1
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2024. [PMID: 39387681 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences-Santé, École Normale Supérieure de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
| | - Françoise Porteu
- Institut Gustave Roussy, INSERM U1287 Université Paris Saclay, Villejuif, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon Bérard, Lyon, France
- ErVimmune, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
3
|
Masson E, Maestri S, Bordeau V, Cooper DN, Férec C, Chen JM. Alu insertion-mediated dsRNA structure formation with pre-existing Alu elements as a disease-causing mechanism. Am J Hum Genet 2024; 111:2176-2189. [PMID: 39265574 PMCID: PMC11480803 DOI: 10.1016/j.ajhg.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Sandrine Maestri
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France.
| |
Collapse
|
4
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615242. [PMID: 39386569 PMCID: PMC11463404 DOI: 10.1101/2024.09.26.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2+ tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Diogo F. T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Willey S, Van Deynze K, Mumm C, Boyle AP, Cortese A, Ndayisaba A, Khurana V, Barmada SJ, Dijkstra AA, Todd PK. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS neurons. SCIENCE ADVANCES 2024; 10:eadn2321. [PMID: 39231235 PMCID: PMC11373605 DOI: 10.1126/sciadv.adn2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1. To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.
Collapse
Affiliation(s)
- Connor J Maltby
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| | - Samantha J Grudzien
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yomira Palacios
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Muiños
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- UM SMART Undergraduate Summer Program, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Suárez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Asher
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kinsey Van Deynze
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia 27100, Italy
| | - Alain Ndayisaba
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Polat S, Şimşek ZÖ. Association between ACE (rs4343 and rs1799752), AGTR1 (rs5186), and PAI-1 (rs2227631) polymorphisms in the host and the severity of Covid-19 infection. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-22. [PMID: 39092900 DOI: 10.1080/15257770.2024.2387033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE It is necessary to identify appropriate clinical, biochemical, epidemiological and genetic biomarkers to elucidate the underlying mechanisms of the coronavirus disease-2019 (COVID-19) disease. The study focused on not only the link between disease severity (non-intense unit care (non-ICU) versus intensive unit care (ICU) and genetic susceptibility in COVID-19 patients but also the connection between comorbidity and genetic susceptibility affecting the severity of COVID-19. SUBJECT AND METHODS One hundred and sixty-two COVID-19 patients treated in the non-ICU and ICU in Kayseri City Hospital were included. All volunteers underwent a physical examination and biochemical evaluation. Angiotensin-converting enzyme (ACE p.T776T G > A(rs4343) and g.16471_16472delinsALU (also referred to as I/D polymorphism; rs1799752), angiotensin II receptor type-1 (AGTR1) c.*86A > C (also referred to as A1166C; rs5186), and plasminogen activator inhibitor-1 (PAI-1-844 G > A (rs2227631) polymorphisms were analysed as well. RESULTS To have ACE "ID" genotype did not change the severity of the disease (OR: 0.92, 95% CI: 0.41-2.1, p = 0.84), but decreased the mortality risk 2.9-fold (OR: 2.9, 95% CI: 1.1-7.0, p = 0.03). In PAI-1-844 G > A, having the "AA" genotype in the "A" recessive model increased the risk of the diabetes mellitus (DM) 2.3-fold (OR: 2.3 95%, CI: 1.16-4.66, p = 0.018). In the "G" recessive model, to have the GG genotype increased the risk of chronic kidney disease (CKD) 4.8-fold (OR:4.8, 95% CI: 1.5-15.5, p = 0.008). "GG" genotype in the DM group had a higher fibrinogen level compared to those with the "AG" genotype (AG:4847.2 mg/L (1704.3) versus GG:6444.67 mg/L (1861.62) p = 0.019) and "AA" genotype in the CKD group had lower platelet levels and those with "GG" had higher platelet levels (AA:149 µL (18-159) versus GG: 228 µL (146-357) p = 0.022). CONCLUSION This study was shown that genetic predispositions that causes comorbidities were also likely to affect the prognosis of COVID-19.
Collapse
Affiliation(s)
- Seher Polat
- Medical Faculty, Department of Medical Genetics, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | | |
Collapse
|
7
|
Li G, Salomonis N. RNA Isoforms as Broad Targets for Cancer Immunotherapy. DNA Cell Biol 2024; 43:363-368. [PMID: 38770618 DOI: 10.1089/dna.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
While immunotherapy is typically reserved for cancer patients with a high mutational burden, neoantigens produced from post-transcriptional regulation provide a possible untapped reservoir of common immunogenic targets for new targeted cancer therapies. In this review, we describe new and emerging technologies, unconventional molecular targets and challenges for the precision immune targeting of diverse malignancies. In particular, we focus on the unique potential of targeting alternative mRNA isoforms as a source for broadly presented neoantigens and cell surface proteins. Finally, we discuss emerging challenges for alternative isoform immune targeting, with an emphasis in silico prioritization and high-throughput target validation.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
8
|
Hall A, Middlehurst B, Cadogan MAM, Reed X, Billingsley KJ, Bubb VJ, Quinn JP. A SINE-VNTR-Alu at the LRIG2 locus is associated with proximal and distal gene expression in CRISPR and population models. Sci Rep 2024; 14:792. [PMID: 38191889 PMCID: PMC10774264 DOI: 10.1038/s41598-023-50307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons represent mobile regulatory elements that have the potential to influence the surrounding genome when they insert into a locus. Evolutionarily recent mobilisation has resulted in loci in the human genome where a given retrotransposon might be observed to be present or absent, termed a retrotransposon insertion polymorphism (RIP). We previously observed that an SVA RIP ~ 2 kb upstream of LRIG2 on chromosome 1, the 'LRIG2 SVA', was associated with differences in local gene expression and methylation, and that the two were correlated. Here, we have used CRISPR-mediated deletion of the LRIG2 SVA in a cell line model to validate that presence of the retrotransposon is directly affecting local expression and provide evidence that is suggestive of a modest role for the SVA in modulating nearby methylation. Additionally, in leveraging an available Hi-C dataset we observed that the LRIG2 SVA was also involved in long-range chromatin interactions with a cluster of genes ~ 300 kb away, and that expression of these genes was to varying degrees associated with dosage of the SVA in both CRISPR cell line and population models. Altogether, these data support a regulatory role for SVAs in the modulation of gene expression, with the latter potentially involving chromatin looping, consistent with the model that RIPs may contribute to interpersonal differences in transcriptional networks.
Collapse
Affiliation(s)
- Ashley Hall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Max A M Cadogan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
9
|
He Z, Chen O, Phillips N, Pasquesi GIM, Sabunciyan S, Florea L. Predicting Alu exonization in the human genome with a deep learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574099. [PMID: 38260329 PMCID: PMC10802380 DOI: 10.1101/2024.01.03.574099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alu exonization, or the recruitment of intronic Alu elements into gene sequences, has contributed to functional diversification; however, its extent and the ways in which it influences gene regulation are not fully understood. We developed an unbiased approach to predict Alu exonization events from genomic sequences implemented in a deep learning model, eXAlu, that overcomes the limitations of tissue or condition specificity and the computational burden of RNA-seq analysis. The model captures previously reported characteristics of exonized Alu sequences and can predict sequence elements important for Alu exonization. Using eXAlu, we estimate the number of Alu elements in the human genome undergoing exonization to be between 55-110K, 11-21 fold more than represented in the GENCODE gene database. Using RT-PCR we were able to validate selected predicted Alu exonization events, supporting the accuracy of our method. Lastly, we highlight a potential application of our method to identify polymorphic Alu insertion exonizations in individuals and in the population from whole genome sequencing data.
Collapse
Affiliation(s)
- Zitong He
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21205
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Noelani Phillips
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109
| | - Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 and Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Liliana Florea
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
10
|
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Khurana V, Barmada SJ, Dijkstra AA, Todd PK. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571345. [PMID: 38168171 PMCID: PMC10760133 DOI: 10.1101/2023.12.13.571345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a late onset, recessively inherited neurodegenerative disorder caused by biallelic, non-reference pentameric AAGGG(CCCTT) repeat expansions within the second intron of replication factor complex subunit 1 (RFC1). To investigate how these repeats cause disease, we generated CANVAS patient induced pluripotent stem cell (iPSC) derived neurons (iNeurons) and utilized calcium imaging and transcriptomic analysis to define repeat-elicited gain-of-function and loss-of-function contributions to neuronal toxicity. AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway functions. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins that selectively accumulate in CANVAS patient brains. However, neither these proteins nor repeat RNA foci were detected in iNeurons, and overexpression of these repeats in isolation did not induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded allele. These phenotypic deficits were not replicated by knockdown of RFC1 in control neurons and were not rescued by ectopic expression of RFC1. These findings support a repeat-dependent but RFC1-independent cause of neuronal dysfunction in CANVAS, with important implications for therapeutic development in this currently untreatable condition.
Collapse
Affiliation(s)
- Connor J. Maltby
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yomira Palacios
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Muiños
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- UM SMART Undergraduate Summer Program, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Suárez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Asher
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anke A. Dijkstra
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter K. Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Li X, Lu K, Chen X, Tu K, Xie D. capTEs enables locus-specific dissection of transcriptional outputs from reference and nonreference transposable elements. Commun Biol 2023; 6:974. [PMID: 37741908 PMCID: PMC10517987 DOI: 10.1038/s42003-023-05349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Transposable elements (TEs) serve as both insertional mutagens and regulatory elements in cells, and their aberrant activity is increasingly being revealed to contribute to diseases and cancers. However, measuring the transcriptional consequences of nonreference and young TEs at individual loci remains challenging with current methods, primarily due to technical limitations, including short read lengths generated and insufficient coverage in target regions. Here, we introduce a long-read targeted RNA sequencing method, Cas9-assisted profiling TE expression sequencing (capTEs), for quantitative analysis of transcriptional outputs for individual TEs, including transcribed nonreference insertions, noncanonical transcripts from various transcription patterns and their correlations with expression changes in related genes. This method selectively identified TE-containing transcripts and outputted data with up to 90% TE reads, maintaining a comparable data yield to whole-transcriptome sequencing. We applied capTEs to human cancer cells and found that internal and inserted Alu elements may employ distinct regulatory mechanisms to upregulate gene expression. We expect that capTEs will be a critical tool for advancing our understanding of the biological functions of individual TEs at the locus level, revealing their roles as both mutagens and regulators in biological and pathogenic processes.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Keying Lu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiao Chen
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kailing Tu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
14
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
15
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
16
|
Blechter B, Wong JYY, Hu W, Cawthon R, Downward GS, Portengen L, Zhang Y, Ning B, Rahman ML, Ji BT, Li J, Yang K, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Exposure to smoky coal combustion emissions and leukocyte Alu retroelement copy number. Carcinogenesis 2023; 44:404-410. [PMID: 37119119 PMCID: PMC10414142 DOI: 10.1093/carcin/bgad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 04/28/2023] [Indexed: 04/30/2023] Open
Abstract
Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden that has been linked to multiple diseases including lung cancer. In Xuanwei, China, lung cancer rate for non-smoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal. Alu retroelements, repetitive mobile DNA sequences that can somatically multiply and promote genomic instability have been associated with risk of lung cancer and diesel engine exhaust exposure. We conducted analyses for 160 non-smoking women in an exposure assessment study in Xuanwei, China with a repeat sample from 49 subjects. Quantitative PCR was used to measure Alu repeat copy number relative to albumin gene copy number (Alu/ALB ratio). Associations between clusters derived from predicted levels of 43 HAP constituents, 5-methylchrysene (5-MC), a PAH previously associated with lung cancer in Xuanwei and was selected a priori for analysis, and Alu repeats were analyzed using generalized estimating equations. A cluster of 31 PAHs reflecting current exposure was associated with increased Alu copy number (β:0.03 per standard deviation change; 95% confidence interval (CI):0.01,0.04; P-value = 2E-04). One compound within this cluster, 5-MC, was also associated with increased Alu copy number (P-value = 0.02). Our findings suggest that exposure to PAHs due to indoor smoky coal combustion may contribute to genomic instability. Additionally, our study provides further support for 5-MC as a prominent carcinogenic component of smoky coal emissions. Further studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - George S Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
17
|
Pfaff AL, Bubb VJ, Quinn JP, Koks S. A Genome-Wide Screen for the Exonisation of Reference SINE-VNTR-Alus and Their Expression in CNS Tissues of Individuals with Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:11548. [PMID: 37511314 PMCID: PMC10380656 DOI: 10.3390/ijms241411548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The hominid-specific retrotransposon SINE-VNTR-Alu (SVA) is a composite element that has contributed to the genetic variation between individuals and influenced genomic structure and function. SVAs are involved in modulating gene expression and splicing patterns, altering mRNA levels and sequences, and have been associated with the development of disease. We evaluated the genome-wide effects of SVAs present in the reference genome on transcript sequence and expression in the CNS of individuals with and without the neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS). This study identified SVAs in the exons of 179 known transcripts, several of which were expressed in a tissue-specific manner, as well as 92 novel exonisation events occurring in the motor cortex. An analysis of 65 reference genome SVAs polymorphic for their presence/absence in the ALS consortium cohort did not identify any elements that were significantly associated with disease status, age at onset, and survival. However, there were transcripts, such as transferrin and HLA-A, that were differentially expressed between those with or without disease, and expression levels were associated with the genotype of proximal SVAs. This study demonstrates the functional consequences of several SVA elements altering mRNA splicing patterns and expression levels in tissues of the CNS.
Collapse
Affiliation(s)
- Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
18
|
Berthelier J, Furci L, Asai S, Sadykova M, Shimazaki T, Shirasu K, Saze H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat Commun 2023; 14:3248. [PMID: 37277361 DOI: 10.1038/s41467-023-38954-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.
Collapse
Grants
- JP20H02995 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05913 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Munissa Sadykova
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Tomoe Shimazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
19
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
20
|
Gruhn WH, Tang WW, Dietmann S, Alves-Lopes JP, Penfold CA, Wong FC, Ramakrishna NB, Surani MA. Epigenetic resetting in the human germ line entails histone modification remodeling. SCIENCE ADVANCES 2023; 9:eade1257. [PMID: 36652508 PMCID: PMC9848478 DOI: 10.1126/sciadv.ade1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation. Efficient maintenance of a heterochromatic state is limited to a subset of genomic loci, such as evolutionarily young TEs and some developmental genes, which require H3K9me3 and H3K27me3, respectively, for efficient transcriptional repression. Accordingly, transcriptional repression in hPGCs presents an exemplary balanced system relying on local maintenance of heterochromatic features and a lack of inductive cues.
Collapse
Affiliation(s)
- Wolfram H. Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Walfred W.C. Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - João P. Alves-Lopes
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Christopher A. Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Frederick C. K. Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Navin B. Ramakrishna
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore 138672, Singapore
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
21
|
Foord C, Hsu J, Jarroux J, Hu W, Belchikov N, Pollard S, He Y, Joglekar A, Tilgner HU. The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing. Nat Methods 2023; 20:20-24. [PMID: 36635536 DOI: 10.1038/s41592-022-01715-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Shaun Pollard
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Yi He
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Remnants of SIRE1 retrotransposons in human genome? J Genet 2022. [DOI: 10.1007/s12041-022-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
24
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
25
|
Ferrández-Peral L, Zhan X, Alvarez-Estape M, Chiva C, Esteller-Cucala P, García-Pérez R, Julià E, Lizano E, Fornas Ò, Sabidó E, Li Q, Marquès-Bonet T, Juan D, Zhang G. Transcriptome innovations in primates revealed by single-molecule long-read sequencing. Genome Res 2022; 32:1448-1462. [PMID: 35840341 PMCID: PMC9435740 DOI: 10.1101/gr.276395.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Transcriptomic diversity greatly contributes to the fundamentals of disease, lineage-specific biology, and environmental adaptation. However, much of the actual isoform repertoire contributing to shaping primate evolution remains unknown. Here, we combined deep long- and short-read sequencing complemented with mass spectrometry proteomics in a panel of lymphoblastoid cell lines (LCLs) from human, three other great apes, and rhesus macaque, producing the largest full-length isoform catalog in primates to date. Around half of the captured isoforms are not annotated in their reference genomes, significantly expanding the gene models in primates. Furthermore, our comparative analyses unveil hundreds of transcriptomic innovations and isoform usage changes related to immune function and immunological disorders. The confluence of these evolutionary innovations with signals of positive selection and their limited impact in the proteome points to changes in alternative splicing in genes involved in immune response as an important target of recent regulatory divergence in primates.
Collapse
Affiliation(s)
| | | | | | - Cristina Chiva
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | | | - Eva Julià
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Òscar Fornas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen 2200, Denmark
- Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Zhang F, Raabe CA, Cardoso-Moreira M, Brosius J, Kaessmann H, Schmitz J. ExoPLOT: Representation of alternative splicing in human tissues and developmental stages with transposed element (TE) involvement. Genomics 2022; 114:110434. [PMID: 35863675 DOI: 10.1016/j.ygeno.2022.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Advances in RNA high-throughput sequencing and large-scale functional assays yield new insights into the multifaceted activities of transposed elements (TE) and many other previously undiscovered sequence elements. Currently, no tool for easy access, analysis, quantification, and visualization of alternatively spliced exons across multiple tissues or developmental stages is available. Also, analysis pipelines demand computational skills or hardware requirements, which often are hard to meet by wet-lab scientists. We developed ExoPLOT to enable simplified access to massive RNA high throughput sequencing datasets to facilitate the analysis of alternative splicing across many biological samples. To demonstrate the functonality of ExoPLOT, we analyzed the contributon of exonized TEs to human coding sequences (CDS). mRNA splice variants containing the TE-derived exon were quantified and compared to expression levels of TE-free splice variants. For analysis, we utilized 313 human cerebrum, cerebellum, heart, kidney, liver, ovary, and testis transcriptomes, representing various pre- and postnatal developmental stages. ExoPLOT visualizes the relative expression levels of alternative transcripts, e.g., caused by the insertion of new TE-derived exons, across different developmental stages of and among multiple tissues. This tool also provides a unique link between evolution and function during exonization (gain of a new exon) and exaptation (recruitment/co-optation) of a new exon. As input for analysis, we derived a database of 1151 repeat-masked, exonized TEs, representing all prominent families of transposons in the human genome and the collection of human consensus coding sequences (CCDS). ExoPLOT screened preprocessed RNA high-throughput sequencing datasets from seven human tissues to quantify and visualize the dynamics in RNA splicing for these 1151 TE-derived exons during the entire human organ development. In addition, we successfully mapped and analyzed 993 recently described exonized sequences from the human frontal cortex onto these 313 transcriptome libraries. ExoPLOT's approach to preprocessing RNA deep sequencing datasets facilitates alternative splicing analysis and significantly reduces processing times. In addition, ExoPLOT's design allows studying alternative RNA isoforms other than TE-derived in a customized - coordinate-based manner and is available at http://retrogenomics3.uni-muenster.de:3838/exz-plot-d/.
Collapse
Affiliation(s)
- Fengjun Zhang
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany.
| | | | | | - Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610000 Chengdu, Sichuan, China
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University, ZMBH, 69120 Heidelberg, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; EvoPAD-RTG, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
27
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
29
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
30
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
31
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
32
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
33
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
34
|
Florea L, Payer L, Antonescu C, Yang G, Burns K. Detection of Alu Exonization Events in Human Frontal Cortex From RNA-Seq Data. Front Mol Biosci 2021; 8:727537. [PMID: 34568430 PMCID: PMC8460874 DOI: 10.3389/fmolb.2021.727537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Alu exonization events functionally diversify the transcriptome, creating alternative mRNA isoforms and accounting for an estimated 5% of the alternatively spliced (skipped) exons in the human genome. We developed computational methods, implemented into a software called Alubaster, for detecting incorporation of Alu sequences in mRNA transcripts from large scale RNA-seq data sets. The approach detects Alu sequences derived from both fixed and polymorphic Alu elements, including Alu insertions missing from the reference genome. We applied our methods to 117 GTEx human frontal cortex samples to build and characterize a collection of Alu-containing mRNAs. In particular, we detected and characterized Alu exonizations occurring at 870 fixed Alu loci, of which 237 were novel, as well as hundreds of putative events involving Alu elements that are polymorphic variants or rare alleles not present in the reference genome. These methods and annotations represent a unique and valuable resource that can be used to understand the characteristics of Alu-containing mRNAs and their tissue-specific expression patterns.
Collapse
Affiliation(s)
- Liliana Florea
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Lindsay Payer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Corina Antonescu
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Guangyu Yang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Kathleen Burns
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Nakama M, Otsuka H, Sasai H, Ohnishi H, Morishige KI. A short sequence within AluSx induces downstream exon skipping in an ACAT1 minigene model. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1977723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mina Nakama
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroki Otsuka
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideo Sasai
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ken-ichirou Morishige
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
36
|
Liu G, Zhang C, Wang Y, Dai G, Liu SQ, Wang W, Pan YH, Ding J, Li H. New exon and accelerated evolution of placental gene Nrk occurred in the ancestral lineage of placental mammals. Placenta 2021; 114:14-21. [PMID: 34418750 DOI: 10.1016/j.placenta.2021.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The chorioallantoic placenta is a specific organ for placental mammals. However, the adaptive events during its emergence are still poorly investigated. METHODS We scanned the chromosome X to detect the accelerated evolution in the ancestral lineage of placental mammals, and constructed 3D protein structure models of a candidate by homology modeling. RESULTS Eight branch-specific accelerated regions were identified. Five of these regions (P=5.61×10-11 ~ 9.03×10-8) are located in the five exons of Nik-related kinase (Nrk), which is essential in placenta development and fetoplacental induction of labor. Nrk belongs to the germinal center kinase-IV subfamily with the overall similar protein structure; however, a new exon emerged in ancestors of placental mammals and its sequence has been conserved since then. Structure modelling of NRK suggests that the accelerated exons and the placental-mammal-specific exon (as a new loop) could change the enzymatic activity and the structure of placental mammal NRK. DISCUSSION Since the new loop is surrounded by the accelerated protein regions, it is likely that the new loop occurred and shifted the function of NRK, and then the accelerated evolution of Nrk occurred to adapt the structure change caused by the new loop in the ancestral lineage of placental mammals. Overall, this work suggests that the fundamental process of placental development and fetoplacental induction of labor has been targeted by positive Darwinian selection.
Collapse
Affiliation(s)
- Guopeng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chunxiao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuting Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Guangyi Dai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wenshuai Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
37
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
38
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
40
|
Wong JYY, Cawthon R, Dai Y, Vermeulen R, Bassig BA, Hu W, Duan H, Niu Y, Downward GS, Leng S, Ji BT, Fu W, Xu J, Meliefste K, Zhou B, Yang J, Ren D, Ye M, Jia X, Meng T, Bin P, Hosgood Iii HD, Silverman DT, Rothman N, Zheng Y, Lan Q. Elevated Alu retroelement copy number among workers exposed to diesel engine exhaust. Occup Environ Med 2021; 78:823-828. [PMID: 34039759 DOI: 10.1136/oemed-2021-107462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Millions of workers worldwide are exposed to diesel engine exhaust (DEE), a known genotoxic carcinogen. Alu retroelements are repetitive DNA sequences that can multiply and compromise genomic stability. There is some evidence linking altered Alu repeats to cancer and elevated mortality risks. However, whether Alu repeats are influenced by environmental pollutants is unexplored. In an occupational setting with high DEE exposure levels, we investigated associations with Alu repeat copy number. METHODS A cross-sectional study of 54 male DEE-exposed workers from an engine testing facility and a comparison group of 55 male unexposed controls was conducted in China. Personal air samples were assessed for elemental carbon, a DEE surrogate, using NIOSH Method 5040. Quantitative PCR (qPCR) was used to measure Alu repeat copy number relative to albumin (Alb) single-gene copy number in leucocyte DNA. The unitless Alu/Alb ratio reflects the average quantity of Alu repeats per cell. Linear regression models adjusted for age and smoking status were used to estimate relations between DEE-exposed workers versus unexposed controls, DEE tertiles (6.1-39.0, 39.1-54.5 and 54.6-107.7 µg/m3) and Alu/Alb ratio. RESULTS DEE-exposed workers had a higher average Alu/Alb ratio than the unexposed controls (p=0.03). Further, we found a positive exposure-response relationship (p=0.02). The Alu/Alb ratio was highest among workers exposed to the top tertile of DEE versus the unexposed controls (1.12±0.08 SD vs 1.06±0.07 SD, p=0.01). CONCLUSION Our findings suggest that DEE exposure may contribute to genomic instability. Further investigations of environmental pollutants, Alu copy number and carcinogenesis are warranted.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George S Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jun Xu
- Hong Kong University, Hong Kong, China
| | - Kees Meliefste
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- China Medical University, Shenyang, Liaoning, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - H Dean Hosgood Iii
- Division of Epidemiology, Albert Einstein College of Medicine, Yeshiva University, New York, New York, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yuxin Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
41
|
Han G, Zhang N, Jiang H, Meng X, Qian K, Zheng Y, Xu J, Wang J. Diversity of short interspersed nuclear elements (SINEs) in lepidopteran insects and evidence of horizontal SINE transfer between baculovirus and lepidopteran hosts. BMC Genomics 2021; 22:226. [PMID: 33789582 PMCID: PMC8010984 DOI: 10.1186/s12864-021-07543-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background Short interspersed nuclear elements (SINEs) belong to non-long terminal repeat (non-LTR) retrotransposons, which can mobilize dependent on the help of counterpart long interspersed nuclear elements (LINEs). Although 234 SINEs have been identified so far, only 23 are from insect species (SINEbase: http://sines.eimb.ru/). Results Here, five SINEs were identified from the genome of Plutella xylostella, among which PxSE1, PxSE2 and PxSE3 were tRNA-derived SINEs, PxSE4 and PxSE5 were 5S RNA-derived SINEs. A total of 18 related SINEs were further identified in 13 lepidopteran insects and a baculovirus. The 3′-tail of PxSE5 shares highly identity with that of LINE retrotransposon, PxLINE1. The analysis of relative age distribution profiles revealed that PxSE1 is a relatively young retrotransposon in the genome of P. xylostella and was generated by recent explosive amplification. Integration pattern analysis showed that SINEs in P. xylostella prefer to insert into or accumulate in introns and regions 5 kb downstream of genes. In particular, the PxSE1-like element, SlNPVSE1, in Spodoptera litura nucleopolyhedrovirus II genome is highly identical to SfSE1 in Spodoptera frugiperda, SlittSE1 in Spodoptera littoralis, and SlituSE1 in Spodoptera litura, suggesting the occurrence of horizontal transfer. Conclusions Lepidopteran insect genomes harbor a diversity of SINEs. The retrotransposition activity and copy number of these SINEs varies considerably between host lineages and SINE lineages. Host-parasite interactions facilitate the horizontal transfer of SINE between baculovirus and its lepidopteran hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07543-z.
Collapse
Affiliation(s)
- Guangjie Han
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture andAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Abstract
The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.
Collapse
Affiliation(s)
- Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Sense-oriented AluYRa1 elements provide a lineage-specific transcription environment for polyadenylation. Sci Rep 2021; 11:3665. [PMID: 33574427 PMCID: PMC7878741 DOI: 10.1038/s41598-021-83360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/29/2021] [Indexed: 11/08/2022] Open
Abstract
Transposable elements cause alternative splicing (AS) in different ways, contributing to transcript diversification. Alternative polyadenylation (APA), one of the AS events, is related to the generation of mRNA isoforms in 70% of human genes. In this study, we tried to investigate AluYRa1s located at the terminal region of cynomolgus monkey genes, utilizing both computational analysis and molecular experimentation. We found that ten genes had AluYRa1 at their 3' end, and nine of these AluYRa1s were sense-oriented. Furthermore, in seven genes, AluYRa1s were expected to have a similar consensus sequence for polyadenylation cleavage. Additional computational analysis using the annotation files from the UCSC database showed that AluYRa1 was more involved in polyadenylation than in open reading frame exon splicing. To examine the extent of AluYRa1 involvement in polyadenylation, RNA-seq data from 30 normal cynomolgus monkeys were analyzed using TAPAS, a recently devised software that detects all the promising polyadenylation sites including APA sites. We observed that approximately 74% of possible polyadenylation sites in the analyzed genes were provided by sense-oriented AluYRa1. In conclusion, AluYRa1 is an Old-World monkey-specific TE, and its sense-oriented insertion at the 3'UTR region tends to provide a favorable environment for polyadenylation, diversifying gene transcripts.
Collapse
|
44
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
45
|
Mehravar M, Ghaemimanesh F, Poursani EM. An Overview on the Complexity of OCT4: at the Level of DNA, RNA and Protein. Stem Cell Rev Rep 2021; 17:1121-1136. [PMID: 33389631 DOI: 10.1007/s12015-020-10098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
OCT4 plays critical roles in self-renewal and pluripotency maintenance of embryonic stem cells, and is considered as one of the main stemness markers. It also has pivotal roles in early stages of embryonic development. Most studies on OCT4 have focused on the expression and function of OCT4A, which is the biggest isoform of OCT4 known so far. Recently, many studies have shown that OCT4 has various transcript variants, protein isoforms, as well as pseudogenes. Distinguishing the expression and function of these variants and isoforms is a big challenge in expression profiling studies of OCT4. Understanding how OCT4 is functioning in different contexts, depends on knowing of where and when each of OCT4 transcripts, isoforms and pseudogenes are expressed. Here, we review OCT4 known transcripts, isoforms and pseudogenes, as well as its interactions with other proteins, and emphasize the importance of discriminating each of them in order to understand the exact function of OCT4 in stem cells, normal development and development of diseases.
Collapse
Affiliation(s)
- Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Bhattacharya A, Jha V, Singhal K, Fatima M, Singh D, Chaturvedi G, Dholakia D, Kutum R, Pandey R, Bakken TE, Seth P, Pillai B, Mukerji M. Multiple Alu Exonization in 3'UTR of a Primate-Specific Isoform of CYP20A1 Creates a Potential miRNA Sponge. Genome Biol Evol 2020; 13:5958120. [PMID: 33434274 PMCID: PMC7802813 DOI: 10.1093/gbe/evaa233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3'UTR. CYP20A1_Alu-LT, confirmed by 3'RACE, is an outlier in length (9 kb 3'UTR) and widely expressed. Using publically available data sets, we demonstrate its expression in higher primates and presence in single nucleus RNA-seq of 15,928 human cortical neurons. miRanda predicts ∼4,700 miRNA recognition elements (MREs) for ∼1,000 miRNAs, primarily originated within these 3'UTR-Alus. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbors ≥10 MREs for 140 miRNAs and has cytosolic localization. We further tested whether expression of CYP20A1_Alu-LT correlates with mRNAs harboring similar MRE targets. RNA-seq with conjoint miRNA-seq analysis was done in primary human neurons where we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. In total, 380 genes were positively correlated with its expression (significantly downregulated in heat shock and upregulated in Tat) and they harbored MREs for nine expressed miRNAs which were also enriched in CYP20A1_Alu-LT. MREs were significantly enriched in these 380 genes compared with random sets of differentially expressed genes (P = 8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways thus proposing a novel component of Alu-miRNA-mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vineet Jha
- Persistent LABS, Persistent Systems Ltd., Pune, Maharashtra, India
| | - Khushboo Singhal
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahar Fatima
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Dayanidhi Singh
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gaura Chaturvedi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dhwani Dholakia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rintu Kutum
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Beena Pillai
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
48
|
Noncoding RNAs Set the Stage for RNA Polymerase II Transcription. Trends Genet 2020; 37:279-291. [PMID: 33046273 DOI: 10.1016/j.tig.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.
Collapse
|
49
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
50
|
Nguyen TM, Alchalabi S, Oluwatoyosi A, Ropri AS, Herschkowitz JI, Rosen JM. New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biol 2020; 17:1535-1549. [PMID: 32522127 DOI: 10.1080/15476286.2020.1760535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight several areas of lncRNA biology and cancer that we hope will provide some new insights for future research. These include the relationship of lncRNAs and the epithelial to mesenchymal transition (EMT) with a focus on transcriptional and alternative splicing mechanisms and mRNA stability through miRNAs. In addition, we highlight the potential role of enhancer e-lncRNAs, the importance of transposable elements in lncRNA biology, and finally the emerging area of using antisense oligonucleotides (ASOs) and small molecules to target lncRNAs and their therapeutic implications.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Sumayya Alchalabi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Adewunmi Oluwatoyosi
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jeffrey M Rosen
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|