1
|
Ahmad A, Zhang W. Genomic exploration of retrocopies in Insect pests of plants and their role in the expansion of heat shock proteins superfamily as evolutionary targets. BMC Genomics 2024; 25:1116. [PMID: 39567882 PMCID: PMC11577761 DOI: 10.1186/s12864-024-11056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene duplication is a dominant mechanism for the evolution of genomes and plays a key role in genome expansion. Gene duplication via retroposition produces RNA-mediated intron-less copies called retrocopies, that may gain regulatory sequence and biological function to generate retrogenes. Retrocopies dynamics have been reported in several model insect species, but there is still a huge knowledge gap about retrocopies dynamics in most insects, and their role in adaptation. RESULTS In this study, we reported retrocopy dynamics in 40 species of insect pests of plants belonging to six insect orders. We identified a total of 9,930 retrocopies, which is so far the largest set of retrocopies identified in insects. The identified retrocopies were further grouped into 2,599 Retrogenes, 4,578 Chimeras, 1,241 Intact retrocopies, and 1,512 Pseudogene. We also analyzed all the identified retrogenes that were annotated into 506 gene families. The highest number of retrogenes annotated belong to the heat shock proteins superfamily and are present across all the 40 species from the six orders. We found a significant expansion of the heat shock protein superfamily in the studied species. Almost all the retrogenes, including those belonging to heat shock proteins, are under purifying selection. In summary, we report the retrocopies and retrogenes dynamics in a large set of insect pests of plants and the expansion of the heat shock protein family due to retroposition. CONCLUSION This study unveils retrocopy dynamics in the insect pests of plants and highlights the evolution of new genes due to retroposition, and their role in important gene families' expansion.
Collapse
Affiliation(s)
- Aftab Ahmad
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenyu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, de Freitas Sousa J, Chen Z, Jacinto S, Kvon EZ, Correa de Oliveira LR, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 2024; 634:96-103. [PMID: 39143221 PMCID: PMC11514621 DOI: 10.1038/s41586-024-07830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Pippel
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Brown
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jing Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Zhuoxin Chen
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | | | - Erika Monteiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Domitille Chalopin
- Institute of Cellular Biochemistry and Genetics, CNRS, University of Bordeaux, Bordeaux, France
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eugene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center of Systems Biology Dresden, Dresden, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Igor Schneider
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567139. [PMID: 38045239 PMCID: PMC10690195 DOI: 10.1101/2023.11.14.567139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans due to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, our research shows a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Notably, young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes due to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potentials for phenotypic innovation in young genes compared to older genes, a process that is subject to natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| |
Collapse
|
4
|
Conceição HB, Mercuri RLV, de Castro MPM, Ohara DT, Guardia GDA, Galante PAF. RCPedia: a global resource for studying and exploring retrocopies in diverse species. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae530. [PMID: 39240653 PMCID: PMC11387616 DOI: 10.1093/bioinformatics/btae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
MOTIVATION Gene retrocopies arise from the reverse transcription and genomic insertion of processed mRNA transcripts. These elements have significantly contributed to genetic diversity and novelties throughout the evolution of many species. However, the study of retrocopies has been challenging, owing to the absence of comprehensive, complete, and user-friendly databases for diverse species. RESULTS Here, we introduce an improved version of RCPedia, an integrative database meticulously designed for the study of retrocopies. RCPedia offers an extensive catalog of retrocopies identified across 44 species, which includes 13 primates, 4 rodents, 6 chiropterans, 12 other mammals, 4 birds, turtles, lizards, frogs, zebrafish, and Drosophila. The database offers the most complete compilation of retrocopies per species, accompanied by detailed genomic annotations, expression data, and links to other data portals. Furthermore, RCPedia features a streamlined representation of data and an efficient querying system, establishing it as an invaluable tool for researchers in the fields of genomics, evolutionary biology, and transposable elements (TEs). In summary, RCPedia aims to enhance the investigation of retrocopies and their pivotal roles in shaping the genomic landscapes of diverse species. AVAILABILITY AND IMPLEMENTATION RCPedia is available at https://www.rcpediadb.org.
Collapse
Affiliation(s)
- Helena B Conceição
- Hospital Sirio-Libanes, São Paulo 01308-060, Brazil
- Interunidades em Bioinformática, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Rafael L V Mercuri
- Hospital Sirio-Libanes, São Paulo 01308-060, Brazil
- Interunidades em Bioinformática, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Matheus P M de Castro
- Hospital Sirio-Libanes, São Paulo 01308-060, Brazil
- Department of Biochemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | | | | |
Collapse
|
5
|
Kozłowska-Masłoń J, Ciomborowska-Basheer J, Kubiak MR, Makałowska I. Evolution of retrocopies in the context of HUSH silencing. Biol Direct 2024; 19:60. [PMID: 39095906 PMCID: PMC11295320 DOI: 10.1186/s13062-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Retrotransposition is one of the main factors responsible for gene duplication and thus genome evolution. However, the sequences that undergo this process are not only an excellent source of biological diversity, but in certain cases also pose a threat to the integrity of the DNA. One of the mechanisms that protects against the incorporation of mobile elements is the HUSH complex, which is responsible for silencing long, intronless, transcriptionally active transposed sequences that are rich in adenine on the sense strand. In this study, broad sets of human and porcine retrocopies were analysed with respect to the above factors, taking into account evolution of these molecules. Analysis of expression pattern, genomic structure, transcript length, and nucleotide substitution frequency showed the strong relationship between the expression level and exon length as well as the protective nature of introns. The results of the studies also showed that there is no direct correlation between the expression level and adenine content. However, protein-coding retrocopies, which have a lower adenine content, have a significantly higher expression level than the adenine-rich non-coding but expressed retrocopies. Therefore, although the mechanism of HUSH silencing may be an important part of the regulation of retrocopy expression, it is one component of a more complex molecular network that remains to be elucidated.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, Poznań, Poland
| | - Joanna Ciomborowska-Basheer
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Magdalena Regina Kubiak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland.
| |
Collapse
|
6
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
7
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
8
|
Hannon Bozorgmehr J. Four classic "de novo" genes all have plausible homologs and likely evolved from retro-duplicated or pseudogenic sequences. Mol Genet Genomics 2024; 299:6. [PMID: 38315248 DOI: 10.1007/s00438-023-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/15/2023] [Indexed: 02/07/2024]
Abstract
Despite being previously regarded as extremely unlikely, the idea that entirely novel protein-coding genes can emerge from non-coding sequences has gradually become accepted over the past two decades. Examples of "de novo origination", resulting in lineage-specific "orphan" genes, lacking coding orthologs, are now produced every year. However, many are likely cases of duplicates that are difficult to recognize. Here, I re-examine the claims and show that four very well-known examples of genes alleged to have emerged completely "from scratch"- FLJ33706 in humans, Goddard in fruit flies, BSC4 in baker's yeast and AFGP2 in codfish-may have plausible evolutionary ancestors in pre-existing genes. The first two are likely highly diverged retrogenes coding for regulatory proteins that have been misidentified as orphans. The antifreeze glycoprotein, moreover, may not have evolved from repetitive non-genic sequences but, as in several other related cases, from an apolipoprotein that could have become pseudogenized before later being reactivated. These findings detract from various claims made about de novo gene birth and show there has been a tendency not to invest the necessary effort in searching for homologs outside of a very limited syntenic or phylostratigraphic methodology. A robust approach is used for improving detection that draws upon similarities, not just in terms of statistical sequence analysis, but also relating to biochemistry and function, to obviate notable failures to identify homologs.
Collapse
|
9
|
Gill ME, Rohmer A, Erkek-Ozhan S, Liang CY, Chun S, Ozonov EA, Peters AHFM. De novo transcriptome assembly of mouse male germ cells reveals novel genes, stage-specific bidirectional promoter activity, and noncoding RNA expression. Genome Res 2023; 33:2060-2078. [PMID: 38129075 PMCID: PMC10760527 DOI: 10.1101/gr.278060.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/29/2023] [Indexed: 12/23/2023]
Abstract
In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.
Collapse
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alexia Rohmer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serap Erkek-Ozhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Ching-Yeu Liang
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Sunwoo Chun
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
10
|
Yan Y, Tian Y, Wu Z, Zhang K, Yang R. Interchromosomal Colocalization with Parental Genes Is Linked to the Function and Evolution of Mammalian Retrocopies. Mol Biol Evol 2023; 40:msad265. [PMID: 38060983 PMCID: PMC10733166 DOI: 10.1093/molbev/msad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of 3D genome organization. By mapping retrocopy-parent pairs onto sequencing-based and imaging-based chromatin contact maps in human and mouse cell lines and onto Hi-C interaction maps in 5 other mammals, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis of retroposed gene copy number variants in human populations revealed that retrocopy insertions are not entirely random in regard to interchromosomal interactions and that colocalized retroposed gene copy number variants are more likely to reach high frequencies, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroposed gene copy number variants. Overall, our results hint a role of interchromosomal colocalization in the "resurrection" of initially neutral retrocopies.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunling Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
12
|
Mulhair PO, Crowley L, Boyes DH, Lewis OT, Holland PWH. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mol Biol Evol 2023; 40:msad241. [PMID: 37935057 PMCID: PMC10642689 DOI: 10.1093/molbev/msad241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
13
|
Mercuri RLV, Conceição HB, Guardia GDA, Goldstein G, Vibranovski MD, Hinske LC, Galante PAF. Retro-miRs: novel and functional miRNAs originating from mRNA retrotransposition. Mob DNA 2023; 14:12. [PMID: 37684690 PMCID: PMC10486083 DOI: 10.1186/s13100-023-00301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.
Collapse
Affiliation(s)
- Rafael L V Mercuri
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Helena B Conceição
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | - Gabriel Goldstein
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Ludwig C Hinske
- Institute for Digital Medicine/Clinic of Anaesthesiology, University of Augsburg, Augsburg, Germany
| | | |
Collapse
|
14
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Sanejouand YH. On the Unknown Proteins of Eukaryotic Proteomes. J Mol Evol 2023:10.1007/s00239-023-10116-1. [PMID: 37219573 DOI: 10.1007/s00239-023-10116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
To study unknown proteins on a large scale, a reference system has been set up for the three better studied eukaryotic kingdoms, built with 36 proteomes as taxonomically diverse as possible. Proteins from 362 other eukaryotic proteomes with no known homologue in this set were then analyzed, focusing noteworthy on singletons, that is, on such proteins with no known homologue in their own proteome. Consistently, for a given species, no more than 12% of the singletons thus found are known at the protein level, according to Uniprot. In addition, since they rely on the information found in the alignment of homologous sequences, predictions of AlphaFold2 for their tridimensional structure are poor. In the case of metazoan species, the number of singletons rarely exceeds 1000 for the species the closest to the reference system (divergence times below 75 Myr). Interestingly, in the cases of viridiplantae and fungi, larger amounts of singletons are found for such species, as if the timescale on which singletons are added to proteomes were different in metazoa and in other eukaryotic kingdoms. In order to confirm this phenomenon, further studies of proteomes closer to those of the reference system are, however, needed.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- US2B, UMR 6286 of CNRS, Nantes University, rue de la Houssinière, 44322, Nantes, France.
| |
Collapse
|
16
|
Ryan CJ, Mehta I, Kebabci N, Adams DJ. Targeting synthetic lethal paralogs in cancer. Trends Cancer 2023; 9:397-409. [PMID: 36890003 DOI: 10.1016/j.trecan.2023.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023]
Abstract
Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.
Collapse
Affiliation(s)
- Colm J Ryan
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland.
| | - Ishan Mehta
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Narod Kebabci
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Science Foundation Ireland (SFI) Centre for Research Training in Genomics Data Science, University College Dublin, Dublin, Ireland
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
17
|
Fraimovitch E, Hagai T. Promoter evolution of mammalian gene duplicates. BMC Biol 2023; 21:80. [PMID: 37055747 PMCID: PMC10100218 DOI: 10.1186/s12915-023-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Gene duplication is thought to be a central process in evolution to gain new functions. The factors that dictate gene retention following duplication as well paralog gene divergence in sequence, expression and function have been extensively studied. However, relatively little is known about the evolution of promoter regions of gene duplicates and how they influence gene duplicate divergence. Here, we focus on promoters of paralog genes, comparing their similarity in sequence, in the sets of transcription factors (TFs) that bind them, and in their overall promoter architecture. RESULTS We observe that promoters of recent duplications display higher sequence similarity between them and that sequence similarity rapidly declines between promoters of more ancient paralogs. In contrast, similarity in cis-regulation, as measured by the set of TFs that bind promoters of both paralogs, does not simply decrease with time from duplication and is instead related to promoter architecture-paralogs with CpG Islands (CGIs) in their promoters share a greater fraction of TFs, while CGI-less paralogs are more divergent in their TF binding set. Focusing on recent duplication events and partitioning them by their duplication mechanism enables us to uncover promoter properties associated with gene retention, as well as to characterize the evolution of promoters of newly born genes: In recent retrotransposition-mediated duplications, we observe asymmetry in cis-regulation of paralog pairs: Retrocopy genes are lowly expressed and their promoters are bound by fewer TFs and are depleted of CGIs, in comparison with the original gene copy. Furthermore, looking at recent segmental duplication regions in primates enable us to compare successful retentions versus loss of duplicates, showing that duplicate retention is associated with fewer TFs and with CGI-less promoter architecture. CONCLUSIONS In this work, we profiled promoters of gene duplicates and their inter-paralog divergence. We also studied how their characteristics are associated with duplication time and duplication mechanism, as well as with the fate of these duplicates. These results underline the importance of cis-regulatory mechanisms in shaping the evolution of new genes and their fate following duplication.
Collapse
Affiliation(s)
- Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
18
|
Seczynska M, Lehner PJ. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet 2023; 39:251-267. [PMID: 36754727 DOI: 10.1016/j.tig.2022.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
The vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution. In this review, we summarize recent insights into HUSH function and describe how cellular introns provide a novel means of self-nonself discrimination, allowing HUSH to recognize and transcriptionally repress a broad range of intronless genetic elements. We discuss how HUSH contributes to genome evolution, and highlight studies reporting the critical role of HUSH in development and implicating HUSH in the control of immune signaling and cancer progression.
Collapse
Affiliation(s)
- Marta Seczynska
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
19
|
Eckhart L, Sipos W. Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals. Vaccines (Basel) 2023; 11:vaccines11020419. [PMID: 36851296 PMCID: PMC9964502 DOI: 10.3390/vaccines11020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
One of the main mechanisms of inducing an antiviral response depends on 2'-5'-oligoadenylate synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L. Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important modifiers of the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of OAS genes in other species of mammals and to establish a model for the diversifying evolution of the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may affect innate immune responses to coronaviruses and other RNA viruses.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
20
|
Amici DR, Cingoz H, Alasady MJ, Alhayek S, Phoumyvong CM, Sahni N, Yi SS, Mendillo ML. The HAPSTR2 retrogene buffers stress signaling and resilience in mammals. Nat Commun 2023; 14:152. [PMID: 36631436 PMCID: PMC9834230 DOI: 10.1038/s41467-022-35697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Collapse
Affiliation(s)
- David R Amici
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Harun Cingoz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Milad J Alasady
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Sammy Alhayek
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Claire M Phoumyvong
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marc L Mendillo
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
| |
Collapse
|
21
|
Gabrielli F, Antinucci M, Tofanelli S. Gene Structure Evolution of the Short-Chain Dehydrogenase/Reductase (SDR) Family. Genes (Basel) 2022; 14:110. [PMID: 36672851 PMCID: PMC9859523 DOI: 10.3390/genes14010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SDR (Short-chain Dehydrogenases/Reductases) are one of the oldest and heterogeneous superfamily of proteins, whose classification is problematic because of the low percent identity, even within families. To get clearer insights into SDR molecular evolution, we explored the splicing site organization of the 75 human SDR genes across their vertebrate and invertebrate orthologs. We found anomalous gene structures in members of the human SDR7C and SDR42E families that provide clues of retrogene properties and independent evolutionary trajectories from a common invertebrate ancestor. The same analyses revealed that the identity value between human and invertebrate non-allelic variants is not necessarily associated with the homologous gene structure. Accordingly, a revision of the SDR nomenclature is proposed by including the human SDR40C1 and SDR7C gene in the same family.
Collapse
Affiliation(s)
- Franco Gabrielli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| | - Marco Antinucci
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Sergio Tofanelli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| |
Collapse
|
22
|
Qian SH, Chen L, Xiong YL, Chen ZX. Evolution and function of developmentally dynamic pseudogenes in mammals. Genome Biol 2022; 23:235. [PMID: 36348461 PMCID: PMC9641868 DOI: 10.1186/s13059-022-02802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Pseudogenes are excellent markers for genome evolution, which are emerging as crucial regulators of development and disease, especially cancer. However, systematic functional characterization and evolution of pseudogenes remain largely unexplored. RESULTS To systematically characterize pseudogenes, we date the origin of human and mouse pseudogenes across vertebrates and observe a burst of pseudogene gain in these two lineages. Based on a hybrid sequencing dataset combining full-length PacBio sequencing, sample-matched Illumina sequencing, and public time-course transcriptome data, we observe that abundant mammalian pseudogenes could be transcribed, which contribute to the establishment of organ identity. Our analyses reveal that developmentally dynamic pseudogenes are evolutionarily conserved and show an increasing weight during development. Besides, they are involved in complex transcriptional and post-transcriptional modulation, exhibiting the signatures of functional enrichment. Coding potential evaluation suggests that 19% of human pseudogenes could be translated, thus serving as a new way for protein innovation. Moreover, pseudogenes carry disease-associated SNPs and conduce to cancer transcriptome perturbation. CONCLUSIONS Our discovery reveals an unexpectedly high abundance of mammalian pseudogenes that can be transcribed and translated, and these pseudogenes represent a novel regulatory layer. Our study also prioritizes developmentally dynamic pseudogenes with signatures of functional enrichment and provides a hybrid sequencing dataset for further unraveling their biological mechanisms in organ development and carcinogenesis in the future.
Collapse
Affiliation(s)
- Sheng Hu Qian
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070 PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Lu Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070 PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Yu-Li Xiong
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070 PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070 PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
- Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518124 PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124 PR China
| |
Collapse
|
23
|
Simpson J, Kozak CA, Boso G. Cross-species transmission of an ancient endogenous retrovirus and convergent co-option of its envelope gene in two mammalian orders. PLoS Genet 2022; 18:e1010458. [PMID: 36240227 PMCID: PMC9604959 DOI: 10.1371/journal.pgen.1010458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.
Collapse
Affiliation(s)
- J’Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
24
|
Jayaraman V, Toledo‐Patiño S, Noda‐García L, Laurino P. Mechanisms of protein evolution. Protein Sci 2022; 31:e4362. [PMID: 35762715 PMCID: PMC9214755 DOI: 10.1002/pro.4362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Abstract
How do proteins evolve? How do changes in sequence mediate changes in protein structure, and in turn in function? This question has multiple angles, ranging from biochemistry and biophysics to evolutionary biology. This review provides a brief integrated view of some key mechanistic aspects of protein evolution. First, we explain how protein evolution is primarily driven by randomly acquired genetic mutations and selection for function, and how these mutations can even give rise to completely new folds. Then, we also comment on how phenotypic protein variability, including promiscuity, transcriptional and translational errors, may also accelerate this process, possibly via "plasticity-first" mechanisms. Finally, we highlight open questions in the field of protein evolution, with respect to the emergence of more sophisticated protein systems such as protein complexes, pathways, and the emergence of pre-LUCA enzymes.
Collapse
Affiliation(s)
- Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Saacnicteh Toledo‐Patiño
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Lianet Noda‐García
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
25
|
Miller D, Chen J, Liang J, Betrán E, Long M, Sharakhov IV. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes. Genes (Basel) 2022; 13:genes13060968. [PMID: 35741730 PMCID: PMC9222922 DOI: 10.3390/genes13060968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Genes that originate during evolution are an important source of novel biological functions. Retrogenes are functional copies of genes produced by retroduplication and as such are located in different genomic positions. To investigate retroposition patterns and retrogene expression, we computationally identified interchromosomal retroduplication events in nine portions of the phylogenetic history of malaria mosquitoes, making use of species that do or do not have classical sex chromosomes to test the roles of sex-linkage. We found 40 interchromosomal events and a significant excess of retroduplications from the X chromosome to autosomes among a set of young retrogenes. These young retroposition events occurred within the last 100 million years in lineages where all species possessed differentiated sex chromosomes. An analysis of available microarray and RNA-seq expression data for Anopheles gambiae showed that many of the young retrogenes evolved male-biased expression in the reproductive organs. Young autosomal retrogenes with increased meiotic or postmeiotic expression in the testes tend to be male biased. In contrast, older retrogenes, i.e., in lineages with undifferentiated sex chromosomes, do not show this particular chromosomal bias and are enriched for female-biased expression in reproductive organs. Our reverse-transcription PCR data indicates that most of the youngest retrogenes, which originated within the last 47.6 million years in the subgenus Cellia, evolved non-uniform expression patterns across body parts in the males and females of An. coluzzii. Finally, gene annotation revealed that mitochondrial function is a prominent feature of the young autosomal retrogenes. We conclude that mRNA-mediated gene duplication has produced a set of genes that contribute to mosquito reproductive functions and that different biases are revealed after the sex chromosomes evolve. Overall, these results suggest potential roles for the evolution of meiotic sex chromosome inactivation in males and of sexually antagonistic conflict related to mitochondrial energy function as the main selective pressures for X-to-autosome gene reduplication and testis-biased expression in these mosquito lineages.
Collapse
Affiliation(s)
- Duncan Miller
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
- Correspondence: (M.L.); (I.V.S.)
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
- Department of Genetics and Cell Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.L.); (I.V.S.)
| |
Collapse
|
26
|
Chang CH. Correlated Expression of the Opsin Retrogene LWS-R and its Host Gene in Two Poeciliid Fishes. Zool Stud 2022; 61:e16. [PMID: 36330033 PMCID: PMC9579955 DOI: 10.6620/zs.2022.61-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/22/2022] [Indexed: 06/16/2023]
Abstract
The important role of retrogenes in genome evolution and species differentiation is becoming increasingly accepted. One synapomorphy among cyprinodontoid fish is a retrotransposed version of a long-wavelength sensitive (LWS) opsin gene, LWS-R, within an intron of the gephyrin (GPHN) gene. These two genes display opposing orientations. It had been speculated that LWS-R hijacks the cis-regulatory elements of GPHN for transcription, but whether their expression is correlated had remained unclear. Here, in silico predictions identified putative promoters upstream of the translation start site of LWS-R, indicating that its transcription is driven by its own promoter rather than by the GPHN promoter. However, consistent expression ratios of LWS-R:GPHN in the eyeball and brain of fishes indicate that the respective gene transcriptions are correlated. Co-expression is potentially modulated by histone exchange during GPHN transcription. Two isoforms were detected in this study, i.e., intron-free and intron-retaining. Intron-free LWS-R was only expressed in the eyeball of fishes, whereas intron-retaining LWS-R occurred in both eyeball and brain. Expression of vision-associated LWS-R beyond the eyeball supports that it is co-expressed with more ubiquitous GPHN.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Science Education, National Taipei University of Education, No.134, Sec.2, Heping E. Rd., Da'an District, Taipei City 10671, Taiwan. E-mail: (Chang)
| |
Collapse
|
27
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
28
|
Skobel O, Kosovsky G, Glazko V. Candidate vectors of horizontal transfer of BovB retrotransposon. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224301014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The horizontal transfer of retrotransposons has a significant impact on the regulatory system of a multicellular organism, but the biological basis of horizontal transfer has been sufficiently studied up to date. Earlier, we identified the conserved sequence of retrotransposons recombination products of the bovine chromosome 1 nucleotide sequence region. This conserved sequence has a high percent identity with LINE BovB, which is widely known as horizontal transfer participant. The current study analyzes the presence of the conserved sequence of retrotransposons recombination products of cattle in members of different taxonomic groups to detect potential vectors of horizontal transfer. It was shown that the conserved sequence with a high percent identity can be found in 43 members of different species, including eukaryotes, prokaryotes and viruses. The identified potential vectors of horizontal retrotransposon transfer associated with various diseases of farm animals are of particular interest. Such potential vectors are hemiparasites Babesia ovata and Babesia bigemina (pathogens causing babesiosis), bacterium Clostridium botulinum (the causative agent of botulism), Jaagsiekte sheep retrovirus (the causative agent of lung cancer in sheep). They all have regions with a high percent identity (not lower than 95%) to the studied bovine conserved sequence. Thus, we identify new potential vectors of horizontal retrotransposon transfer as well as the possible influence of retrotransposons on regulatory networks affecting host protection from infectious diseases.
Collapse
|
29
|
Zhang W, Tautz D. Tracing the origin and evolutionary fate of recent gene retrocopies in natural populations of the house mouse. Mol Biol Evol 2021; 39:6481550. [PMID: 34940842 PMCID: PMC8826619 DOI: 10.1093/molbev/msab360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although the contribution of retrogenes to the evolution of genes and genomes has long been recognized, the evolutionary patterns of very recently derived retrocopies that are still polymorphic within natural populations have not been much studied so far. We use here a set of 2,025 such retrocopies in nine house mouse populations from three subspecies (Mus musculus domesticus, M. m. musculus, and M. m. castaneus) to trace their origin and evolutionary fate. We find that ancient house-keeping genes are significantly more likely to generate retrocopies than younger genes and that the propensity to generate a retrocopy depends on its level of expression in the germline. Although most retrocopies are detrimental and quickly purged, we focus here on the subset that appears to be neutral or even adaptive. We show that retrocopies from X-chromosomal parental genes have a higher likelihood to reach elevated frequencies in the populations, confirming the notion of adaptive effects for “out-of-X” retrogenes. Also, retrocopies in intergenic regions are more likely to reach higher population frequencies than those in introns of genes, implying a more detrimental effect when they land within transcribed regions. For a small subset of retrocopies, we find signatures of positive selection, indicating they were involved in a recent adaptation process. We show that the population-specific distribution pattern of retrocopies is phylogenetically informative and can be used to infer population history with a better resolution than with SNP markers.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, D-24306, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, D-24306, Germany
| |
Collapse
|
30
|
Aldalaqan S, Dalgliesh C, Luzzi S, Siachisumo C, Reynard LN, Ehrmann I, Elliott DJ. Cryptic splicing: common pathological mechanisms involved in male infertility and neuronal diseases. Cell Cycle 2021; 21:219-227. [PMID: 34927545 PMCID: PMC8855859 DOI: 10.1080/15384101.2021.2015672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a “guardian of the transcriptome” that protects against the use of aberrant (or “cryptic”) splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer’s disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.
Collapse
Affiliation(s)
- Saad Aldalaqan
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Caroline Dalgliesh
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Sara Luzzi
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Chileleko Siachisumo
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Louise N Reynard
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Ingrid Ehrmann
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - David J Elliott
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| |
Collapse
|
31
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
32
|
Xia S, Ventura IM, Blaha A, Sgromo A, Han S, Izaurralde E, Long M. Rapid Gene evolution in an ancient post-transcriptional and translational regulatory system compensates for meiotic X chromosomal inactivation. Mol Biol Evol 2021; 39:6385248. [PMID: 34626117 PMCID: PMC8763131 DOI: 10.1093/molbev/msab296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is conventionally assumed that conserved pathways evolve slowly with little participation of gene evolution. Nevertheless, it has been recently observed that young genes can take over fundamental functions in essential biological processes, for example, development and reproduction. It is unclear how newly duplicated genes are integrated into ancestral networks and reshape the conserved pathways of important functions. Here, we investigated origination and function of two autosomal genes that evolved recently in Drosophila: Poseidon and Zeus, which were created by RNA-based duplications from the X-linked CAF40, a subunit of the conserved CCR4–NOT deadenylase complex involved in posttranscriptional and translational regulation. Knockdown and knockout assays show that the two genes quickly evolved critically important functions in viability and male fertility. Moreover, our transcriptome analysis demonstrates that the three genes have a broad and distinct effect in the expression of hundreds of genes, with almost half of the differentially expressed genes being perturbed exclusively by one paralog, but not the others. Co-immunoprecipitation and tethering assays show that the CAF40 paralog Poseidon maintains the ability to interact with the CCR4–NOT deadenylase complex and might act in posttranscriptional mRNA regulation. The rapid gene evolution in the ancient posttranscriptional and translational regulatory system may be driven by evolution of sex chromosomes to compensate for the meiotic X chromosomal inactivation (MXCI) in Drosophila.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology & Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Iuri M Ventura
- Department of Ecology & Evolution, The University of Chicago, Chicago, Illinois, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - Andreas Blaha
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuaibo Han
- Department of Ecology & Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manyuan Long
- Department of Ecology & Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Troskie RL, Faulkner GJ, Cheetham SW. Processed pseudogenes: A substrate for evolutionary innovation: Retrotransposition contributes to genome evolution by propagating pseudogene sequences with rich regulatory potential throughout the genome. Bioessays 2021; 43:e2100186. [PMID: 34569081 DOI: 10.1002/bies.202100186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022]
Abstract
Processed pseudogenes may serve as a genetic reservoir for evolutionary innovation. Here, we argue that through the activity of long interspersed element-1 retrotransposons, processed pseudogenes disperse coding and noncoding sequences rich with regulatory potential throughout the human genome. While these sequences may appear to be non-functional, a lack of contemporary function does not prohibit future development of biological activity. Here, we discuss the dynamic evolution of certain processed pseudogenes into coding and noncoding genes and regulatory elements, and their implication in wide-ranging biological and pathological processes. Also see the video abstract here: https://youtu.be/iUY_mteVoPI.
Collapse
Affiliation(s)
- Robin-Lee Troskie
- Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, Australia
| |
Collapse
|
34
|
Wei Z, Sun J, Li Q, Yao T, Zeng H, Wang Y. RetroScan: An Easy-to-Use Pipeline for Retrocopy Annotation and Visualization. Front Genet 2021; 12:719204. [PMID: 34484306 PMCID: PMC8415311 DOI: 10.3389/fgene.2021.719204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Retrocopies, which are considered “junk genes,” are occasionally formed via the insertion of reverse-transcribed mRNAs at new positions in the genome. However, an increasing number of recent studies have shown that some retrocopies exhibit new biological functions and may contribute to genome evolution. Hence, the identification of retrocopies has become very meaningful for studying gene duplication and new gene generation. Current pipelines identify retrocopies through complex operations using alignment programs and filter scripts in a step-by-step manner. Therefore, there is an urgent need for a simple and convenient retrocopy annotation tool. Here, we report the development of RetroScan, a publicly available and easy-to-use tool for scanning, annotating and displaying retrocopies, consisting of two components: an analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics software programs and scripts for identifying retrocopies in just one line of command. Compared with previous methods, RetroScan increases accuracy and reduces false-positive results. We also provide a Shiny app for visualization. It displays information on retrocopies and their parental genes that can be used for the study of retrocopy structure and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.
Collapse
Affiliation(s)
- Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiahe Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Haiyue Zeng
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Vegesna R, Tomaszkiewicz M, Ryder OA, Campos-Sánchez R, Medvedev P, DeGiorgio M, Makova KD. Ampliconic Genes on the Great Ape Y Chromosomes: Rapid Evolution of Copy Number but Conservation of Expression Levels. Genome Biol Evol 2021; 12:842-859. [PMID: 32374870 PMCID: PMC7313670 DOI: 10.1093/gbe/evaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Multicopy ampliconic gene families on the Y chromosome play an important role in spermatogenesis. Thus, studying their genetic variation in endangered great ape species is critical. We estimated the sizes (copy number) of nine Y ampliconic gene families in population samples of chimpanzee, bonobo, and orangutan with droplet digital polymerase chain reaction, combined these estimates with published data for human and gorilla, and produced genome-wide testis gene expression data for great apes. Analyzing this comprehensive data set within an evolutionary framework, we, first, found high inter- and intraspecific variation in gene family size, with larger families exhibiting higher variation as compared with smaller families, a pattern consistent with random genetic drift. Second, for four gene families, we observed significant interspecific size differences, sometimes even between sister species—chimpanzee and bonobo. Third, despite substantial variation in copy number, Y ampliconic gene families’ expression levels did not differ significantly among species, suggesting dosage regulation. Fourth, for three gene families, size was positively correlated with gene expression levels across species, suggesting that, given sufficient evolutionary time, copy number influences gene expression. Our results indicate high variability in size but conservation in gene expression levels in Y ampliconic gene families, significantly advancing our understanding of Y-chromosome evolution in great apes.
Collapse
Affiliation(s)
- Rahulsimham Vegesna
- Bioinformatics and Genomics Graduate Program, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park
| | | | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| | | | - Paul Medvedev
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park.,Department of Computer Science and Engineering, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University, University Park.,Institute for Computational and Data Science, Pennsylvania State University, University Park
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| |
Collapse
|
36
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
37
|
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925-934. [PMID: 33941934 PMCID: PMC8187152 DOI: 10.1038/s41588-021-00851-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Collapse
Affiliation(s)
- Pavel V Mazin
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Evolutionary Developmental Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
38
|
Correa M, Lerat E, Birmelé E, Samson F, Bouillon B, Normand K, Rizzon C. The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality. Genome Biol Evol 2021; 13:6273345. [PMID: 33973013 PMCID: PMC8155550 DOI: 10.1093/gbe/evab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
Collapse
Affiliation(s)
- Margot Correa
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Etienne Birmelé
- Laboratoire MAP5 UMR 8145, Université de Paris, Paris, France
| | - Franck Samson
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Bérengère Bouillon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Kévin Normand
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
39
|
Ciomborowska-Basheer J, Staszak K, Kubiak MR, Makałowska I. Not So Dead Genes-Retrocopies as Regulators of Their Disease-Related Progenitors and Hosts. Cells 2021; 10:cells10040912. [PMID: 33921034 PMCID: PMC8071448 DOI: 10.3390/cells10040912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.
Collapse
|
40
|
Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NPA, Smith DR. Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 2021; 24:102084. [PMID: 33644715 PMCID: PMC7887394 DOI: 10.1016/j.isci.2021.102084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
Antarctica is home to an assortment of psychrophilic algae, which have evolved various survival strategies for coping with their frigid environments. Here, we explore Antarctic psychrophily by examining the ∼212 Mb draft nuclear genome of the green alga Chlamydomonas sp. UWO241, which resides within the water column of a perennially ice-covered, hypersaline lake. Like certain other Antarctic algae, UWO241 encodes a large number (≥37) of ice-binding proteins, putatively originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds of highly similar duplicated genes involved in diverse cellular processes, some of which we argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene duplication appear to be an ongoing phenomenon within UWO241, one which might be mediated by retrotransposons. Ultimately, we consider how such a process could be associated with adaptation to extreme environments but explore potential non-adaptive hypotheses as well. Chlamydomonas sp. UWO241 is a green alga originating from Lake Bonney, Antarctica We present a draft nuclear genome sequence of UWO241 (∼212 Mb). The UWO genome contains hundreds of highly similar duplicated genes These duplicates, we argue, might be involved in cold adaptation
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
41
|
The mutational load in natural populations is significantly affected by high primary rates of retroposition. Proc Natl Acad Sci U S A 2021; 118:2013043118. [PMID: 33526666 PMCID: PMC8017666 DOI: 10.1073/pnas.2013043118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phenomenon of retroposition (the reintegration of reverse-transcribed RNA into the genome) has been well studied in comparisons between species and has been identified as a source of evolutionary innovation. However, less attention has been paid to possible negative effects of retroposition. To trace the evolutionary dynamics of these negative effects, our study uses a unique genomic dataset of house mouse populations. It reveals that the initial retroposition rate is very high and that most of these newly transposed retrocopies have a deleterious impact, apparently through modifying the expression of their parental genes. In humans, this effect is expected to cause disease alleles, and we propose that genetic screening should include the search for newly transposed retrocopies. Gene retroposition is known to contribute to patterns of gene evolution and adaptations. However, possible negative effects of gene retroposition remain largely unexplored since most previous studies have focused on between-species comparisons where negatively selected copies are mostly not observed, as they are quickly lost from populations. Here, we show for natural house mouse populations that the primary rate of retroposition is orders of magnitude higher than the long-term rate. Comparisons with single-nucleotide polymorphism distribution patterns in the same populations show that most retroposition events are deleterious. Transcriptomic profiling analysis shows that new retroposed copies become easily subject to transcription and have an influence on the expression levels of their parental genes, especially when transcribed in the antisense direction. Our results imply that the impact of retroposition on the mutational load has been highly underestimated in natural populations. This has additional implications for strategies of disease allele detection in humans.
Collapse
|
42
|
Zeng X, Li H, Li K, Yuan R, Zhao S, Li J, Luo J, Li X, Ma H, Wu G, Yan X. Evolution of the Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE STERILITY 5 gene essential for male fertility in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:2339-2356. [PMID: 33128826 PMCID: PMC7894334 DOI: 10.1111/nph.17053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/08/2020] [Indexed: 05/22/2023]
Abstract
New genes (or lineage-specific genes) can facilitate functional innovations. MALE STERILITY 5 (MS5) in Brassica napus is a fertility-related new gene, which has two wild-type alleles (BnMS5a and BnMS5c ) and two mutant alleles (BnMS5b and BnMS5d ) that could induce male sterility. Here, we studied the history and functional evolution of MS5 homologs in plants by phylogenetic analysis and molecular genetic experiments. We identified 727 MS5 homologs and found that they define a Brassicaceae-specific gene family that has expanded partly via multiple tandem gene duplications and also probably transpositions. The MS5 in B. napus is inherited from a basic diploid ancestor of B. rapa. Molecular genetic experiments indicate that BnMS5a and BnMS5c are functionally distinct in B. napus and that BnMS5d can inhibit BnMS5a in B. napus in a dosage-dependent manner. The BnMS5a protein can move in coordination with meiotic telomeres and interact with the nuclear envelope protein SUN1, with a possible crucial role in meiotic chromosome behavior. In summary, BnMS5 belongs to a Brassicaceae-specific new gene family, and has gained a novel function that is essential for male fertility in B. napus through neofunctionalization that has likely occurred since the origin of B. rapa.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hao Li
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Shengbo Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hong Ma
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| |
Collapse
|
43
|
Martínez-Pacheco M, Tenorio M, Almonte L, Fajardo V, Godínez A, Fernández D, Cornejo-Páramo P, Díaz-Barba K, Halbert J, Liechti A, Székely T, Urrutia AO, Cortez D. Expression Evolution of Ancestral XY Gametologs across All Major Groups of Placental Mammals. Genome Biol Evol 2020; 12:2015-2028. [PMID: 32790864 PMCID: PMC7674692 DOI: 10.1093/gbe/evaa173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor.
Collapse
Affiliation(s)
| | | | - Laura Almonte
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| | | | - Alan Godínez
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| | | | | | | | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Tamas Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom.,Ecology Institute, UNAM, Mexico
| | - Diego Cortez
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
44
|
Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat Commun 2020; 11:4459. [PMID: 32900997 PMCID: PMC7479108 DOI: 10.1038/s41467-020-18090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.
Collapse
|
45
|
Dickinson PJ, Bannasch DL. Current Understanding of the Genetics of Intervertebral Disc Degeneration. Front Vet Sci 2020; 7:431. [PMID: 32793650 PMCID: PMC7393939 DOI: 10.3389/fvets.2020.00431] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Premature degeneration of the intervertebral disc and its association with specific chondrodystrophic dog breeds has been recognized for over a century. Several lines of evidence including disease breed predisposition, studies suggesting heritability of premature intervertebral disc degeneration (IVDD) and association of a dog chromosome 12 (CFA 12) locus with intervertebral disc calcification have strongly supported a genetic component in IVDD in dogs. Recent studies documenting association of IVDD with an overexpressing FGF4 retrogene on CFA 12 have opened up new areas of investigation to further define the pathophysiology of premature IVDD. While preliminary data from studies investigating FGF4 retrogenes in IVDD implicate FGF4 overexpression as a major disease factor, they have also highlighted knowledge gaps in our understanding of intervertebral disc herniation which is a complex and multifactorial disease process.
Collapse
Affiliation(s)
- Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
46
|
Batcher K, Dickinson P, Maciejczyk K, Brzeski K, Rasouliha SH, Letko A, Drögemüller C, Leeb T, Bannasch D. Multiple FGF4 Retrocopies Recently Derived within Canids. Genes (Basel) 2020; 11:genes11080839. [PMID: 32717834 PMCID: PMC7465015 DOI: 10.3390/genes11080839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Two transcribed retrocopies of the fibroblast growth factor 4 (FGF4) gene have previously been described in the domestic dog. An FGF4 retrocopy on chr18 is associated with disproportionate dwarfism, while an FGF4 retrocopy on chr12 is associated with both disproportionate dwarfism and intervertebral disc disease (IVDD). In this study, whole-genome sequencing data were queried to identify other FGF4 retrocopies that could be contributing to phenotypic diversity in canids. Additionally, dogs with surgically confirmed IVDD were assayed for novel FGF4 retrocopies. Five additional and distinct FGF4 retrocopies were identified in canids including a copy unique to red wolves (Canis rufus). The FGF4 retrocopies identified in domestic dogs were identical to domestic dog FGF4 haplotypes, which are distinct from modern wolf FGF4 haplotypes, indicating that these retrotransposition events likely occurred after domestication. The identification of multiple, full length FGF4 retrocopies with open reading frames in canids indicates that gene retrotransposition events occur much more frequently than previously thought and provide a mechanism for continued genetic and phenotypic diversity in canids.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (K.B.); (K.M.)
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA;
| | - Kimberly Maciejczyk
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (K.B.); (K.M.)
| | - Kristin Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA;
| | - Sheida Hadji Rasouliha
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (S.H.R.); (A.L.); (C.D.); (T.L.)
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (S.H.R.); (A.L.); (C.D.); (T.L.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (S.H.R.); (A.L.); (C.D.); (T.L.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (S.H.R.); (A.L.); (C.D.); (T.L.)
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (K.B.); (K.M.)
- Correspondence:
| |
Collapse
|
47
|
Yang L, Emerman M, Malik HS, McLaughlin RN. Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. eLife 2020; 9:e58436. [PMID: 32479260 PMCID: PMC7263822 DOI: 10.7554/elife.58436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Host-virus arms races are inherently asymmetric; viruses evolve much more rapidly than host genomes. Thus, there is high interest in discovering mechanisms by which host genomes keep pace with rapidly evolving viruses. One family of restriction factors, the APOBEC3 (A3) cytidine deaminases, has undergone positive selection and expansion via segmental gene duplication and recombination. Here, we show that new copies of A3 genes have also been created in primates by reverse transcriptase-encoding elements like LINE-1 or endogenous retroviruses via a process termed retrocopying. First, we discovered that all simian primate genomes retain the remnants of an ancient A3 retrocopy: A3I. Furthermore, we found that some New World monkeys encode up to ten additional APOBEC3G (A3G) retrocopies. Some of these A3G retrocopies are transcribed in a variety of tissues and able to restrict retroviruses. Our findings suggest that host genomes co-opt retroelement activity in the germline to create new host restriction factors as another means to keep pace with the rapid evolution of viruses. (163).
Collapse
Affiliation(s)
- Lei Yang
- Pacific Northwest Research InstituteSeattleUnited States
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Richard N McLaughlin
- Pacific Northwest Research InstituteSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
48
|
Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Genes (Basel) 2020; 11:genes11050542. [PMID: 32408516 PMCID: PMC7290577 DOI: 10.3390/genes11050542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
Collapse
|
49
|
Darbellay F, Necsulea A. Comparative Transcriptomics Analyses across Species, Organs, and Developmental Stages Reveal Functionally Constrained lncRNAs. Mol Biol Evol 2020; 37:240-259. [PMID: 31539080 PMCID: PMC6984365 DOI: 10.1093/molbev/msz212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functionality of long noncoding RNAs (lncRNAs) is disputed. In general, lncRNAs are under weak selective pressures, suggesting that the majority of lncRNAs may be nonfunctional. However, although some surveys showed negligible phenotypic effects upon lncRNA perturbation, key biological roles were demonstrated for individual lncRNAs. Most lncRNAs with proven functions were implicated in gene expression regulation, in pathways related to cellular pluripotency, differentiation, and organ morphogenesis, suggesting that functional lncRNAs may be more abundant in embryonic development, rather than in adult organs. To test this hypothesis, we perform a multidimensional comparative transcriptomics analysis, across five developmental time points (two embryonic stages, newborn, adult, and aged individuals), four organs (brain, kidney, liver, and testes), and three species (mouse, rat, and chicken). We find that, overwhelmingly, lncRNAs are preferentially expressed in adult and aged testes, consistent with the presence of permissive transcription during spermatogenesis. LncRNAs are often differentially expressed among developmental stages and are less abundant in embryos and newborns compared with adult individuals, in agreement with a requirement for tighter expression control and less tolerance for noisy transcription early in development. For differentially expressed lncRNAs, we find that the patterns of expression variation among developmental stages are generally conserved between mouse and rat. Moreover, lncRNAs expressed above noise levels in somatic organs and during development show higher evolutionary conservation, in particular, at their promoter regions. Thus, we show that functionally constrained lncRNA loci are enriched in developing organs, and we suggest that many of these loci may function in an RNA-independent manner.
Collapse
Affiliation(s)
- Fabrice Darbellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anamaria Necsulea
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
50
|
Machado JP, Antunes A. The genomic context of retrocopies increases their chance of functional relevancy in mammals. Genomics 2020; 112:2410-2417. [PMID: 31981699 DOI: 10.1016/j.ygeno.2020.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Described as "junk" DNA, pseudogenes are dead structures of previously active genes present in genomes. Pseudogenes are categorized into two main classes: processed pseudogenes, formed through retrotransposition, and non-processed pseudogenes, typically originated from gene decay following duplication events. The term "processed pseudogene" has changed to "retrocopy" since they are likely to evolve new functional roles and became a retrogene. Here, we surveyed 38,080 retrocopies from chimpanzee, dog, human, mouse, and rat genomes to assess their potential adaptive value. The retrocopies inserted in the same chromosome of the parental gene have higher chances of remain potentially "active" (absence of premature stop codons and frameshifts) (~26.1%), while those placed into a different chromosome have a twofold decrease chance of continuing potentially "active" (~7.52%). The genomic context of their placement seems associated with their expression. Retrocopies placed in intragenic regions and the same sense of the "host" gene have higher chances of being expressed relative to other genomic contexts. The proximity of retrocopies to their parental gene is associated with a lower decay rate, and their location likely influence their expression. Thus, despite their unclear role, retrocopies are probably involved in adaptive processes. Our results evidence natural selection acting in retrocopies.
Collapse
Affiliation(s)
- João Paulo Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169 007 Porto, Portugal.
| |
Collapse
|