCLUSIONS This work presents expectations of the gene duplicability and mutational opportunity hypotheses over time under different sets of assumptions. This expectation will enable formal testing of processes leading to duplicate gene retention.
Collapse
Affiliation(s)
- Amanda E Wilson
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Long H, Johri P, Gout JF, Ni J, Hao Y, Licknack T, Wang Y, Pan J, Jiménez-Marín B, Lynch M. Paramecium Genetics, Genomics, and Evolution. Annu Rev Genet 2023; 57:391-410. [PMID: 38012024 PMCID: PMC11334263 DOI: 10.1146/annurev-genet-071819-104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.
Collapse
Affiliation(s)
- Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Timothy Licknack
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Berenice Jiménez-Marín
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
7
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
8
|
Gout JF, Hao Y, Johri P, Arnaiz O, Doak TG, Bhullar S, Couloux A, Guérin F, Malinsky S, Potekhin A, Sawka N, Sperling L, Labadie K, Meyer E, Duharcourt S, Lynch M. Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex. Mol Biol Evol 2023; 40:msad107. [PMID: 37154524 PMCID: PMC10195154 DOI: 10.1093/molbev/msad107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.
Collapse
Affiliation(s)
- Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Department of Biological Sciences, Mississippi State University, Starkville, MS
| | - Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN
| | - Simran Bhullar
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Fréderic Guérin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Sophie Malinsky
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Natalia Sawka
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Eric Meyer
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|
9
|
Liao J, Deng B, Yang Q, Li Y, Zhang Y, Cong J, Wang X, Kohnen MV, Liu ZJ, Lu MZ, Lin D, Gu L, Liu B. Insights into cryptochrome modulation of ABA signaling to mediate dormancy regulation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1479-1497. [PMID: 36797656 DOI: 10.1111/nph.18815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.
Collapse
Affiliation(s)
- Jiakai Liao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qixin Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuxiang Zhang
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiajing Cong
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaqin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
10
|
Su H, Xu J, Li J, Yi Z. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol 2023; 184:107789. [PMID: 37105243 DOI: 10.1016/j.ympev.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Actin gene family is a divergent and ancient eukaryotic cellular cytoskeletal gene family, and participates in many essential cellular processes. Ciliated protists offer us an excellent opportunity to investigate gene family evolution, since their gene families evolved faster in ciliates than in other eukaryotes. Nonetheless, actin gene family is well studied in few model ciliate species but little is known about its evolutionary patterns in ciliates. Here, we analyzed the evolutionary pattern of eukaryotic actin gene family based on genomes/transcriptomes of 36 species covering ten ciliate classes, as well as those of nine non-ciliate eukaryotic species. Results showed: (1) Except for conventional actins and actin-related proteins (Arps) shared by various eukaryotes, at least four ciliate-specific subfamilies occurred during evolution of actin gene family. Expansions of Act2 and ArpC were supposed to have happen in the ciliate common ancestor, while expansions of ActI and ActII may have occurred in the ancestor of Armophorea, Muranotrichea, and Spirotrichea. (2) The number of actin isoforms varied greatly among ciliate species. Environmental adaptability, whole genome duplication (WGD) or segmental duplication events, distinct spatial and temporal patterns of expression might play driving forces for the increasement of isoform numbers. (3) The 'birth and death' model of evolution could explain the evolution of actin gene family in ciliates. And actin genes have been generally under strong negative selection to maintain protein structures and physiological functions. Collectively, we provided meaningful information for understanding the evolution of eukaryotic actin gene family.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Dimos B, Phelps M. A homology guide for Pacific salmon genus Oncorhynchus resolves patterns of ohnolog retention, resolution and local adaptation following the salmonid-specific whole-genome duplication event. Ecol Evol 2023; 13:e9994. [PMID: 37091557 PMCID: PMC10119027 DOI: 10.1002/ece3.9994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Salmonid fishes have emerged as a tractable model to study whole-genome duplications (WGDs) as this group has undergone four rounds of WGDs. While most of the salmonid genome has returned to a diploid state, a significant proportion of genes are maintained as duplicates and are referred to as ohnologs. The fact that much of the modern salmonid gene repertoire is comprised of ohnologs, while other genes have returned to their singleton state creates complications for genetic studies by obscuring homology relationships. The difficulty this creates is particularly prominent in Pacific salmonids belonging to genus Oncorhynchus who are the focus of intense genetics-based conservation and management efforts owing to the important ecological and cultural roles these fish play. To address this gap, we generated a homology guide for six species of Oncorhynchus with available genomes and used this guide to describe patterns of ohnolog retention and resolution. Overall, we find that ohnologs comprise approximately half of each species modern gene repertoires, which are functionally enriched for genes involved in DNA binding, while the less numerous singleton genes are heavily enriched in dosage-sensitive processes such as mitochondrial metabolism. Additionally, by reanalyzing published expression data from locally adapted strains of O. mykiss, we show that numerous ohnologs exhibit adaptive expression profiles; however, ohnologs are not more likely to display adaptive signatures than either paralogs or singletons. Finally, we demonstrate the utility of our homology guide by investigating the evolutionary relationship among genes highlighted as playing a role in salmonid life-history traits or gene editing targets.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| | - Michael Phelps
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
12
|
Huang Z, Xu L, Cai C, Zhou Y, Liu J, Xu Z, Zhu Z, Kang W, Cen W, Pei S, Chen D, Shi C, Wu X, Huang Y, Xu C, Yan Y, Yang Y, Xue T, He W, Hu X, Zhang Y, Chen Y, Bi C, He C, Xue L, Xiao S, Yue Z, Jiang Y, Yu JK, Jarvis E, Li G, Lin G, Zhang Q, Zhou Q. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc Natl Acad Sci U S A 2023; 120:e2201504120. [PMID: 36867684 PMCID: PMC10013865 DOI: 10.1073/pnas.2201504120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian350108, China
| | - Luohao Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Cheng Cai
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yitao Zhou
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Zaoxu Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
| | - Zexian Zhu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wen Kang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wan Cen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Surui Pei
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian350108, China
| | - Chaohua Xu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanan Yan
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ying Yang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Wenjin He
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanding Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Youqiang Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, Fujian350002, China
| | - Shijun Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin130118, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Yu Jiang
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei11529, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan26242, Taiwan
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Gang Lin
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qi Zhou
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang310052, China
- Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
13
|
Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023; 45:e2200187. [PMID: 36470594 DOI: 10.1002/bies.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
15
|
Purkanti R, Thattai M. Genome doubling enabled the expansion of yeast vesicle traffic pathways. Sci Rep 2022; 12:11213. [PMID: 35780185 PMCID: PMC9250509 DOI: 10.1038/s41598-022-15419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Vesicle budding and fusion in eukaryotes depend on a suite of protein types, such as Arfs, Rabs, coats and SNAREs. Distinct paralogs of these proteins act at distinct intracellular locations, suggesting a link between gene duplication and the expansion of vesicle traffic pathways. Genome doubling, a common source of paralogous genes in fungi, provides an ideal setting in which to explore this link. Here we trace the fates of paralog doublets derived from the 100-Ma-old hybridization event that gave rise to the whole genome duplication clade of budding yeast. We find that paralog doublets involved in specific vesicle traffic functions and pathways are convergently retained across the entire clade. Vesicle coats and adaptors involved in secretory and early-endocytic pathways are retained as doublets, at rates several-fold higher than expected by chance. Proteins involved in later endocytic steps and intra-Golgi traffic, including the entire set of multi-subunit and coiled-coil tethers, have reverted to singletons. These patterns demonstrate that selection has acted to expand and diversify the yeast vesicle traffic apparatus, across species and time.
Collapse
Affiliation(s)
- Ramya Purkanti
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
16
|
Shahzad K, Zhang X, Zhang M, Guo L, Qi T, Tang H, Wang H, Mubeen I, Qiao X, Peng R, Wu J, Xing C. Homoeolog gene expression analysis reveals novel expression biases in upland hybrid cotton under intraspecific hybridization. Funct Integr Genomics 2022; 22:757-768. [PMID: 35771309 DOI: 10.1007/s10142-022-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton. Investigation results of homoeolog gene pairs between two contrasting hybrids and their respective inbred parents identified 36853 homoeolog genes in hybrids. It was observed both high and low hybrids had similar trends in homoeolog gene expression patterns in each tissue under study. An average of 96% of homoeolog genes had no biased expression and their expressions were derived from the equal contribution of both parents. Besides, very few homoeolog genes (an average of 1%) showed no biased or novel expression in both hybrids. The functional analysis described secondary metabolic pathways had a majority of novel biased homoeolog genes in hybrids. These results contribute preliminary knowledge about how hybridization affects expression patterns of homoeolog gene pairs in upland cotton hybrids. Our study also highlights the functional genomics of metabolic genes to explore the genetic mechanism of heterosis in cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China. .,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
17
|
Shin NR, Doucet D, Pauchet Y. Duplication of horizontally acquired GH5_2 enzymes played a central role in the evolution of longhorned beetles. Mol Biol Evol 2022; 39:msac128. [PMID: 35763818 PMCID: PMC9246334 DOI: 10.1093/molbev/msac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
The rise of functional diversity through gene duplication contributed to the adaption of organisms to various environments. Here we investigate the evolution of putative cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2) in the Cerambycidae (longhorned beetles), a megadiverse assemblage of mostly xylophagous beetles. Cerambycidae originally acquired GH5_2 from a bacterial donor through horizontal gene transfer (HGT), and extant species harbor multiple copies that arose from gene duplication. We ask how these digestive enzymes contributed to the ability of these beetles to feed on wood. We analyzed 113 GH5_2, including the functional characterization of 52 of them, derived from 25 species covering most subfamilies of Cerambycidae. Ancestral gene duplications led to five well-defined groups with distinct substrate specificity, allowing these beetles to break down, in addition to cellulose, polysaccharides that are abundant in plant cell walls (PCWs), namely, xyloglucan, xylan, and mannans. Resurrecting the ancestral enzyme originally acquired by HGT, we show it was a cellulase that was able to break down glucomannan and xylan. Finally, recent gene duplications further expanded the catalytic repertoire of cerambycid GH5_2, giving rise to enzymes that favor transglycosylation over hydrolysis. We suggest that HGT and gene duplication, which shaped the evolution of GH5_2, played a central role in the ability of cerambycid beetles to use a PCW-rich diet and may have contributed to their successful radiation.
Collapse
Affiliation(s)
- Na Ra Shin
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
18
|
Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication. Mol Biol Evol 2022; 39:msac118. [PMID: 35639978 PMCID: PMC9206413 DOI: 10.1093/molbev/msac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, "marking" one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
19
|
Hao Y, Fleming J, Petterson J, Lyons E, Edger PP, Pires JC, Thorne JL, Conant GC. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 (BETHESDA, MD.) 2022; 12:jkac094. [PMID: 35451464 PMCID: PMC9157103 DOI: 10.1093/g3journal/jkac094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022]
Abstract
By modeling the homoeologous gene losses that occurred in 50 genomes deriving from ten distinct polyploidy events, we show that the evolutionary forces acting on polyploids are remarkably similar, regardless of whether they occur in flowering plants, ciliates, fishes, or yeasts. We show that many of the events show a relative rate of duplicate gene loss before the first postpolyploidy speciation that is significantly higher than in later phases of their evolution. The relatively weak selective constraint experienced by the single-copy genes these losses produced leads us to suggest that most of the purely selectively neutral duplicate gene losses occur in the immediate postpolyploid period. Nearly all of the events show strong evidence of biases in the duplicate losses, consistent with them being allopolyploidies, with 2 distinct progenitors contributing to the modern species. We also find ongoing and extensive reciprocal gene losses (alternative losses of duplicated ancestral genes) between these genomes. With the exception of a handful of closely related taxa, all of these polyploid organisms are separated from each other by tens to thousands of reciprocal gene losses. As a result, it is very unlikely that viable diploid hybrid species could form between these taxa, since matings between such hybrids would tend to produce offspring lacking essential genes. It is, therefore, possible that the relatively high frequency of recurrent polyploidies in some lineages may be due to the ability of new polyploidies to bypass reciprocal gene loss barriers.
Collapse
Affiliation(s)
- Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathon Fleming
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Joanna Petterson
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- International Plant Science Center, New York Botanical Garden, Bronx, NY 10458, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
20
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
21
|
Matsumoto S, Watanabe K, Kiyota H, Tachibana M, Shimizu T, Watarai M. Distinction of Paramecium strains by a combination method of RAPD analysis and multiplex PCR. PLoS One 2022; 17:e0265139. [PMID: 35275953 PMCID: PMC8916638 DOI: 10.1371/journal.pone.0265139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Paramecium is employed as a valuable model organism in various research fields since a large number of strains with different characteristics of size, morphology, degree of aging, and type of conjugation can be obtained. It is necessary to determine a method for the classification and simple identification of strains to increase their utility as a research tool. This study attempted to establish a polymerase chain reaction (PCR)-based method to differentiate strains of the same species. Genomic DNA was purified from several strains of P. caudatum, P. tetraurelia, and P. bursaria used for comparison by the random amplified polymorphic DNA (RAPD)-PCR method. In P. tetraurelia and P. bursaria, it was sufficiently possible to distinguish specific strains depending on the pattern of random primers and amplification characteristics. For the classification of P. caudatum, based on the sequence data obtained by RAPD-PCR analysis, 5 specific primer sets were designed and a multiplex PCR method was developed. The comparative analysis of 2 standard strains, 12 recommended strains, and 12 other strains of P. caudatum provided by the National BioResource Project was conducted, and specific strains were identified. This multiplex PCR method would be an effective tool for the simple identification of environmental isolates or the management of Paramecium strains.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenta Watanabe
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Kiyota
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masato Tachibana
- Joint Faculty of Veterinary Medicine, National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
22
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
23
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
25
|
Timouma S, Balarezo-Cisneros LN, Pinto J, De La Cerda R, Bond U, Schwartz JM, Delneri D. Transcriptional profile of the industrial hybrid Saccharomyces pastorianus reveals temperature-dependent allele expression bias and preferential orthologous protein assemblies. Mol Biol Evol 2021; 38:5437-5452. [PMID: 34550394 PMCID: PMC8662600 DOI: 10.1093/molbev/msab282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces pastorianus is a natural yeast evolved from different hybridization events between the mesophilic S. cerevisiae and the cold-tolerant S. eubayanus. This complex aneuploid hybrid carries multiple copies of the parental alleles alongside specific hybrid genes and encodes for multiple protein isoforms which impart novel phenotypes, such as the strong ability to ferment at low temperature. These characteristics lead to agonistic competition for substrates and a plethora of biochemical activities, resulting in a unique cellular metabolism. Here, we investigated the transcriptional signature of the different orthologous alleles in S. pastorianus during temperature shifts. We identified temperature-dependent media-independent genes and showed that 35% has their regulation dependent on extracellular leucine uptake, suggesting an interplay between leucine metabolism and temperature response. The analysis of the expression of ortholog parental alleles unveiled that the majority of the genes expresses preferentially one parental allele over the other and that S. eubayanus-like alleles are significantly over-represented among the genes involved in the cold acclimatization. The presence of functionally redundant parental alleles may impact on the nature of protein complexes established in the hybrid, where both parental alleles are competing. Our expression data indicate that the majority of the protein complexes investigated in the hybrid are likely to be either exclusively chimeric or unispecific and that the redundancy is discouraged, a scenario that fits well with the gene balance hypothesis. This study offers the first overview of the transcriptional pattern of S. pastorianus and provides a rationalization for its unique industrial traits at the expression level.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Javier Pinto
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Roberto De La Cerda
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T, Couloux A, Aury JM, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L, Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol 2021; 19:e3001309. [PMID: 34324490 PMCID: PMC8354472 DOI: 10.1371/journal.pbio.3001309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression. A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.
Collapse
Affiliation(s)
- Diamantis Sellis
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Frédéric Guérin
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Walker Pett
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Emmanuelle Lerat
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Nicole Boggetto
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sascha Krenek
- TU Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sophie Malinsky
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Paris, Paris, France
| | - Simran Bhullar
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Meyer
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laurent Duret
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- * E-mail: (LD); (SD)
| | - Sandra Duharcourt
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- * E-mail: (LD); (SD)
| |
Collapse
|
27
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
28
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. THE PLANT CELL 2021; 33:901-916. [PMID: 33656551 PMCID: PMC8226288 DOI: 10.1093/plcell/koab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/23/2021] [Indexed: 05/12/2023]
Abstract
The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
29
|
Silic MR, Black MM, Zhang G. Phylogenetic and developmental analyses indicate complex functions of calcium-activated potassium channels in zebrafish embryonic development. Dev Dyn 2021; 250:1477-1493. [PMID: 33728688 PMCID: PMC8518378 DOI: 10.1002/dvdy.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Maya M Black
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neuroscience; Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Sawka-Gądek N, Potekhin A, Singh DP, Grevtseva I, Arnaiz O, Penel S, Sperling L, Tarcz S, Duret L, Nekrasova I, Meyer E. Evolutionary Plasticity of Mating-Type Determination Mechanisms in Paramecium aurelia Sibling Species. Genome Biol Evol 2021; 13:evaa258. [PMID: 33313646 PMCID: PMC7900874 DOI: 10.1093/gbe/evaa258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Paramecium aurelia complex, a group of morphologically similar but sexually incompatible sibling species, is a unique example of the evolutionary plasticity of mating-type systems. Each species has two mating types, O (Odd) and E (Even). Although O and E types are homologous in all species, three different modes of determination and inheritance have been described: genetic determination by Mendelian alleles, stochastic developmental determination, and maternally inherited developmental determination. Previous work in three species of the latter kind has revealed the key roles of the E-specific transmembrane protein mtA and its highly specific transcription factor mtB: type O clones are produced by maternally inherited genome rearrangements that inactivate either mtA or mtB during development. Here we show, through transcriptome analyses in five additional species representing the three determination systems, that mtA expression specifies type E in all cases. We further show that the Mendelian system depends on functional and nonfunctional mtA alleles, and identify novel developmental rearrangements in mtA and mtB which now explain all cases of maternally inherited mating-type determination. Epistasis between these genes likely evolved from less specific interactions between paralogs in the P. aurelia common ancestor, after a whole-genome duplication, but the mtB gene was subsequently lost in three P. aurelia species which appear to have returned to an ancestral regulation mechanism. These results suggest a model accounting for evolutionary transitions between determination systems, and highlight the diversity of molecular solutions explored among sibling species to maintain an essential mating-type polymorphism in cell populations.
Collapse
Affiliation(s)
- Natalia Sawka-Gądek
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Deepankar Pratap Singh
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Inessa Grevtseva
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olivier Arnaiz
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Simon Penel
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Linda Sperling
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Laurent Duret
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Irina Nekrasova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
31
|
Lee JS, Adams KL. Global insights into duplicated gene expression and alternative splicing in polyploid Brassica napus under heat, cold, and drought stress. THE PLANT GENOME 2020; 13:e20057. [PMID: 33043636 DOI: 10.1002/tpg2.20057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/26/2020] [Accepted: 08/20/2020] [Indexed: 05/21/2023]
Abstract
Polyploidy has been a prevalent process during plant evolution and it has made a major impact on the structure and evolution of plant genomes. Many important crop plants are polyploid. There is considerable interest in expression patterns of duplicated genes in polyploids. Alternative splicing (AS) is a fundamental aspect of gene expression that produces multiple final transcript types from a single type of mRNAs. The effects of abiotic stress conditions on AS in polyploids has received little attention. We conducted a global transcriptome analysis of Brassica napus, an allotetraploid derived from B. rapa (AT ) and B. oleracea (CT ), by RNA-Seq of plants subjected to cold, heat, and drought stress treatments. Analyses of 27,360 pairs of duplicated genes revealed overall AT subgenome biases in gene expression and CT subgenome biases in the extent of alternative splicing under all three stress treatments. More genes increased in expression than decreased in response to the stresses. Negative correlations were found between expression levels and AS frequency for each type of AS. Cold stress produced the greatest changes in gene expression and AS. Cold-induced AS changes were more likely to be shared with those generated by drought than by heat stress. We used homeologs of FLC and CCA1 as case studies to show the dynamics of how duplicates in a polyploid respond to cold stress. Our results suggest that divergence in gene expression and AS patterns between duplicated genes may increase the flexibility of polyploids when responding to abiotic stressors.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
32
|
Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, Yan K, Xu X, Li S, Mao J, Wang Y, Jin S, Zhao X, Li Q. The Acer truncatum genome provides insights into nervonic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:662-678. [PMID: 32772482 PMCID: PMC7702125 DOI: 10.1111/tpj.14954] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/10/2023]
Abstract
Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high-quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole-genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long-chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27-Mb region of pseudochromosome 4. Our chromosome-scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tianlin Sun
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shushun Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Jing Wen
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Lu Zhu
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Kunyuan Yan
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Xiao Xu
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation CenterNanjing Forestry UniversityNanjing210037China
| | - Jianfeng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
| | - Ya‐nan Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Xing Zhao
- Novogene Bioinformatics InstituteBeijing100083China
| | - Qianzhong Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| |
Collapse
|
33
|
De Souza BA, Dias RJP, Senra MVX. Intrageneric evolutionary timing and hidden genetic diversity of Paramecium lineages (Ciliophora: Oligohymenophorea). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1769225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bianca Aline De Souza
- Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Roberto Junio Pedroso Dias
- Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Marcus Vinicius Xavier Senra
- Programa de Pós-graduação em Comportamento e Biologia Animal, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, CEP 37500-903, Minas Gerais, Brazil
| |
Collapse
|
34
|
Arnaiz O, Meyer E, Sperling L. ParameciumDB 2019: integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res 2020; 48:D599-D605. [PMID: 31733062 PMCID: PMC7145670 DOI: 10.1093/nar/gkz948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/28/2023] Open
Abstract
ParameciumDB (https://paramecium.i2bc.paris-saclay.fr) is a community model organism database for the genome and genetics of the ciliate Paramecium. ParameciumDB development relies on the GMOD (www.gmod.org) toolkit. The ParameciumDB web site has been publicly available since 2006 when the P. tetraurelia somatic genome sequence was released, revealing that a series of whole genome duplications punctuated the evolutionary history of the species. The genome is linked to available genetic data and stocks. ParameciumDB has undergone major changes in its content and website since the last update published in 2011. Genomes from multiple Paramecium species, especially from the P. aurelia complex, are now included in ParameciumDB. A new modern web interface accompanies this transition to a database for the whole Paramecium genus. Gene pages have been enriched with orthology relationships, among the Paramecium species and with a panel of model organisms across the eukaryotic tree. This update also presents expert curation of Paramecium mitochondrial genomes.
Collapse
Affiliation(s)
- Olivier Arnaiz
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence may also be addressed to Olivier Arnaiz.
| | - Eric Meyer
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Linda Sperling
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- To whom correspondence should be addressed.
| |
Collapse
|
35
|
Paramecium Diversity and a New Member of the Paramecium aurelia Species Complex Described from Mexico. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12050197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paramecium (Ciliophora) is an ideal model organism to study the biogeography of protists. However, many regions of the world, such as Central America, are still neglected in understanding Paramecium diversity. We combined morphological and molecular approaches to identify paramecia isolated from more than 130 samples collected from different waterbodies in several states of Mexico. We found representatives of six Paramecium morphospecies, including the rare species Paramecium jenningsi, and Paramecium putrinum, which is the first report of this species in tropical regions. We also retrieved five species of the Paramecium aurelia complex, and describe one new member of the complex, Paramecium quindecaurelia n. sp., which appears to be a sister species of Paramecium biaurelia. We discuss criteria currently applied for differentiating between sibling species in Paramecium. Additionally, we detected diverse bacterial symbionts in some of the collected ciliates.
Collapse
|
36
|
Conant GC. The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 2020; 15:e0231356. [PMID: 32298330 PMCID: PMC7161988 DOI: 10.1371/journal.pone.0231356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The ancestor of most teleost fishes underwent a whole-genome duplication event three hundred million years ago. Despite its antiquity, the effects of this event are evident both in the structure of teleost genomes and in how the surviving duplicated genes still operate to drive form and function. I inferred a set of shared syntenic regions that survive from the teleost genome duplication (TGD) using eight teleost genomes and the outgroup gar genome (which lacks the TGD). I then phylogenetically modeled the TGD's resolution via shared and independent gene losses and applied a new simulation-based statistical test for the presence of bias toward the preservation of genes from one parental subgenome. On the basis of that test, I argue that the TGD was likely an allopolyploidy. I find that duplicate genes surviving from this duplication in zebrafish are less likely to function in early embryo development than are genes that have returned to single copy at some point in this species' history. The tissues these ohnologs are expressed in, as well as their biological functions, lend support to recent suggestions that the TGD was the source of a morphological innovation in the structure of the teleost retina. Surviving duplicates also appear less likely to be essential than singletons, despite the fact that their single-copy orthologs in mouse are no less essential than other genes.
Collapse
Affiliation(s)
- Gavin C. Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
- Program in Genetics, North Carolina State University, Raleigh, NC, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
37
|
Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination. PLoS Genet 2020; 16:e1008723. [PMID: 32298257 PMCID: PMC7161955 DOI: 10.1371/journal.pgen.1008723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/19/2022] Open
Abstract
Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/β domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.
Collapse
|
38
|
Julca I, Marcet-Houben M, Cruz F, Vargas-Chavez C, Johnston JS, Gómez-Garrido J, Frias L, Corvelo A, Loska D, Cámara F, Gut M, Alioto T, Latorre A, Gabaldón T. Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha. Mol Biol Evol 2020; 37:730-756. [PMID: 31702774 PMCID: PMC7038657 DOI: 10.1093/molbev/msz261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a closely related clade to the aphids) and Coccoidea. We found that gene duplication has been pervasive throughout the evolution of aphids, including many parallel waves of recent, species-specific duplications. Most notably, we identified a consistent set of very ancestral duplications, originating from a large-scale gene duplication predating the diversification of Aphidomorpha (comprising aphids, phylloxerids, and adelgids). Genes duplicated in this ancestral wave are enriched in functions related to traits shared by Aphidomorpha, such as association with endosymbionts, and adaptation to plant defenses and phloem-sap-based diet. The ancestral nature of this duplication wave (106-227 Ma) and the lack of sufficiently conserved synteny make it difficult to conclude whether it originated from a whole-genome duplication event or, alternatively, from a burst of large-scale segmental duplications. Genome sequencing of other aphid species belonging to different Aphidomorpha and related lineages may clarify these findings.
Collapse
Affiliation(s)
- Irene Julca
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | | | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- New York Genome Center, New York, NY
| | - Damian Loska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Cámara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
- Joint Unit in Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO) and University of Valencia, Valencia, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
39
|
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, Prpic NM, Pisani D, Oda H, Sharma PP, McGregor AP. Homeobox Gene Duplication and Divergence in Arachnids. Mol Biol Evol 2020; 35:2240-2253. [PMID: 29924328 PMCID: PMC6107062 DOI: 10.1093/molbev/msy125] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Homeobox genes are key toolkit genes that regulate the development of metazoans and changes in their regulation and copy number have contributed to the evolution of phenotypic diversity. We recently identified a whole genome duplication (WGD) event that occurred in an ancestor of spiders and scorpions (Arachnopulmonata), and that many homeobox genes, including two Hox clusters, appear to have been retained in arachnopulmonates. To better understand the consequences of this ancient WGD and the evolution of arachnid homeobox genes, we have characterized and compared the homeobox repertoires in a range of arachnids. We found that many families and clusters of these genes are duplicated in all studied arachnopulmonates (Parasteatoda tepidariorum, Pholcus phalangioides, Centruroides sculpturatus, and Mesobuthus martensii) compared with nonarachnopulmonate arachnids (Phalangium opilio, Neobisium carcinoides, Hesperochernes sp., and Ixodes scapularis). To assess divergence in the roles of homeobox ohnologs, we analyzed the expression of P. tepidariorum homeobox genes during embryogenesis and found pervasive changes in the level and timing of their expression. Furthermore, we compared the spatial expression of a subset of P. tepidariorum ohnologs with their single copy orthologs in P. opilio embryos. We found evidence for likely subfunctionlization and neofunctionalization of these genes in the spider. Overall our results show a high level of retention of homeobox genes in spiders and scorpions post-WGD, which is likely to have made a major contribution to their developmental evolution and diversification through pervasive subfunctionlization and neofunctionalization, and paralleling the outcomes of WGD in vertebrates.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luís Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Natascha Turetzek
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Nikola-Michael Prpic
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
40
|
Tang C, Zhu X, Qiao X, Gao H, Li Q, Wang P, Wu J, Zhang S. Characterization of the pectin methyl-esterase gene family and its function in controlling pollen tube growth in pear (Pyrus bretschneideri). Genomics 2020; 112:2467-2477. [PMID: 32014523 DOI: 10.1016/j.ygeno.2020.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.
Collapse
Affiliation(s)
- Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Abstract
The root-knot nematodes of the genus Meloidogyne are important and damaging parasites capable of infecting most flowering plants. Within this genus, several species of the Meloidogyne incognita group show evidence of paleopolyploidy in their genomes. We used our software tool POInT, the Polyploidy Orthology Inference Tool, to phylogenetically model the gene losses that followed that polyploidy. These models, and simulations based on them, show that three of these species (M. incognita, M. arenaria and M. javanica) descend from a single common hybridization event that yielded triplicated genomes with three distinguishable subgenomes. While one of the three subgenomes shows elevated gene loss rates relative to the other two, this subgenome does not show elevated sequence divergence. In all three species, ancestral loci where two of the three gene copies have been lost are less likely to have orthologs in Caenorhabditis elegans that are lethal when knocked down than are ancestral loci with surviving duplicate copies.
Collapse
|
42
|
Miao Z, Zhang T, Qi Y, Song J, Han Z, Ma C. Evolution of the RNA N 6-Methyladenosine Methylome Mediated by Genomic Duplication. PLANT PHYSIOLOGY 2020; 182:345-360. [PMID: 31409695 PMCID: PMC6945827 DOI: 10.1104/pp.19.00323] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 05/19/2023]
Abstract
RNA N 6-methyladenosine (m6A) modification is the most abundant form of RNA epigenetic modification in eukaryotes. Given that m6A evolution is associated with the selective constraints of nucleotide sequences in mammalian genomes, we hypothesize that m6A evolution can be linked, at least in part, to genomic duplication events in complex polyploid plant genomes. To test this hypothesis, we presented the maize (Zea mays) m6A modification landscape in a transcriptome-wide manner and identified 11,968 m6A peaks carried by 5,893 and 3,811 genes from two subgenomes (maize1 and maize2, respectively). Each of these subgenomes covered over 2,200 duplicate genes. Within these duplicate genes, those carrying m6A peaks exhibited significant differences in retention rate. This biased subgenome fractionation of m6A-methylated genes is associated with multiple sequence features and is influenced by asymmetric evolutionary rates. We also characterized the coevolutionary patterns of m6A-methylated genes and transposable elements, which can be mediated by whole genome duplication and tandem duplication. We revealed the evolutionary conservation and divergence of duplicated m6A functional factors and the potential role of m6A modification in maize responses to drought stress. This study highlights complex interplays between m6A modification and gene duplication, providing a reference for understanding the mechanisms underlying m6A evolution mediated by genome duplication events.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Jie Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
43
|
Johri P, Marinov GK, Doak TG, Lynch M. Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. Genome Biol Evol 2019; 11:1398-1416. [PMID: 30980669 PMCID: PMC6505448 DOI: 10.1093/gbe/evz081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington
| | - Georgi K Marinov
- Department of Biology, Indiana University, Bloomington.,Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington.,Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
44
|
Loss of a Fragile Chromosome Region leads to the Screwy Phenotype in Paramecium tetraurelia. Genes (Basel) 2019; 10:genes10070513. [PMID: 31284605 PMCID: PMC6679132 DOI: 10.3390/genes10070513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/03/2023] Open
Abstract
A conspicuous cell-shape phenotype known as “screwy” was reported to result from mutations at two or three uncharacterized loci in the ciliate Paramecium tetraurelia. Here, we describe a new screwy mutation, Spinning Top, which appeared spontaneously in the cross of an unrelated mutant with reference strain 51. The macronuclear (MAC) genome of the Spinning Top mutant is shown to lack a ~28.5-kb segment containing 18 genes at the end of one chromosome, which appears to result from a collinear deletion in the micronuclear (MIC) genome. We tested several candidate genes from the deleted locus by dsRNA-induced silencing in wild-type cells, and identified a single gene responsible for the phenotype. This gene, named Spade, encodes a 566-aa glutamine-rich protein with a C2HC zinc finger. Its silencing leads to a fast phenotype switch during vegetative growth, but cells recover a wild-type phenotype only 5–6 divisions after silencing is stopped. We analyzed 5 independently-obtained mutant alleles of the Sc1 locus, and concluded that all of them also lack the Spade gene and a number of neighboring genes in the MAC and MIC genomes. Mapping of the MAC deletion breakpoints revealed two different positions among the 5 alleles, both of which differ from the Spinning Top breakpoint. These results suggest that this MIC chromosome region is intrinsically unstable in strain 51.
Collapse
|
45
|
Magic Traits in Magic Fish: Understanding Color Pattern Evolution Using Reef Fish. Trends Genet 2019; 35:265-278. [DOI: 10.1016/j.tig.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
46
|
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 2019; 20:38. [PMID: 30791939 PMCID: PMC6383267 DOI: 10.1186/s13059-019-1650-2] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. RESULTS We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events-transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. CONCLUSIONS We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605 USA
| |
Collapse
|
47
|
Feulner PGD, De-Kayne R. Genome evolution, structural rearrangements and speciation. J Evol Biol 2018; 30:1488-1490. [PMID: 28786195 DOI: 10.1111/jeb.13101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- P G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - R De-Kayne
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Przyboś E, Rautian M, Beliavskaia A, Tarcz S. Evaluation of the molecular variability and characteristics of Paramecium polycaryum and Paramecium nephridiatum, within subgenus Cypriostomum (Ciliophora, Protista). Mol Phylogenet Evol 2018; 132:296-306. [PMID: 30528084 DOI: 10.1016/j.ympev.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Although some Paramecium species are suitable research objects in many areas of life sciences, the biodiversity structure of other species is almost unknown. In the current survey, we present a molecular analysis of 60 Cypriostomum strains, which for the first time allows for the study of intra- and interspecific relationships within that subgenus, as well as the assessment of the biogeography patterns of its morphospecies. Analysis of COI mtDNA variation revealed three main clades (separated from each other by approximately 130 nucleotide substitutions), each one with internal sub-clusters (differing by 30 to 70 substitutions - a similar range found between P. aurelia cryptic species and P. bursaria syngens). The first clade is represented exclusively by P. polycaryum; the second one includes only four strains identified as P. calkinsi. The third cluster seems to be paraphyletic, as it includes P. nephridiatum, P. woodruffi, and Eucandidatus P. hungarianum. Some strains, previously identified as P. calkinsi, had COI sequences identical or very similar to P. nephridiatum ones. Morphological reinvestigation of several such strains revealed common morphological features with P. nephridiatum. The paper contains new information concerning speciation within particular species, i.e. existence of cryptic species within P. polycaryum (three) and in P. nephridiatum (six).
Collapse
Affiliation(s)
- Ewa Przyboś
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Maria Rautian
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexandra Beliavskaia
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland.
| |
Collapse
|
49
|
Furman BLS, Dang UJ, Evans BJ, Golding GB. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J Evol Biol 2018; 31:1945-1958. [DOI: 10.1111/jeb.13391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 12/22/2022]
Affiliation(s)
| | - Utkarsh J. Dang
- Department of Health Outcomes and Administrative Sciences; School of Pharmacy and Pharmaceutical Sciences; Binghamton University; State University of New York; Binghamton NY USA
| | - Ben J. Evans
- Department of Biology; McMaster University; Hamilton ON Canada
| | | |
Collapse
|
50
|
|