1
|
Chembazhi UV, Bangru S, Dutta R, Das D, Peiffer B, Natua S, Toohill K, Leona A, Purwar I, Bhowmik A, Goyal Y, Sun Z, Diehl AM, Kalsotra A. Dysregulated RNA splicing induces regeneration failure in alcohol-associated liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626099. [PMID: 39651310 PMCID: PMC11623683 DOI: 10.1101/2024.11.29.626099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Individuals with progressive liver failure are at a high risk of mortality without liver transplantation. However, our understanding of derailed regenerative responses in failing livers is limited. Here, we performed comprehensive multi-omic profiling of healthy and diseased human livers using bulk and single-nucleus RNA-plus ATAC-seq. We report that hepatic immune milieu alterations in alcohol-associated liver disease (ALD) prevent hepatocytes from transitioning to a proliferative progenitor-like state, trapping them into an unproductive intermediate state. We discovered striking changes in RNA binding protein (RBP) expression, particularly ESRP, PTBP, and SR families, that cause misregulation of developmentally controlled RNA splicing in ALD. Our data pinpoint ESRP2 as a pivotal disease-sensitive RBP and support a causal role of its deficiency in ALD pathogenesis. Notably, splicing defects in ESRP2-targets Tcf4 and Slk , amongst others, directly alter their nuclear localization and activities, disrupting WNT and Hippo signaling pathways, which are critical for normal liver regeneration. We demonstrate that changes in stromal cell populations enrich failing ALD livers with TGF-β, which suppresses ESRP2-driven epithelial splicing program and replaces functional parenchyma with quasi-progenitor-like cells lacking liver-specific functions. This unprecedented account of transcriptional and post-transcriptional dysregulation in ALD suggests that targeting misspliced RNAs could improve recovery and serve as biomarkers for poor ALD outcomes.
Collapse
|
2
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen K, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. Nucleic Acids Res 2024; 52:12244-12261. [PMID: 39373517 PMCID: PMC11551747 DOI: 10.1093/nar/gkae862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of the Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that the RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics are controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano,20129 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Milan, Italy
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- CZ Biohub Chicago, LLC, Chicago, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Ritter AJ, Wallace A, Ronaghi N, Sanford J. junctionCounts: comprehensive alternative splicing analysis and prediction of isoform-level impacts to the coding sequence. NAR Genom Bioinform 2024; 6:lqae093. [PMID: 39131822 PMCID: PMC11310779 DOI: 10.1093/nargab/lqae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative splicing (AS) is emerging as an important regulatory process for complex biological processes. Transcriptomic studies therefore commonly involve the identification and quantification of alternative processing events, but the need for predicting the functional consequences of changes to the relative inclusion of alternative events remains largely unaddressed. Many tools exist for the former task, albeit each constrained to its own event type definitions. Few tools exist for the latter task; each with significant limitations. To address these issues we developed junctionCounts, which captures both simple and complex pairwise AS events and quantifies them with straightforward exon-exon and exon-intron junction reads in RNA-seq data, performing competitively among similar tools in terms of sensitivity, false discovery rate and quantification accuracy. Its partner utility, cdsInsertion, identifies transcript coding sequence (CDS) information via in silico translation from annotated start codons, including the presence of premature termination codons. Finally, findSwitchEvents connects AS events with CDS information to predict the impact of individual events to the isoform-level CDS. We used junctionCounts to characterize splicing dynamics and NMD regulation during neuronal differentiation across four primates, demonstrating junctionCounts' capacity to robustly characterize AS in a variety of organisms and to predict its effect on mRNA isoform fate.
Collapse
Affiliation(s)
- Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew Wallace
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Neda Ronaghi
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
5
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen KL, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598725. [PMID: 38915624 PMCID: PMC11195235 DOI: 10.1101/2024.06.12.598725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics is controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally to the work
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally to the work
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: College of Arts and Science, Vanderbilt University, Nashville, TN, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli studi di Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Murali M, Saquing J, Lu S, Gao Z, Jordan B, Wakefield ZP, Fiszbein A, Cooper DR, Castaldi PJ, Korkin D, Sheynkman G. Biosurfer for systematic tracking of regulatory mechanisms leading to protein isoform diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585320. [PMID: 38559226 PMCID: PMC10980011 DOI: 10.1101/2024.03.15.585320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing. Biosurfer's detailed tracking of nucleotide-to-residue relationships helped reveal an uncommonly tracked source of single amino acid residue changes arising from the codon splits at junctions. For 17% of internal sequence changes, such split codon patterns lead to single residue differences, termed "ragged codons". Of variable C-termini, 72% involve splice- or intron retention-induced reading frameshifts. We found an unusual pattern of reading frame changes, in which the first frameshift is closely followed by a distinct second frameshift that restores the original frame, which we term a "snapback" frameshift. We analyzed long read RNA-seq-predicted proteome of a human cell line and found similar trends as compared to our GENCODE analysis, with the exception of a higher proportion of isoforms predicted to undergo nonsense-mediated decay. Biosurfer's comprehensive characterization of long-read RNA-seq datasets should accelerate insights of the functional role of protein isoforms, providing mechanistic explanation of the origins of the proteomic diversity driven by the alternative splicing. Biosurfer is available as a Python package at https://github.com/sheynkman-lab/biosurfer.
Collapse
Affiliation(s)
- Mayank Murali
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ziyang Gao
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ben Jordan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachary Peters Wakefield
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Ana Fiszbein
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of General Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Ruta V, Naro C, Pieraccioli M, Leccese A, Archibugi L, Cesari E, Panzeri V, Allgöwer C, Arcidiacono PG, Falconi M, Carbone C, Tortora G, Borrelli F, Attili F, Spada C, Quero G, Alfieri S, Doglioni C, Kleger A, Capurso G, Sette C. An alternative splicing signature defines the basal-like phenotype and predicts worse clinical outcome in pancreatic cancer. Cell Rep Med 2024; 5:101411. [PMID: 38325381 PMCID: PMC10897606 DOI: 10.1016/j.xcrm.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/19/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. PDAC presents with molecularly distinct subtypes, with the basal-like one being associated with enhanced chemoresistance. Splicing dysregulation contributes to PDAC; however, its involvement in subtype specification remains elusive. Herein, we uncover a subtype-specific splicing signature associated with prognosis in PDAC and the splicing factor Quaking (QKI) as a determinant of the basal-like signature. Single-cell sequencing analyses highlight QKI as a marker of the basal-like phenotype. QKI represses splicing events associated with the classical subtype while promoting basal-like events associated with shorter survival. QKI favors a plastic, quasi-mesenchymal phenotype that supports migration and chemoresistance in PDAC organoids and cell lines, and its expression is elevated in high-grade primary tumors and metastatic lesions. These studies identify a splicing signature that defines PDAC subtypes and indicate that QKI promotes an undifferentiated, plastic phenotype, which renders PDAC cells chemoresistant and adaptable to environmental changes.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Adriana Leccese
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chantal Allgöwer
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Pancreas and Transplantation Surgical Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Giampaolo Tortora
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Medical Oncology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Fabia Attili
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Giuseppe Quero
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Sergio Alfieri
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Division of Pathology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Alexander Kleger
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy.
| |
Collapse
|
8
|
Polvèche H, Valat J, Fontrodona N, Lapendry A, Clerc V, Janczarski S, Mortreux F, Auboeuf D, Bourgeois CF. SplicingLore: a web resource for studying the regulation of cassette exons by human splicing factors. Database (Oxford) 2023; 2023:baad091. [PMID: 38128543 PMCID: PMC10735282 DOI: 10.1093/database/baad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
One challenge faced by scientists from the alternative RNA splicing field is to decode the cooperative or antagonistic effects of splicing factors (SFs) to understand and eventually predict splicing outcomes on a genome-wide scale. In this manuscript, we introduce SplicingLore, an open-access database and web resource that help to fill this gap in a straightforward manner. The database contains a collection of RNA-sequencing-derived lists of alternative exons regulated by a total of 75 different SFs. All datasets were processed in a standardized manner, ensuring valid comparisons and correlation analyses. The user can easily retrieve a factor-specific set of differentially included exons from the database or provide a list of exons and search which SF(s) control(s) their inclusion. Our simple workflow is fast and easy to run, and it ensures a reliable calculation of correlation scores between the tested datasets. As a proof of concept, we predicted and experimentally validated a novel functional cooperation between the RNA helicases DDX17 and DDX5 and the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein. SplicingLore is available at https://splicinglore.ens-lyon.fr/. Database URL: https://splicinglore.ens-lyon.fr/.
Collapse
Affiliation(s)
| | - Jessica Valat
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Valentine Clerc
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
| | - Franck Mortreux
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d’Italie, Lyon F-69364, France
- Equipe Labellisee Ligue Contre le Cancer, 4 allee d'Italie, Lyon 69007, France
- CECS/AFM, I-STEM, 28 rue Henri Desbrueres, Corbeil-Essonnes F-91100, France
| |
Collapse
|
9
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Chembazhi UV, Tung WS, Hwang H, Wang Y, Lalwani A, Nguyen K, Bangru S, Yee D, Chin K, Yang J, Kalsotra A, Mei W. PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic Acids Res 2023; 51:2397-2414. [PMID: 36744439 PMCID: PMC10018364 DOI: 10.1093/nar/gkad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelial regeneration is driven by intestinal stem cells under homeostatic conditions. Differentiated intestinal epithelial cells, such as Paneth cells, are capable of acquiring multipotency and contributing to regeneration upon the loss of intestinal stem cells. Paneth cells also support intestinal stem cell survival and regeneration. We report here that depletion of an RNA-binding protein named polypyrimidine tract binding protein 1 (PTBP1) in mouse intestinal epithelial cells causes intestinal stem cell death and epithelial regeneration failure. Mechanistically, we show that PTBP1 inhibits neuronal-like splicing programs in intestinal crypt cells, which is critical for maintaining intestinal stem cell stemness. This function is achieved at least in part through promoting the non-productive splicing of its paralog PTBP2. Moreover, PTBP1 inhibits the expression of an AKT inhibitor PHLDA3 in Paneth cells and permits AKT activation, which presumably maintains Paneth cell plasticity and function in supporting intestinal stem cell niche. We show that PTBP1 directly binds to a CU-rich region in the 3' UTR of Phlda3, which we demonstrate to be critical for downregulating the mRNA and protein levels of Phlda3. Our results thus reveal the multifaceted in vivo regulation of intestinal epithelial regeneration by PTBP1 at the post-transcriptional level.
Collapse
Affiliation(s)
| | | | | | - Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Aryan Lalwani
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Kristy Chin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Auinash Kalsotra
- Correspondence may also be addressed to Auinash Kalsotra. Tel: +1 217 300 7654; Fax: +1 217 265 0385;
| | - Wenyan Mei
- To whom correspondence should be addressed. Tel: +1 217 244 4077; Fax: 217 333 4628; E-mail:
| |
Collapse
|
11
|
Castaldi PJ, Abood A, Farber CR, Sheynkman GM. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum Mol Genet 2022; 31:R123-R136. [PMID: 35960994 PMCID: PMC9585682 DOI: 10.1093/hmg/ddac196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023] Open
Abstract
Aberrant splicing underlies many human diseases, including cancer, cardiovascular diseases and neurological disorders. Genome-wide mapping of splicing quantitative trait loci (sQTLs) has shown that genetic regulation of alternative splicing is widespread. However, identification of the corresponding isoform or protein products associated with disease-associated sQTLs is challenging with short-read RNA-seq, which cannot precisely characterize full-length transcript isoforms. Furthermore, contemporary sQTL interpretation often relies on reference transcript annotations, which are incomplete. Solutions to these issues may be found through integration of newly emerging long-read sequencing technologies. Long-read sequencing offers the capability to sequence full-length mRNA transcripts and, in some cases, to link sQTLs to transcript isoforms containing disease-relevant protein alterations. Here, we provide an overview of sQTL mapping approaches, the use of long-read sequencing to characterize sQTL effects on isoforms, the linkage of RNA isoforms to protein-level functions and comment on future directions in the field. Based on recent progress, long-read RNA sequencing promises to be part of the human disease genetics toolkit to discover and treat protein isoforms causing rare and complex diseases.
Collapse
Affiliation(s)
- Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of General Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Gloria M Sheynkman
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Szymczak F, Alvelos MI, Marín-Cañas S, Castela Â, Demine S, Colli ML, Op de Beeck A, Thomaidou S, Marselli L, Zaldumbide A, Marchetti P, Eizirik DL. Transcription and splicing regulation by NLRC5 shape the interferon response in human pancreatic β cells. SCIENCE ADVANCES 2022; 8:eabn5732. [PMID: 36103539 PMCID: PMC9473574 DOI: 10.1126/sciadv.abn5732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
IFNα is a key regulator of the dialogue between pancreatic β cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human β cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-βH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of β cell neoantigens, suggesting that it is a central player of the effects of IFNα on β cells that contribute to trigger and amplify autoimmunity in T1D.
Collapse
Affiliation(s)
- Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Stéphane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
13
|
Shallak M, Alberio T, Fasano M, Monti M, Iacobucci I, Ladet J, Mortreux F, Accolla RS, Forlani G. The endogenous HBZ interactome in ATL leukemic cells reveals an unprecedented complexity of host interacting partners involved in RNA splicing. Front Immunol 2022; 13:939863. [PMID: 35979358 PMCID: PMC9376625 DOI: 10.3389/fimmu.2022.939863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a T-cell lymphoproliferative neoplasm caused by the human T-cell leukemia virus type 1 (HTLV-1). Two viral proteins, Tax-1 and HBZ play important roles in HTLV-1 infectivity and in HTLV-1-associated pathologies by altering key pathways of cell homeostasis. However, the molecular mechanisms through which the two viral proteins, particularly HBZ, induce and/or sustain the oncogenic process are still largely elusive. Previous results suggested that HBZ interaction with nuclear factors may alter cell cycle and cell proliferation. To have a more complete picture of the HBZ interactions, we investigated in detail the endogenous HBZ interactome in leukemic cells by immunoprecipitating the HBZ-interacting complexes of ATL-2 leukemic cells, followed by tandem mass spectrometry analyses. RNA seq analysis was performed to decipher the differential gene expression and splicing modifications related to HTLV-1. Here we compared ATL-2 with MOLT-4, a non HTLV-1 derived leukemic T cell line and further compared with HBZ-induced modifications in an isogenic system composed by Jurkat T cells and stably HBZ transfected Jurkat derivatives. The endogenous HBZ interactome of ATL-2 cells identified 249 interactors covering three main clusters corresponding to protein families mainly involved in mRNA splicing, nonsense-mediated RNA decay (NMD) and JAK-STAT signaling pathway. Here we analyzed in detail the cluster involved in RNA splicing. RNAseq analysis showed that HBZ specifically altered the transcription of many genes, including crucial oncogenes, by affecting different splicing events. Consistently, the two RNA helicases, members of the RNA splicing family, DDX5 and its paralog DDX17, recently shown to be involved in alternative splicing of cellular genes after NF-κB activation by HTLV-1 Tax-1, interacted and partially co-localized with HBZ. For the first time, a complete picture of the endogenous HBZ interactome was elucidated. The wide interaction of HBZ with molecules involved in RNA splicing and the subsequent transcriptome alteration strongly suggests an unprecedented complex role of the viral oncogene in the establishment of the leukemic state.
Collapse
Affiliation(s)
- Mariam Shallak
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Tiziana Alberio
- Laboratory of Biochemistry and Functional Proteomics, Department of Science and High Technology, University of Insubria, Busto Arsizio, Italy
| | - Mauro Fasano
- Laboratory of Biochemistry and Functional Proteomics, Department of Science and High Technology, University of Insubria, Busto Arsizio, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Julien Ladet
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| | - Roberto S. Accolla
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| | - Greta Forlani
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| |
Collapse
|
14
|
Zhou D, Tran Y, Abou Elela S, Scott MS. SAPFIR: A webserver for the identification of alternative protein features. BMC Bioinformatics 2022; 23:250. [PMID: 35751026 PMCID: PMC9229502 DOI: 10.1186/s12859-022-04804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Alternative splicing can increase the diversity of gene functions by generating multiple isoforms with different sequences and functions. However, the extent to which splicing events have functional consequences remains unclear and predicting the impact of splicing events on protein activity is limited to gene-specific analysis. Results To accelerate the identification of functionally relevant alternative splicing events we created SAPFIR, a predictor of protein features associated with alternative splicing events. This webserver tool uses InterProScan to predict protein features such as functional domains, motifs and sites in the human and mouse genomes and link them to alternative splicing events. Alternative protein features are displayed as functions of the transcripts and splice sites. SAPFIR could be used to analyze proteins generated from a single gene or a group of genes and can directly identify alternative protein features in large sequence data sets. The accuracy and utility of SAPFIR was validated by its ability to rediscover previously validated alternative protein domains. In addition, our de novo analysis of public datasets using SAPFIR indicated that only a small portion of alternative protein domains was conserved between human and mouse, and that in human, genes involved in nervous system process, regulation of DNA-templated transcription and aging are more likely to produce isoforms missing functional domains due to alternative splicing. Conclusion Overall SAPFIR represents a new tool for the rapid identification of functional alternative splicing events and enables the identification of cellular functions affected by a defined splicing program. SAPFIR is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/sapfir/, a website implemented in Python, with all major browsers supported. The source code is available at https://github.com/DelongZHOU/SAPFIR. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04804-w.
Collapse
Affiliation(s)
- Delong Zhou
- Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Yvan Tran
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
15
|
González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun 2022; 13:2735. [PMID: 35585060 PMCID: PMC9117662 DOI: 10.1038/s41467-022-30433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Autophagy and RNA alternative splicing are two evolutionarily conserved processes involved in overlapping physiological and pathological processes. However, the extent of functional connection is not well defined. Here, we consider the role for alternative splicing and generation of autophagy-related gene isoforms in the regulation of autophagy in recent work. The impact of changes to the RNA alternative splicing machinery and production of alternative spliced isoforms on autophagy are reviewed with particular focus on disease relevance. The use of drugs targeting both alternative splicing and autophagy as well as the selective regulation of single autophagy-related protein isoforms, are considered as therapeutic strategies.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Verma SK, Deshmukh V, Thatcher K, Belanger KK, Rhyner A, Meng S, Holcomb R, Bressan M, Martin J, Cooke J, Wythe J, Widen S, Lincoln J, Kuyumcu-Martinez M. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res 2022; 50:2270-2286. [PMID: 35137168 PMCID: PMC8881802 DOI: 10.1093/nar/gkac055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - KarryAnne K Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander M Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shu Meng
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Richard Joshua Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology and Anatomy, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555, USA
| |
Collapse
|
17
|
Naro C, De Musso M, Delle Monache F, Panzeri V, de la Grange P, Sette C. The oncogenic kinase NEK2 regulates an RBFOX2-dependent pro-mesenchymal splicing program in triple-negative breast cancer cells. J Exp Clin Cancer Res 2021; 40:397. [PMID: 34930366 PMCID: PMC8686545 DOI: 10.1186/s13046-021-02210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesca Delle Monache
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
18
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
19
|
Mir Q, Lakshmipati DK, Ulrich BJ, Kaplan MH, Janga SC. Comparative Analysis of Alternative Splicing Profiles in Th Cell Subsets Reveals Extensive Cell Type-Specific Effects Modulated by a Network of Transcription Factors and RNA-Binding Proteins. Immunohorizons 2021; 5:760-771. [PMID: 34583937 DOI: 10.4049/immunohorizons.2100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing (AS) plays an important role in the development of many cell types; however, its contribution to Th subsets has been clearly defined. In this study, we compare mice naive CD4+ Th cells with Th1, Th2, Th17, and T regulatory cells and observed that the majority of AS events were retained intron, followed by skipped-exon events, with at least 1200 genes across cell types affected by AS events. A significant fraction of the AS events, especially retained intron events from the 72-h time point, were no longer observed 2 wk postdifferentiation, suggesting a role for AS in early activation and differentiation via preferential expression of specific isoforms required during T cell activation, but not for differentiation or effector function. Examining the protein consequence of the exon-skipping events revealed an abundance of structural proteins encoding for intrinsically unstructured peptide regions, followed by transmembrane helices, β strands, and polypeptide turn motifs. Analyses of expression profiles of RNA-binding proteins (RBPs) and their cognate binding sites flanking the discovered AS events revealed an enrichment for specific RBP recognition sites in each of the Th subsets. Integration with publicly available chromatin immunoprecipitation sequencing datasets for transcription factors support a model wherein lineage-determining transcription factors impact the RBP profile within the differentiating cells, and this differential expression contributes to AS of the transcriptome via a cascade of cell type-specific posttranscriptional rewiring events.
Collapse
Affiliation(s)
- Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Deepak K Lakshmipati
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Benjamin J Ulrich
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; and
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
20
|
Zea DJ, Laskina S, Baudin A, Richard H, Laine E. Assessing conservation of alternative splicing with evolutionary splicing graphs. Genome Res 2021; 31:1462-1473. [PMID: 34266979 PMCID: PMC8327911 DOI: 10.1101/gr.274696.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Understanding how protein function has evolved and diversified is of great importance for human genetics and medicine. Here, we tackle the problem of describing the whole transcript variability observed in several species by generalizing the definition of splicing graph. We provide a practical solution to construct parsimonious evolutionary splicing graphs where each node is a minimal transcript building block defined across species. We show a clear link between the functional relevance, tissue regulation, and conservation of alternative transcripts on a set of 50 genes. By scaling up to the whole human protein-coding genome, we identify a few thousand genes where alternative splicing modulates the number and composition of pseudorepeats. We have implemented our approach in ThorAxe, an efficient, versatile, robust, and freely available computational tool.
Collapse
Affiliation(s)
- Diego Javier Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Sofya Laskina
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
| | - Alexis Baudin
- Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
21
|
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925-934. [PMID: 33941934 PMCID: PMC8187152 DOI: 10.1038/s41588-021-00851-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Collapse
Affiliation(s)
- Pavel V Mazin
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Evolutionary Developmental Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
22
|
González-Barriga A, Lallemant L, Dincã DM, Braz SO, Polvèche H, Magneron P, Pionneau C, Huguet-Lachon A, Claude JB, Chhuon C, Guerrera IC, Bourgeois CF, Auboeuf D, Gourdon G, Gomes-Pereira M. Integrative Cell Type-Specific Multi-Omics Approaches Reveal Impaired Programs of Glial Cell Differentiation in Mouse Culture Models of DM1. Front Cell Neurosci 2021; 15:662035. [PMID: 34025359 PMCID: PMC8136287 DOI: 10.3389/fncel.2021.662035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a non-coding CTG repeat expansion in the DMPK gene. This mutation generates a toxic CUG RNA that interferes with the RNA processing of target genes in multiple tissues. Despite debilitating neurological impairment, the pathophysiological cascade of molecular and cellular events in the central nervous system (CNS) has been less extensively characterized than the molecular pathogenesis of muscle/cardiac dysfunction. Particularly, the contribution of different cell types to DM1 brain disease is not clearly understood. We first used transcriptomics to compare the impact of expanded CUG RNA on the transcriptome of primary neurons, astrocytes and oligodendrocytes derived from DMSXL mice, a transgenic model of DM1. RNA sequencing revealed more frequent expression and splicing changes in glia than neuronal cells. In particular, primary DMSXL oligodendrocytes showed the highest number of transcripts differentially expressed, while DMSXL astrocytes displayed the most severe splicing dysregulation. Interestingly, the expression and splicing defects of DMSXL glia recreated molecular signatures suggestive of impaired cell differentiation: while DMSXL oligodendrocytes failed to upregulate a subset of genes that are naturally activated during the oligodendroglia differentiation, a significant proportion of missplicing events in DMSXL oligodendrocytes and astrocytes increased the expression of RNA isoforms typical of precursor cell stages. Together these data suggest that expanded CUG RNA in glial cells affects preferentially differentiation-regulated molecular events. This hypothesis was corroborated by gene ontology (GO) analyses, which revealed an enrichment for biological processes and cellular components with critical roles during cell differentiation. Finally, we combined exon ontology with phosphoproteomics and cell imaging to explore the functional impact of CUG-associated spliceopathy on downstream protein metabolism. Changes in phosphorylation, protein isoform expression and intracellular localization in DMSXL astrocytes demonstrate the far-reaching impact of the DM1 repeat expansion on cell metabolism. Our multi-omics approaches provide insight into the mechanisms of CUG RNA toxicity in the CNS with cell type resolution, and support the priority for future research on non-neuronal mechanisms and proteomic changes in DM1 brain disease.
Collapse
Affiliation(s)
- Anchel González-Barriga
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Diana M Dincã
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Hélène Polvèche
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France.,Inserm/UEVE UMR 861, Université Paris Saclay I-STEM, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
23
|
Alvelos MI, Brüggemann M, Sutandy FXR, Juan-Mateu J, Colli ML, Busch A, Lopes M, Castela Â, Aartsma-Rus A, König J, Zarnack K, Eizirik DL. The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Sci Alliance 2021; 4:e202000825. [PMID: 33376132 PMCID: PMC7772782 DOI: 10.26508/lsa.202000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Brüggemann
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anke Busch
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Julian König
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Kathi Zarnack
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
24
|
Li Z, Zhang Y, Bush SJ, Tang C, Chen L, Zhang D, Urrutia AO, Lin JW, Chen L. MeDAS: a Metazoan Developmental Alternative Splicing database. Nucleic Acids Res 2021; 49:D144-D150. [PMID: 33084905 PMCID: PMC7779033 DOI: 10.1093/nar/gkaa886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.
Collapse
Affiliation(s)
- Zhidan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, UK
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Araxi O Urrutia
- Instituto de Ecologia, UNAM, Ciudad de Mexico 04510, Mexico.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Jing-Wen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Louadi Z, Yuan K, Gress A, Tsoy O, Kalinina OV, Baumbach J, Kacprowski T, List M. DIGGER: exploring the functional role of alternative splicing in protein interactions. Nucleic Acids Res 2021; 49:D309-D318. [PMID: 32976589 PMCID: PMC7778957 DOI: 10.1093/nar/gkaa768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing plays a major role in regulating the functional repertoire of the proteome. However, isoform-specific effects to protein-protein interactions (PPIs) are usually overlooked, making it impossible to judge the functional role of individual exons on a systems biology level. We overcome this barrier by integrating protein-protein interactions, domain-domain interactions and residue-level interactions information to lift exon expression analysis to a network level. Our user-friendly database DIGGER is available at https://exbio.wzw.tum.de/digger and allows users to seamlessly switch between isoform and exon-centric views of the interactome and to extract sub-networks of relevant isoforms, making it an essential resource for studying mechanistic consequences of alternative splicing.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kevin Yuan
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Alexander Gress
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Olga Tsoy
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Tim Kacprowski
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
26
|
Deng Y, Luo H, Yang Z, Liu L. LncAS2Cancer: a comprehensive database for alternative splicing of lncRNAs across human cancers. Brief Bioinform 2020; 22:5895039. [PMID: 32820322 DOI: 10.1093/bib/bbaa179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating studies demonstrated that the roles of lncRNAs for tumorigenesis were isoform-dependent and their aberrant splicing patterns in cancers contributed to function specificity. However, there is no existing database focusing on cancer-related alternative splicing of lncRNAs. Here, we developed a comprehensive database called LncAS2Cancer, which collected 5335 bulk RNA sequencing and 1826 single-cell RNA sequencing samples, covering over 30 cancer types. By applying six state-of-the-art splicing algorithms, 50 859 alternative splicing events for 8 splicing types were identified and deposited in the database. In addition, the database contained the following information: (i) splicing patterns of lncRNAs under seven different conditions, such as gene interference, which facilitated to infer potential regulators; (ii) annotation information derived from eight sources and manual curation, to understand the functional impact of affected sequences; (iii) survival analysis to explore potential biomarkers; as well as (iv) a suite of tools to browse, search, visualize and download interesting information. LncAS2Cancer could not only confirm the known cancer-associated lncRNA isoforms but also indicate novel ones. Using the data deposited in LncAS2Cancer, we compared gene model and transcript overlap between lncRNAs and protein-coding genes and discusses how these factors, along with sequencing depth, affected the interpretation of splicing signals. Based on recurrent signals and potential confounders, we proposed a reliable score to prioritize splicing events for further elucidation. Together, with the broad collection of lncRNA splicing patterns and annotation, LncAS2Cancer will provide important new insights into the diverse functional roles of lncRNA isoforms in human cancers. LncAS2Cancer is freely available at https://lncrna2as.cd120.com/.
Collapse
Affiliation(s)
- Yulan Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Hao Luo
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Zhenyu Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University
| |
Collapse
|
27
|
Hershberger CE, Moyer DC, Adema V, Kerr CM, Walter W, Hutter S, Meggendorfer M, Baer C, Kern W, Nadarajah N, Twardziok S, Sekeres MA, Haferlach C, Haferlach T, Maciejewski JP, Padgett RA. Complex landscape of alternative splicing in myeloid neoplasms. Leukemia 2020; 35:1108-1120. [PMID: 32753690 PMCID: PMC8101081 DOI: 10.1038/s41375-020-1002-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
Myeloid neoplasms are characterized by frequent mutations in at least seven components of the spliceosome that have distinct roles in the process of pre-mRNA splicing. Hotspot mutations in SF3B1, SRSF2, U2AF1 and loss of function mutations in ZRSR2 have revealed widely different aberrant splicing signatures with little overlap. However, previous studies lacked the power necessary to identify commonly mis-spliced transcripts in heterogeneous patient cohorts. By performing RNA-Seq on bone marrow samples from 1,258 myeloid neoplasm patients and 63 healthy bone marrow donors, we identified transcripts frequently mis-spliced by mutated splicing factors (SF), rare SF mutations with common alternative splicing (AS) signatures, and SF-dependent neojunctions. We characterized 17,300 dysregulated AS events using a pipeline designed to predict the impact of mis-splicing on protein function. Meta-splicing analysis revealed a pattern of reduced levels of retained introns among disease samples that was exacerbated in patients with splicing factor mutations. These introns share characteristics with “detained introns,” a class of introns that have been shown to promote differentiation by detaining pro-proliferative transcripts in the nucleus. In this study, we have functionally characterized 17,300 targets of mis-splicing by the SF mutations, identifying a common pathway by which AS may promote maintenance of a proliferative state.
Collapse
Affiliation(s)
- Courtney E Hershberger
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Devlin C Moyer
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Vera Adema
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | | | | | | - Mikkael A Sekeres
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Richard A Padgett
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
28
|
Ameur LB, Marie P, Thenoz M, Giraud G, Combe E, Claude JB, Lemaire S, Fontrodona N, Polveche H, Bastien M, Gessain A, Wattel E, Bourgeois CF, Auboeuf D, Mortreux F. Intragenic recruitment of NF-κB drives splicing modifications upon activation by the oncogene Tax of HTLV-1. Nat Commun 2020; 11:3045. [PMID: 32546717 PMCID: PMC7298006 DOI: 10.1038/s41467-020-16853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB–responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases. The nuclear factors κB (NF-κB) is a transcription factor involved in immune functions, inflammation, and cancer. Here, the authors show that the NF-κB factor RELA regulates splicing of target genes by recruiting DDX17 on chromatin upon expression of the viral oncogene Tax.
Collapse
Affiliation(s)
- Lamya Ben Ameur
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Paul Marie
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Morgan Thenoz
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,Department of Pediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, 9000, Gent, Belgium
| | - Guillaume Giraud
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Emmanuel Combe
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Sebastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | | | - Marine Bastien
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogénes, Institut Pasteur, Paris, France
| | - Eric Wattel
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France.,Université Lyon 1, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| |
Collapse
|
29
|
An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nat Commun 2020; 11:2584. [PMID: 32444635 PMCID: PMC7244579 DOI: 10.1038/s41467-020-16327-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells. The cytokine IFNα is expressed in the islets of individuals with type 1 diabetes and contributes to local inflammation and destruction of beta cells. Here, the authors provide a global multiomics view of IFNα-induced changes in human beta cells at the level of chromatin, mRNA and protein expression.
Collapse
|
30
|
de la Fuente L, Arzalluz-Luque Á, Tardáguila M, Del Risco H, Martí C, Tarazona S, Salguero P, Scott R, Lerma A, Alastrue-Agudo A, Bonilla P, Newman JRB, Kosugi S, McIntyre LM, Moreno-Manzano V, Conesa A. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol 2020; 21:119. [PMID: 32423416 PMCID: PMC7236505 DOI: 10.1186/s13059-020-02028-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in long-read sequencing solve inaccuracies in alternative transcript identification of full-length transcripts in short-read RNA-Seq data, which encourages the development of methods for isoform-centered functional analysis. Here, we present tappAS, the first framework to enable a comprehensive Functional Iso-Transcriptomics (FIT) analysis, which is effective at revealing the functional impact of context-specific post-transcriptional regulation. tappAS uses isoform-resolved annotation of coding and non-coding functional domains, motifs, and sites, in combination with novel analysis methods to interrogate different aspects of the functional readout of transcript variants and isoform regulation. tappAS software and documentation are available at https://app.tappas.org.
Collapse
Affiliation(s)
- Lorena de la Fuente
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
- Present Address: Bioinformatics Unit, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Arzalluz-Luque
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Manuel Tardáguila
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Héctor Del Risco
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Cristina Martí
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Sonia Tarazona
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Pedro Salguero
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raymond Scott
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alberto Lerma
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Pablo Bonilla
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Shunichi Kosugi
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Hyun J, Sun Z, Ahmadi AR, Bangru S, Chembazhi UV, Du K, Chen T, Tsukamoto H, Rusyn I, Kalsotra A, Diehl AM. Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. J Clin Invest 2020; 130:2129-2145. [PMID: 31945016 PMCID: PMC7108908 DOI: 10.1172/jci132691] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Severe alcoholic hepatitis (SAH) is a deadly liver disease without an effective medical therapy. Although SAH mortality is known to correlate with hepatic accumulation of immature liver cells, why this occurs and how it causes death are unclear. Here, we demonstrate that expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA-splicing factor that maintains the nonproliferative, mature phenotype of adult hepatocytes, was suppressed in both human SAH and various mouse models of SAH in parallel with the severity of alcohol consumption and liver damage. Inflammatory cytokines released by excessive alcohol ingestion reprogrammed adult hepatocytes into proliferative, fetal-like cells by suppressing ESRP2. Sustained loss of ESRP2 permitted reemergence of a fetal RNA-splicing program that attenuates the Hippo signaling pathway and thus allows fetal transcriptional regulators to accumulate in adult liver. We further showed that depleting ESRP2 in mice exacerbated alcohol-induced steatohepatitis, enabling surviving hepatocytes to shed adult hepatocyte functions and become more regenerative, but threatening overall survival by populating the liver with functionally immature hepatocytes. Our findings revealed a mechanism that explains why liver failure develops in patients with the clinical syndrome of SAH, suggesting that recovery from SAH might be improved by limiting adult-to-fetal reprogramming in hepatocytes.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
- Regeneration Next, Duke University School of Medicine, Durham, North Carolina, USA
- Institute of Tissue Regeneration Engineering (ITREN) and College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sushant Bangru
- Department of Biochemistry, School of Molecular and Cellular Biology, and
- Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ullas V. Chembazhi
- Department of Biochemistry, School of Molecular and Cellular Biology, and
| | - Kuo Du
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Tianyi Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, and
- Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| |
Collapse
|
32
|
Ait-Hamlat A, Zea DJ, Labeeuw A, Polit L, Richard H, Laine E. Transcripts' Evolutionary History and Structural Dynamics Give Mechanistic Insights into the Functional Diversity of the JNK Family. J Mol Biol 2020; 432:2121-2140. [PMID: 32067951 DOI: 10.1016/j.jmb.2020.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Alternative splicing and alternative initiation/termination transcription sites have the potential to greatly expand the proteome in eukaryotes by producing several transcript isoforms from the same gene. Although these mechanisms are well described at the genomic level, little is known about their contribution to protein evolution and their impact at the protein structure level. Here, we address both issues by reconstructing the evolutionary history of transcripts and by modeling the tertiary structures of the corresponding protein isoforms. We reconstruct phylogenetic forests relating 60 protein-coding transcripts from the c-Jun N-terminal kinase (JNK) family observed in seven species. We identify two alternative splicing events of ancient origin and show that they induce subtle changes in the protein's structural dynamics. We highlight a previously uncharacterized transcript whose predicted structure seems stable in solution. We further demonstrate that orphan transcripts, for which no phylogeny could be reconstructed, display peculiar sequence and structural properties. Our approach is implemented in PhyloSofS (Phylogenies of Splicing Isoforms Structures), a fully automated computational tool freely available at https://github.com/PhyloSofS-Team/PhyloSofS.
Collapse
Affiliation(s)
- Adel Ait-Hamlat
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Diego Javier Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Antoine Labeeuw
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Lélia Polit
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| |
Collapse
|
33
|
Hyung D, Kim J, Cho SY, Park C. ASpedia: a comprehensive encyclopedia of human alternative splicing. Nucleic Acids Res 2019; 46:D58-D63. [PMID: 29106599 PMCID: PMC5753336 DOI: 10.1093/nar/gkx1014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing confers the human genome complexity by increasing the diversity of expressed mRNAs. Hundreds or thousands of splicing regions have been identified through differential alternative splicing analysis of high-throughput datasets. However, it is hard to explain the functional impact of each splicing event. Protein domain formation and nonsense-mediated decay are considered the main functional features of splicing. However, other functional features such as miRNA target sites, phosphorylation sites and single-nucleotide variations are directly affected by alternative splicing and affect downstream function. Hence, we established ASpedia: a comprehensive database for human alternative splicing annotation, which encompasses a range of functions, from genomic annotation to isoform-specific function (ASpedia, http://combio.snu.ac.kr/aspedia). The database provides three features: (i) genomic annotation extracted from DNA, RNA and proteins; (ii) transcription and regulation elements analyzed from next-generation sequencing datasets; and (iii) isoform-specific functions collected from known and published datasets. The ASpedia web application includes three components: an annotation database, a retrieval system and a browser specialized in the identification of human alternative splicing events. The retrieval system supports multiple AS event searches resulting from high-throughput analysis and the AS browser comprises genome tracks. Thus, ASpedia facilitates the systemic annotation of the functional impacts of multiple AS events.
Collapse
Affiliation(s)
- Daejin Hyung
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408, Republic of Korea.,Department of Computer Engineering, Dong-A University, 37 Nakdong-daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jihyun Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408, Republic of Korea
| | - Soo Young Cho
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408, Republic of Korea
| | - Charny Park
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408, Republic of Korea
| |
Collapse
|
34
|
Fontrodona N, Aubé F, Claude JB, Polvèche H, Lemaire S, Tranchevent LC, Modolo L, Mortreux F, Bourgeois CF, Auboeuf D. Interplay between coding and exonic splicing regulatory sequences. Genome Res 2019; 29:711-722. [PMID: 30962178 PMCID: PMC6499313 DOI: 10.1101/gr.241315.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/28/2019] [Indexed: 01/24/2023]
Abstract
The inclusion of exons during the splicing process depends on the binding of splicing factors to short low-complexity regulatory sequences. The relationship between exonic splicing regulatory sequences and coding sequences is still poorly understood. We demonstrate that exons that are coregulated by any given splicing factor share a similar nucleotide composition bias and preferentially code for amino acids with similar physicochemical properties because of the nonrandomness of the genetic code. Indeed, amino acids sharing similar physicochemical properties correspond to codons that have the same nucleotide composition bias. In particular, we uncover that the TRA2A and TRA2B splicing factors that bind to adenine-rich motifs promote the inclusion of adenine-rich exons coding preferentially for hydrophilic amino acids that correspond to adenine-rich codons. SRSF2 that binds guanine/cytosine-rich motifs promotes the inclusion of GC-rich exons coding preferentially for small amino acids, whereas SRSF3 that binds cytosine-rich motifs promotes the inclusion of exons coding preferentially for uncharged amino acids, like serine and threonine that can be phosphorylated. Finally, coregulated exons encoding amino acids with similar physicochemical properties correspond to specific protein features. In conclusion, the regulation of an exon by a splicing factor that relies on the affinity of this factor for specific nucleotide(s) is tightly interconnected with the exon-encoded physicochemical properties. We therefore uncover an unanticipated bidirectional interplay between the splicing regulatory process and its biological functional outcome.
Collapse
Affiliation(s)
- Nicolas Fontrodona
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Fabien Aubé
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Jean-Baptiste Claude
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Hélène Polvèche
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Sébastien Lemaire
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Léon-Charles Tranchevent
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg
| | - Laurent Modolo
- LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, F-69007, Lyon, France
| | - Franck Mortreux
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Cyril F Bourgeois
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - Didier Auboeuf
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| |
Collapse
|
35
|
Zhou L, Guo J, Jia R. Oncogene SRSF3 suppresses autophagy via inhibiting BECN1 expression. Biochem Biophys Res Commun 2019; 509:966-972. [PMID: 30654935 DOI: 10.1016/j.bbrc.2019.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Autophagy is an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been demonstrated to be associated with many human diseases, including cancer. Alternative splicing of pre-mRNA is also an evolutionarily conserved regulatory mechanism of gene expression. Dysregulation of alternative splicing is increasingly linked to cancer. However, the association between these two cellular conserved processes is unclear. Splicing factors are critical players in the regulation of alternative splicing of pre-mRNA. We analyzed the expression of 28 splicing factors during hypoxia-induced autophagy in three oral squamous cell carcinoma (OSCC) cell lines. We discovered that oncogenes SRSF3 and SRSF1 are significantly downregulated in all three cell lines. Moreover, knockdown of SRSF3 increased autophagic activity, whereas overexpression of SRSF3 inhibited hypoxia-induced autophagy. Loss-of-function and gain-of-function assays also showed that SRSF3 inhibits the expression of p65 and FoxO1 and their downstream target gene BECN1, a key regulator of autophagy. Our results demonstrated that splicing factor SRSF3 is an autophagy suppressor.
Collapse
Affiliation(s)
- Lu Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
36
|
Ashraf U, Benoit-Pilven C, Lacroix V, Navratil V, Naffakh N. Advances in Analyzing Virus-Induced Alterations of Host Cell Splicing. Trends Microbiol 2018; 27:268-281. [PMID: 30577974 DOI: 10.1016/j.tim.2018.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/19/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
Alteration of host cell splicing is a common feature of many viral infections which is underappreciated because of the complexity and technical difficulty of studying alternative splicing (AS) regulation. Recent advances in RNA sequencing technologies revealed that up to several hundreds of host genes can show altered mRNA splicing upon viral infection. The observed changes in AS events can be either a direct consequence of viral manipulation of the host splicing machinery or result indirectly from the virus-induced innate immune response or cellular damage. Analysis at a higher resolution with single-cell RNAseq, and at a higher scale with the integration of multiple omics data sets in a systems biology perspective, will be needed to further comprehend this complex facet of virus-host interactions.
Collapse
Affiliation(s)
- Usama Ashraf
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France; CNRS UMR3569, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité EA302, F-75015 Paris, France
| | - Clara Benoit-Pilven
- INSERM U1028; CNRS UMR5292, Lyon Neuroscience Research Center, Genetic of Neuro-development Anomalies Team, F-69000 Lyon, France; Université Claude Bernard Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France; EPI ERABLE, INRIA Grenoble Rhône-Alpes, F-38330 Montbonnot Saint-Martin, France
| | - Vincent Lacroix
- Université Claude Bernard Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France; EPI ERABLE, INRIA Grenoble Rhône-Alpes, F-38330 Montbonnot Saint-Martin, France
| | - Vincent Navratil
- PRABI, Rhône Alpes Bioinformatics Center, UCBL, Université Claude Bernard Lyon 1, F-69000 Lyon, France; European Virus Bioinformatics Center, Leutragraben 1, D-07743 Jena, Germany
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France; CNRS UMR3569, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité EA302, F-75015 Paris, France.
| |
Collapse
|
37
|
Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat Struct Mol Biol 2018; 25:928-939. [PMID: 30250226 PMCID: PMC6173981 DOI: 10.1038/s41594-018-0129-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome- and polysome-profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in the mRNA translation of metabolic and RNA processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an ESRP2-Hippo pathway-alternative splicing axis that supports regeneration following chronic liver injury.
Collapse
|
38
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|
39
|
hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep 2018; 8:2206. [PMID: 29396485 PMCID: PMC5797138 DOI: 10.1038/s41598-018-20360-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Little is known about how RNA binding proteins cooperate to control splicing, and how stress pathways reconfigure these assemblies to alter splice site selection. We have shown previously that SRSF10 plays an important role in the Bcl-x splicing response to DNA damage elicited by oxaliplatin in 293 cells. Here, RNA affinity assays using a portion of the Bcl-x transcript required for this response led to the recovery of the SRSF10-interacting protein 14-3-3ε and the Sam68-interacting protein hnRNP A1. Although SRSF10, 14-3-3ε, hnRNP A1/A2 and Sam68 do not make major contributions to the regulation of Bcl-x splicing under normal growth conditions, upon DNA damage they become important to activate the 5′ splice site of pro-apoptotic Bcl-xS. Our results indicate that DNA damage reconfigures the binding and activity of several regulatory RNA binding proteins on the Bcl-x pre-mRNA. Moreover, SRSF10, hnRNP A1/A2 and Sam68 collaborate to drive the DNA damage-induced splicing response of several transcripts that produce components implicated in apoptosis, cell-cycle control and DNA repair. Our study reveals how the circuitry of splicing factors is rewired to produce partnerships that coordinate alternative splicing across processes crucial for cell fate.
Collapse
|
40
|
Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallières M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gómez-Velázquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 2017; 27:1759-1768. [PMID: 28855263 PMCID: PMC5630039 DOI: 10.1101/gr.220962.117] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) generates remarkable regulatory and proteomic complexity in metazoans. However, the functions of most AS events are not known, and programs of regulated splicing remain to be identified. To address these challenges, we describe the Vertebrate Alternative Splicing and Transcription Database (VastDB), the largest resource of genome-wide, quantitative profiles of AS events assembled to date. VastDB provides readily accessible quantitative information on the inclusion levels and functional associations of AS events detected in RNA-seq data from diverse vertebrate cell and tissue types, as well as developmental stages. The VastDB profiles reveal extensive new intergenic and intragenic regulatory relationships among different classes of AS and previously unknown and conserved landscapes of tissue-regulated exons. Contrary to recent reports concluding that nearly all human genes express a single major isoform, VastDB provides evidence that at least 48% of multiexonic protein-coding genes express multiple splice variants that are highly regulated in a cell/tissue-specific manner, and that >18% of genes simultaneously express multiple major isoforms across diverse cell and tissue types. Isoforms encoded by the latter set of genes are generally coexpressed in the same cells and are often engaged by translating ribosomes. Moreover, they are encoded by genes that are significantly enriched in functions associated with transcriptional control, implying they may have an important and wide-ranging role in controlling cellular activities. VastDB thus provides an unprecedented resource for investigations of AS function and regulation.
Collapse
Affiliation(s)
- Javier Tapial
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Kevin C H Ha
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - André Gohr
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Antonio Hermoso-Pulido
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jon Permanyer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Reza Sodaei
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Yamile Marquez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luca Cozzuto
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Xinchen Wang
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melisa Gómez-Velázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Julia Ponomarenko
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Manuel Irimia
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|