1
|
Li L, Ho PWL, Liu H, Pang SYY, Chang EES, Choi ZYK, Malki Y, Kung MHW, Ramsden DB, Ho SL. Transcriptional Regulation of the Synaptic Vesicle Protein Synaptogyrin-3 (SYNGR3) Gene: The Effects of NURR1 on Its Expression. Int J Mol Sci 2022; 23:ijms23073646. [PMID: 35409005 PMCID: PMC8998927 DOI: 10.3390/ijms23073646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson’s disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5′-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5′-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11–17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Eunice Eun-Seo Chang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Yasine Malki
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (D.B.R.); (S.-L.H.)
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
- Correspondence: (D.B.R.); (S.-L.H.)
| |
Collapse
|
2
|
Jia Y, Wang X, Chen Y, Qiu W, Ge W, Ma C. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4007-4027. [PMID: 33904022 DOI: 10.1007/s12035-021-02356-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The earliest neuropathology of AD appears in entorhinal cortex (EC) regions. Therapeutic strategies and preventive measures to protect against entorhinal degeneration would be of substantial value in the early stages of AD. In this study, transcriptome based on the Illumina RNA-seq and proteome based on TMT-labelling were performed for RNA and protein profiling on AD EC samples and non-AD control EC samples. Immunohistochemistry was used to validate proteins expressions. After integrated analysis, 57 genes were detected both in transcriptome and proteome data, including 51 in similar altering trends (7 upregulated, 44 downregulated) and 6 in inverse trends when compared AD vs. control. The top 6 genes (GABRG2, CACNG3, CACNB4, GABRB2, GRIK2, and SLC17A6) within the 51 genes were selected and related to "ion transport". Correlation analysis demonstrated negative relationship of protein expression level with the neuropathologic changes. In conclusion, the integrate transcriptome and proteome analysis provided evidence for dysregulation of ion transport across brain regions in AD, which might be a critical signaling pathway that initiates pathology. This study might provide new insight into the earliest changes occurring in the EC of AD and novel targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yangjie Jia
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
3
|
Wu S, Yang S, Ou M, Chen J, Huang J, Xiong D, Sun W, Xiao L. Transcriptome Analysis Reveals the Role of Cellular Calcium Disorder in Varicella Zoster Virus-Induced Post-Herpetic Neuralgia. Front Mol Neurosci 2021; 14:665931. [PMID: 34079439 PMCID: PMC8166323 DOI: 10.3389/fnmol.2021.665931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
As a typical neuropathic pain, post-herpetic neuralgia (PHN) is a common complication of herpes zoster (HZ), which seriously affects the normal life and work of patients. The unclear pathogenesis and lack of effective drugs make the clinical efficacy of PHN unsatisfactory. Here, we obtained the transcriptome profile of neuroblastoma cells (SH-SY5Y) and DRG in rats infected with varicella zoster virus (VZV) by transcriptome sequencing (RNA-Seq) combined with publicly available gene array data sets. Next, the data processing of the transcriptome map was analyzed using bioinformatics methods, including the screening of differentially expressed genes (DEGs), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, real-time fluorescent quantitative PCR (qRT-PCR) was used to detect the expression of calcium-related genes, and calcium fluorescent probes and calcium colorimetry were used to evaluate the distribution and content of calcium ions in cells after VZV infection. Transcriptome data analysis (GO and KEGG enrichment analysis) showed that calcium disorder played an important role in SH-SY5Y cells infected by VZV and dorsal root ganglion (DRG) of the PHN rat model. The results of qRT-PCR showed that the expression levels of calcium-related genes BHLHA15, CACNA1F, CACNG1, CHRNA9, and STC2 were significantly upregulated, while the expression levels of CHRNA10, HRC, and TNNT3 were significantly downregulated in SH-SY5Y cells infected with VZV. Our calcium fluorescent probe and calcium colorimetric test results showed that VZV could change the distribution of calcium ions in infected cells and significantly increase the intracellular calcium content. In conclusion, our results revealed that the persistence of calcium disorder caused by VZV in nerve cells might be a crucial cause of herpetic neuralgia, and a potential target for clinical diagnosis and treatment of PHN.
Collapse
Affiliation(s)
- Songbin Wu
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mingxi Ou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiamin Chen
- Vanke Bilingual School (VBS), Shenzhen, China
| | - Jiabing Huang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wuping Sun
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Kanwar N, Carmine-Simmen K, Nair R, Wang C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang J, Pasculescu A, Datti A, Mak T, Lewis JD, Done SJ. Amplification of a calcium channel subunit CACNG4 increases breast cancer metastasis. EBioMedicine 2020; 52:102646. [PMID: 32062352 PMCID: PMC7016384 DOI: 10.1016/j.ebiom.2020.102646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previously, we found that amplification of chromosome 17q24.1-24.2 is associated with lymph node metastasis, tumour size, and lymphovascular invasion in invasive ductal carcinoma. A gene within this amplicon, CACNG4, an L-type voltage-gated calcium channel gamma subunit, is elevated in breast cancers with poor prognosis. Calcium homeostasis is achieved by maintaining low intracellular calcium levels. Altering calcium influx/efflux mechanisms allows tumour cells to maintain homeostasis despite high serum calcium levels often associated with advanced cancer (hypercalcemia) and aberrant calcium signaling. METHODS In vitro 2-D and 3-D assays, and intracellular calcium influx assays were utilized to measure tumourigenic activity in response to altered CANCG4 levels and calcium channel blockers. A chick-CAM model and mouse model for metastasis confirmed these results in vivo. FINDINGS CACNG4 alters cell motility in vitro, induces malignant transformation in 3-dimensional culture, and increases lung-specific metastasis in vivo. CACNG4 functions by closing the channel pore, inhibiting calcium influx, and altering calcium signaling events involving key survival and metastatic pathway genes (AKT2, HDAC3, RASA1 and PKCζ). INTERPRETATION CACNG4 may promote homeostasis, thus increasing the survival and metastatic ability of tumour cells in breast cancer. Our findings suggest an underlying pathway for tumour growth and dissemination regulated by CACNG4 that is significant with respect to developing treatments that target these channels in tumours with aberrant calcium signaling. FUNDING Canadian Breast Cancer Foundation, Ontario; Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Nisha Kanwar
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Ranju Nair
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Chunjie Wang
- Department of Pathology and Laboratory Medicine, Saskatoon City Hospital, Saskatoon, SK S7K 0M7, Canada
| | - Soode Moghadas-Jafari
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Heiko Blaser
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Danh Tran-Thanh
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montréal, QC H2W 1T8, Canada
| | - Dongyu Wang
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Peiqi Wang
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Jenny Wang
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Tak Mak
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susan J Done
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada; Laboratory Medicine Program, Department of Pathology, University Health Network, Toronto General Hospital, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
5
|
Chen Z, Mori W, Zhang X, Yamasaki T, Dunn PJ, Zhang G, Fu H, Shao T, Zhang Y, Hatori A, Ma L, Fujinaga M, Xie L, Deng X, Li H, Yu Q, Rong J, Josephson L, Ma JA, Shao Y, Tomita S, Zhang MR, Liang SH. Synthesis, pharmacology and preclinical evaluation of 11C-labeled 1,3-dihydro-2H-benzo[d]imidazole-2-ones for imaging γ8-dependent transmembrane AMPA receptor regulatory protein. Eur J Med Chem 2018; 157:898-908. [PMID: 30145376 DOI: 10.1016/j.ejmech.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
Abstract
a-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are implicated in the pathology of neurological diseases such as epilepsy and schizophrenia. As pan antagonists for this target are often accompanied with undesired effects at high doses, one of the recent drug discovery approaches has shifted to subtype-selective AMPA receptor (AMPAR) antagonists, specifically, via modulating transmembrane AMPAR regulatory proteins (TARPs). The quantification of AMPARs by positron emission tomography (PET) would help obtain insights into disease conditions in the living brain and advance the translational development of AMPAR antagonists. Herein we report the design, synthesis and preclinical evaluation of a series of TARP γ-8 antagonists, amenable for radiolabeling, for the development of subtype-selective AMPAR PET imaging agents. Based on the pharmacology evaluation, molecular docking studies and physiochemical properties, we have identified several promising lead compounds 3, 17-19 and 21 for in vivo PET studies. All candidate compounds were labeled with [11C]COCl2 in high radiochemical yields (13-31% RCY) and high molar activities (35-196 GBq/μmol). While tracers 30 ([11C]17) &32 ([11C]21) crossed the blood-brain barrier and showed heterogeneous distribution in PET studies, consistent with TARP γ-8 expression, high nonspecific binding prevented further evaluation. To our delight, tracer 31 ([11C]3) showed good in vitro specific binding and characteristic high uptake in the hippocampus in rat brain tissues, which provides the guideline for further development of a new generation subtype selective TARP γ-8 dependent AMPAR tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA; Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Masayuki Fujinaga
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hua Li
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jun-An Ma
- Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Chen M, Wang J, Luo Y, Huang K, Shi X, Liu Y, Li J, Lai Z, Xue S, Gao H, Chen A, Chen D. Identify Down syndrome transcriptome associations using integrative analysis of microarray database and correlation-interaction network. Hum Genomics 2018; 12:2. [PMID: 29351810 PMCID: PMC5775600 DOI: 10.1186/s40246-018-0133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have previously been emerged as key players in a series of biological processes. Dysregulation of lncRNA is correlated to human diseases including neurological disorders. Here, we developed a multi-step bioinformatics analysis to study the functions of a particular Down syndrome-associated gene DSCR9 including the lncRNAs. The method is named correlation-interaction-network (COIN), based on which a pipeline is implemented. Co-expression gene network analysis and biological network analysis results are presented. METHODS We identified the regulation function of DSCR9, a lncRNA transcribed from the Down syndrome critical region (DSCR) of chromosome 21, by analyzing its co-expression genes from over 1700 sets and nearly 60,000 public Affymetrix human U133-Plus 2 transcriptional profiling microarrays. After proper evaluations, a threshold is chosen to filter the data and get satisfactory results. Microarray data resource is from EBI database and protein-protein interaction (PPI) network information is incorporated from the most complete network databases. PPI integration strategy guarantees complete information regarding DSCR9. Enrichment analysis is performed to identify significantly correlated pathways. RESULTS We found that the most significant pathways associated with the top DSCR9 co-expressed genes were shown to be involved in neuro-active ligand-receptor interaction (GLP1R, HTR4, P2RX2, UCN3, and UTS2R), calcium signaling pathway (CACNA1F, CACNG4, HTR4, P2RX2, and SLC8A3), neuronal system (KCNJ5 and SYN1) by the KEGG, and GO analysis. The A549 and U251 cell lines with stable DSCR9 overexpression were constructed. We validated 10 DSCR9 co-expression genes by qPCR in both cell lines with over 70% accuracy. CONCLUSIONS DSCR9 was highly correlated with genes that were known as important factors in the developments and functions of nervous system, indicating that DSCR9 may regulate neurological proteins regarding Down syndrome and other neurological-related diseases. The pipeline can be properly adjusted to other applications.
Collapse
Affiliation(s)
- Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, 510150, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China.,Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jiayan Wang
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, 510150, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Yingjun Luo
- Mendel Genes Inc, Manhattan Beach, CA, Manhattan Beach, CA, 90266, USA
| | - Kailing Huang
- Mendel Genes Inc, Manhattan Beach, CA, Manhattan Beach, CA, 90266, USA
| | - Xiaoshun Shi
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Liu
- Mendel Genes Inc, Manhattan Beach, CA, Manhattan Beach, CA, 90266, USA
| | - Jin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhengfei Lai
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shuya Xue
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, 510150, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China.,Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Haimei Gao
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, 510150, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China.,Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Allen Chen
- Department of Mathematics, University of California, Berkeley, CA, 94720, USA.,Mendel Genes Inc, Manhattan Beach, CA, Manhattan Beach, CA, 90266, USA
| | - Dunjin Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, 510150, China. .,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China. .,Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
7
|
Kato AS, Witkin JM. Auxiliary subunits of AMPA receptors: The discovery of a forebrain-selective antagonist, LY3130481/CERC-611. Biochem Pharmacol 2017; 147:191-200. [PMID: 28987594 DOI: 10.1016/j.bcp.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Drugs originate from the discovery of compounds, natural or synthetic, that bind to proteins (receptors, enzymes, transporters, etc.), the interaction of which modulates biological cascades that have potential therapeutic benefit. Rational strategies for identifying novel drug therapies are typically based on knowledge of the structure of the target proteins and the design of new chemical entities that modulate these proteins in a beneficial manner. The present review discusses a novel approach to drug discovery based on the identification and characterization of auxiliary proteins, the transmembrane AMPA receptor regulatory proteins (TARPs) that are associated with AMPA receptors. Utilizing these auxiliary proteins in compound screening led to the discovery of the TARP-dependent-AMPA forebrain selective receptor antagonist (TDAA), LY3130481/CERC-611 that is currently in clinical development for epilepsy.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0510, United States.
| | - Jeffrey M Witkin
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0510, United States.
| |
Collapse
|
8
|
Ferdous Z, Qureshi MA, Jayaprakash P, Parekh K, John A, Oz M, Raza H, Dobrzynski H, Adrian TE, Howarth FC. Different Profile of mRNA Expression in Sinoatrial Node from Streptozotocin-Induced Diabetic Rat. PLoS One 2016; 11:e0153934. [PMID: 27096430 PMCID: PMC4838258 DOI: 10.1371/journal.pone.0153934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
Background Experiments in isolated perfused heart have shown that heart rate is lower and sinoatrial node (SAN) action potential duration is longer in streptozotocin (STZ)–induced diabetic rat compared to controls. In sino-atrial preparations the pacemaker cycle length and sino-atrial conduction time are prolonged in STZ heart. To further clarify the molecular basis of electrical disturbances in the diabetic heart the profile of mRNA encoding a wide variety of proteins associated with the generation and transmission of electrical activity has been evaluated in the SAN of STZ-induced diabetic rat heart. Methodology/Principal Findings Heart rate was measured in isolated perfused heart with an extracellular suction electrode. Expression of mRNA encoding a variety of intercellular proteins, intracellular Ca2+-transport and regulatory proteins, cell membrane transport proteins and calcium, sodium and potassium channel proteins were measured in SAN and right atrial (RA) biopsies using real-time reverse transcription polymerase chain reaction techniques. Heart rate was lower in STZ (203±7 bpm) compared to control (239±11 bpm) rat. Among many differences in the profile of mRNA there are some worthy of particular emphasis. Expression of genes encoding some proteins were significantly downregulated in STZ-SAN: calcium channel, Cacng4 (7-fold); potassium channel, Kcnd2 whilst genes encoding some other proteins were significantly upregulated in STZ-SAN: gap junction, Gjc1; cell membrane transport, Slc8a1, Trpc1, Trpc6 (4-fold); intracellular Ca2+-transport, Ryr3; calcium channel Cacna1g, Cacna1h, Cacnb3; potassium channels, Kcnj5, Kcnk3 and natriuretic peptides, Nppa (5-fold) and Nppb (7-fold). Conclusions/Significance Collectively, this study has demonstrated differences in the profile of mRNA encoding a variety of proteins that are associated with the generation, conduction and regulation of electrical signals in the SAN of STZ-induced diabetic rat heart. Data from this study will provide a basis for a substantial range of future studies to investigate whether these changes in mRNA translate into changes in electrophysiological function.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Muhammad Anwar Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Petrilla Jayaprakash
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Khatija Parekh
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Murat Oz
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al AIn, UAE
| | - Haider Raza
- Department of Biochemistry, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Thomas Edward Adrian
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | | |
Collapse
|
9
|
Maher MP, Wu N, Ravula S, Ameriks MK, Savall BM, Liu C, Lord B, Wyatt RM, Matta JA, Dugovic C, Yun S, Ver Donck L, Steckler T, Wickenden AD, Carruthers NI, Lovenberg TW. Discovery and Characterization of AMPA Receptor Modulators Selective for TARP- 8. ACTA ACUST UNITED AC 2016; 357:394-414. [DOI: 10.1124/jpet.115.231712] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 01/14/2023]
|
10
|
Neely A, Hidalgo P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 2014; 5:209. [PMID: 24917826 PMCID: PMC4042065 DOI: 10.3389/fphys.2014.00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
Collapse
Affiliation(s)
- Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso and Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Patricia Hidalgo
- Forschungszentrum Jülich, Institute of Complex Systems 4, Zelluläre Biophysik Jülich, Germany
| |
Collapse
|
11
|
Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 2011; 70:178-99. [PMID: 21521608 DOI: 10.1016/j.neuron.2011.04.007] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.
Collapse
Affiliation(s)
- Alexander C Jackson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
12
|
Tomita S. Regulation of ionotropic glutamate receptors by their auxiliary subunits. Physiology (Bethesda) 2010; 25:41-9. [PMID: 20134027 DOI: 10.1152/physiol.00033.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors are major excitatory receptors in the brain. Recent findings have established auxiliary subunits of glutamate receptors as critical modulators of synaptic transmission, synaptic plasticity, and neurological disorder. The elucidation of the molecular rules governing glutamate receptors and subunits will improve our understanding of synapses and of neural-circuit regulation in the brain.
Collapse
Affiliation(s)
- Susumu Tomita
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
13
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
14
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
15
|
Sánchez JA. The gamma subunit runs in the family. J Physiol 2008; 586:5293. [DOI: 10.1113/jphysiol.2008.164160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
The stargazin-related protein gamma 7 interacts with the mRNA-binding protein heterogeneous nuclear ribonucleoprotein A2 and regulates the stability of specific mRNAs, including CaV2.2. J Neurosci 2008; 28:10604-17. [PMID: 18923037 DOI: 10.1523/jneurosci.2709-08.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role(s) of the novel stargazin-like gamma-subunit proteins remain controversial. We have shown previously that the neuron-specific gamma7 suppresses the expression of certain calcium channels, particularly Ca(V)2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of gamma7 on Ca(V)2.2 expression is via an increase in the degradation rate of Ca(V)2.2 mRNA and hence a reduction of Ca(V)2.2 protein level. Furthermore, exogenous expression of gamma7 in PC12 cells also decreased the endogenous Ca(V)2.2 mRNA level. Conversely, knockdown of endogenous gamma7 with short-hairpin RNAs produced a reciprocal enhancement of Ca(V)2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed gamma7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C terminus of gamma7 is essential for all its effects, and we show that gamma7 binds directly via its C terminus to a heterogeneous nuclear ribonucleoprotein (hnRNP A2), which also binds to a motif in Ca(V)2.2 mRNA, and is associated with native Ca(V)2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances Ca(V)2.2 I(Ba), and this enhancement is prevented by a concentration of gamma7 that alone has no effect on I(Ba). The effect of gamma7 is selective for certain mRNAs because it had no effect on alpha2delta-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride cotransporter, KCC1, which contains a similar hnRNP A2 binding motif to that in Ca(V)2.2 mRNA. Our results indicate that gamma7 plays a role in stabilizing Ca(V)2.2 mRNA.
Collapse
|
17
|
Functional modulation of AMPA receptors by transmembrane AMPA receptor regulatory proteins. Neuroscience 2008; 158:45-54. [PMID: 18304745 DOI: 10.1016/j.neuroscience.2007.12.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/23/2022]
Abstract
The AMPA receptors are ligand-gated ion channels belonging to the family of ionotropic glutamate receptors. They play an essential role in fast excitatory synaptic transmission in the CNS of vertebrates. Their activity-dependent directed transport and fast turnover at the plasma membrane contribute to synaptic plasticity and require numerous trafficking and scaffolding proteins. Participating in the delivery and synaptic localization of AMPA receptors is a recently discovered protein family named transmembrane AMPA receptor regulatory proteins (TARPs). In addition to their function in trafficking, TARPs alter the biophysical properties of AMPA receptors in remarkable ways and thus contribute significantly to the functional plasticity of the synapse. The study of TARP-mediated functional plasticity of AMPA receptors, which has emerged only recently as a hot new field, promises to yield valuable insight into the regulation of neuronal communication.
Collapse
|
18
|
Detection of Copy Number Variation of the KIT Gene in the Landrace Breed using an Quantitative Oligonucleotide Ligation Assay(qOLA). JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2007. [DOI: 10.5187/jast.2007.49.5.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Localization and mutation detection for paroxysmal kinesigenic choreoathetosis. J Mol Neurosci 2007; 34:101-7. [PMID: 17952630 DOI: 10.1007/s12031-007-9012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/30/2006] [Indexed: 10/22/2022]
Abstract
BACKGROUND Paroxysmal kinesigenic choreoathetosis (PKC) is an autosomal-dominant movement disorder characterized by attacks of paroxysmal involuntary movements. To date, the causative gene has not been discovered. PURPOSE The purpose of the study is to localize the causative region and detect the causative mutation. METHODS A PKC family including 16 subjects (5 cases and 11 controls) in Zhejiang Province was recruited. Nine microsatellite markers on chromosome 16 were selected and genotyped. Two-point LOD scores were calculated. After preliminary localization, CACNG3, IL4R and ABCC11 were selected as candidate genes and were detected by polymerase chain reaction-sequencing or PCR-denaturing high performance liquid chromatography (PCR-DHPLC). RESULTS The maximal two-point LOD score was obtained in D16S3081 with 1.21, and haplotype analysis revealed almost all of individuals carrying 5-3-8-3-4-2-5-5-6 in D16S3093/D16S685/D16S690/D16S3081/D16S3080 D16S411/D16S3136/D16S3112/D16S3057 were affected by PKC. There were no causative mutation in CACNG3, IL4R and ABCC11 genes. CONCLUSIONS The culprit gene for PKC was located in approximately 19.34 cM region between 16p12.1-q13, and CACNG3, IL4R and ABCC11 were all ruled out as the cause.
Collapse
|
20
|
Chen RS, Deng TC, Garcia T, Sellers ZM, Best PM. Calcium channel γ subunits: a functionally diverse protein family. Cell Biochem Biophys 2007; 47:178-86. [PMID: 17652770 DOI: 10.1007/s12013-007-0002-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The calcium channel gamma subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first gamma subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing gamma1 and gamma6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (gamma2, gamma3, gamma4, gamma8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (gamma5, gamma7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.
Collapse
Affiliation(s)
- Ren-Shiang Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 S Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
21
|
Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 2007; 8:101-13. [PMID: 17237803 DOI: 10.1038/nrn2055] [Citation(s) in RCA: 551] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.
Collapse
Affiliation(s)
- Victor A Derkach
- Vollum Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
22
|
Tseng TT, McMahon AM, Zahm RJ, Pacold ME, Jakobsson E. Calcium channel auxiliary subunits. J Mol Microbiol Biotechnol 2006; 11:326-44. [PMID: 17114897 DOI: 10.1159/000095635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many channels and carriers associate with auxiliary subunits which modify their activities and facilitate biogenesis. Advances in genome sequencing as well as biochemical, molecular genetic, and physiological experimentation have allowed for the discovery of many transport auxiliary subunits. Recent interests in the pharmacology of the calcium auxiliary subunits prompted a large amount of effort in deciphering their specific role in the conductance of calcium ions. In this review, we evaluate the functions of the 'extra' subunits of the voltage-gated calcium channels in animals as an example of auxiliary subunits of transporters in general. We discuss the functional data available for each of these subunits, present phylogenetic analyses, and discuss their potential evolutionary origins. Our analyses also reveal novel homologues of these subunits which might be of interest to the community.
Collapse
Affiliation(s)
- Tsai-Tien Tseng
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL, USA.
| | | | | | | | | |
Collapse
|
23
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
24
|
Deng F, Price MG, Davis CF, Mori M, Burgess DL. Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain. J Neurosci 2006; 26:7875-84. [PMID: 16870733 PMCID: PMC6674230 DOI: 10.1523/jneurosci.1851-06.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spatial coordination of neurotransmitter receptors with other postsynaptic signaling and structural molecules is regulated by a diverse array of cell-specific scaffolding proteins. The synaptic trafficking of AMPA receptors by the stargazin protein in some neurons, for example, depends on specific interactions between the C terminus of stargazin and the PDZ [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] domains of membrane-associated guanylate kinase scaffolding proteins PSD-93 or PSD-95. Stargazin [Cacng2 (Ca2+ channel gamma2 subunit)] is one of four closely related proteins recently categorized as transmembrane AMPA receptor regulating proteins (TARPs) that appear to share similar functions but exhibit distinct expression patterns in the CNS. We used yeast two-hybrid screening to identify MAGI-2 (membrane associated guanylate kinase, WW and PDZ domain containing 2) as a novel candidate interactor with the cytoplasmic C termini of the TARPs. MAGI-2 [also known as S-SCAM (synaptic scaffolding molecule)] is a multi-PDZ domain scaffolding protein that interacts with several different ligands in brain, including PTEN (phosphatase and tensin homolog), dasm1 (dendrite arborization and synapse maturation 1), dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, and NMDA receptors. We confirmed that MAGI-2 coimmunoprecipitated with stargazin in vivo from mouse cerebral cortex and used in vitro assays to localize the interaction to the C-terminal -TTPV amino acid motif of stargazin and the PDZ1, PDZ3, and PDZ5 domains of MAGI-2. Expression of stargazin recruited MAGI-2 to cell membranes and cell-cell contact sites in transfected HEK-293T cells dependent on the presence of the stargazin -TTPV motif. These experiments identify MAGI-2 as a strong candidate for linking TARP/AMPA receptor complexes to a wide range of other postsynaptic molecules and pathways and advance our knowledge of protein interactions at mammalian CNS synapses.
Collapse
|
25
|
Priel A, Kolleker A, Ayalon G, Gillor M, Osten P, Stern-Bach Y. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 2006; 25:2682-6. [PMID: 15758178 PMCID: PMC6725153 DOI: 10.1523/jneurosci.4834-04.2005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The AMPA-type glutamate receptors mediate the majority of the fast excitatory synaptic transmission and critically contribute to synaptic plasticity in the brain, hence the existence of numerous trafficking proteins dedicated to regulation of their synaptic delivery and turnover. Stargazin (also termed gamma2) is a member of a recently identified protein family termed transmembrane AMPA receptor regulatory proteins (TARPs). TARPs physically associate with AMPA receptors and participate in their surface delivery and anchoring at the postsynaptic membrane. Here, we report that next to its trafficking roles, stargazin may also act as a positive allosteric modulator of AMPA receptor ion channel function. Coexpression of stargazin with AMPA receptor subunits, either in Xenopus oocytes or in human embryonic kidney 293 cells, significantly reduced receptor desensitization in response to glutamate. Receptor deactivation rates were also slowed, and the recovery from desensitization was accelerated. Structurally, based on the data showing a tight correlation between desensitization and the stability of the AMPA receptor intradimer interface, we propose that binding of stargazin may stabilize the receptor conformation. Functionally, our data suggest that AMPA receptors complexed with stargazin (and possibly also with other TARPs) at the postsynaptic membrane are significantly more responsive to synaptically released glutamate compared with AMPA receptors lacking stargazin/TARP interaction. The putative existence of such two states of synaptic AMPA receptors, with and without stargazin/TARP binding, may provide a novel mechanism for regulation of excitatory synaptic strength during development and/or in synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Avi Priel
- The Institute of Basic Dental Sciences, The Hebrew University-Hadassah Dental School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Fukaya M, Yamazaki M, Sakimura K, Watanabe M. Spatial diversity in gene expression for VDCCγ subunit family in developing and adult mouse brains. Neurosci Res 2005; 53:376-83. [PMID: 16171881 DOI: 10.1016/j.neures.2005.08.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 11/24/2022]
Abstract
The gamma subunit of voltage-dependent Ca2+ channels (VDCCs) is characterized by molecular diversity and regulation of AMPA-type glutamate receptors as well as VDCCs. In the present study, we examined expressions for the VDCCgamma1-8 subunit mRNAs in developing and adult mouse brains by in situ hybridization. In adult brains, the gamma2 and gamma7 subunit mRNAs were widely expressed in various grey matter regions with the highest level in cerebellar Purkinje cells and granule cells. The gamma3 and gamma8 subunit mRNAs predominated in the telencephalon, with the latter being at striking levels in the hippocampus. The gamma4 subunit mRNA was enriched in the olfactory bulb, striatum, thalamus and hypothalamus. The gamma5 subunit mRNA was abundant in the olfactory bulb, hippocampal CA2, thalamus, inferior colliculus and Bergmann glia. Transcripts of these subunits were detected in embryonic brains: some showed well-preserved spatial patterns (gamma2, gamma5, gamma7 and gamma8), while others underwent developmental up- (gamma3) or down-regulation (gamma4). In contrast, the gamma1 and gamma6 subunit mRNAs were negative or very low throughout brain development. Therefore, the present study has revealed spatial diversity in gene expression for individual VDCCgamma subunits, presumably reflecting functional diversity of this protein family and their differential involvement in neural function.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | |
Collapse
|
27
|
Price MG, Davis CF, Deng F, Burgess DL. The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator "stargazin" is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion. J Biol Chem 2005; 280:19711-20. [PMID: 15760900 PMCID: PMC1255971 DOI: 10.1074/jbc.m500623200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in the Cacng2 gene encoding the neuronal transmembrane protein stargazin result in recessively inherited epilepsy and ataxia in "stargazer" mice. Functional studies suggest a dual role for stargazin, both as a modulatory gamma subunit for voltage-dependent calcium channels and as a regulator of post-synaptic membrane targeting for alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors. Co-immunoprecipitation experiments demonstrate that stargazin can bind proteins of either complex in vivo, but it remains unclear whether it can associate with both complexes simultaneously. Cacng2 is one of eight closely related genes (Cacng1-8) encoding proteins with four transmembrane segments, cytoplasmic termini, and molecular masses between 25 and 44 kDa. This group of Cacng genes constitutes only one branch of a larger monophyletic assembly dominated by over 20 genes encoding proteins known as claudins. Claudins regulate cell adhesion and paracellular permeability as fundamental components of non-neuronal tight junctions. Because stargazin is structurally similar to claudins, we hypothesized that it might also have retained claudin-like functions inherited from a common ancestor. Here, we report that expression of stargazin in mouse L-fibroblasts results in cell aggregation comparable with that produced by claudins, and present evidence that the interaction is heterotypic and calcium dependent. The data suggest that the cell adhesion function of stargazin preceded its current role in neurons as a regulator of either voltage-dependent calcium channels or AMPA receptors. We speculate these complexes may have co-opted the established presence of stargazin at sites of close cell-cell contact to facilitate their own evolving intercellular signaling functions.
Collapse
Affiliation(s)
| | | | | | - Daniel L. Burgess
- From the Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
28
|
Brette F, Leroy J, Le Guennec JY, Sallé L. Ca2+ currents in cardiac myocytes: Old story, new insights. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:1-82. [PMID: 16503439 DOI: 10.1016/j.pbiomolbio.2005.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via specialized voltage-gated Ca2+ channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca2+ channels alpha(1D) and alpha(1E). We finally discuss the potential involvement of Ca2+ currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK.
| | | | | | | |
Collapse
|
29
|
Letts VA, Mahaffey CL, Beyer B, Frankel WN. A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proc Natl Acad Sci U S A 2005; 102:2123-8. [PMID: 15677329 PMCID: PMC548574 DOI: 10.1073/pnas.0409527102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent calcium channel gamma4 subunit protein, CACNG4, is closely related to the gamma2 subunit, CACNG2. Both are expressed primarily in the brain and share 53% amino acid identity. The Cacng2 gene is disrupted in the stargazer mouse, with its distinctive phenotype including ataxia, frequent absence seizure episodes, and head elevation. A disruption within Cacng4 was engineered to assess its particular function. The homozygous Cacng4-targeted mutant mouse appeared normal with no ataxic gait or absence seizures, suggesting that other members of the gamma subunit family might functionally compensate for the absence of CACNG4. To test this hypothesis, the targeted Cacng4 mutation was combined with alleles of Cacng2. Absence seizures were observed in combination with the stargazer 3J mutation, which itself does not have seizures, and increased seizure activity was observed in combination with the waggler allele. Furthermore, within the corticothalamic loop, where absence seizures arise, CACNG4 expression is restricted to the thalamus. Our studies show that the CACNG4 protein has seizure suppressing activity, but this effect is revealed only when CACNG2 expression is also compromised, suggesting that CACNG subunits have in vivo overlapping functions.
Collapse
Affiliation(s)
- Verity A Letts
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
30
|
Moss FJ, Dolphin AC, Clare JJ. Human neuronal stargazin-like proteins, gamma2, gamma3 and gamma4; an investigation of their specific localization in human brain and their influence on CaV2.1 voltage-dependent calcium channels expressed in Xenopus oocytes. BMC Neurosci 2003; 4:23. [PMID: 14505496 PMCID: PMC270087 DOI: 10.1186/1471-2202-4-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 09/23/2003] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Stargazin (gamma2) and the closely related gamma3, and gamma4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) gamma subunits and transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins gamma2, gamma3, and gamma4 in the human central nervous system (CNS). In addition, we investigated whether human gamma2 or gamma4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. RESULTS The mRNA encoding human gamma2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas gamma3 is abundant in cerebral cortex and amygdala and gamma4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both gamma2 and gamma4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only gamma2 is clearly detected in granule cells. The hippocampus stains for gamma2 and gamma4 throughout the layers of the every CA region and the dentate gyrus, whilst gamma3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/beta4 VDCC complex, either in the absence or presence of an alpha2delta2 subunit, neither gamma2 nor gamma4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. CONCLUSION The human gamma2, gamma3 and gamma4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those reported by other laboratories for the rodent orthologues of each protein. Whilst the fact that neither gamma2 nor gamma4 modulated the properties of a VDCC complex with which they could associate in vivo in Purkinje cells adds weight to the hypothesis that the principal role of these proteins is not as auxiliary subunits of VDCCs, it does not exclude the possibility that they play another role in VDCC function.
Collapse
Affiliation(s)
- Fraser J Moss
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
- Current address: Division of Biology, M/C 156-29, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Annette C Dolphin
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jeffrey J Clare
- Gene Expression and Protein Biochemistry, GlaxoSmithKline, Medicines Research Center, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| |
Collapse
|
31
|
Affiliation(s)
- Myoung-Goo Kang
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
32
|
Carboni GL, Gao B, Nishizaki M, Xu K, Minna JD, Roth JA, Ji L. CACNA2D2-mediated apoptosis in NSCLC cells is associated with alterations of the intracellular calcium signaling and disruption of mitochondria membrane integrity. Oncogene 2003; 22:615-26. [PMID: 12555074 PMCID: PMC3484891 DOI: 10.1038/sj.onc.1206134] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The CACNA2D2 gene, a new subunit of the Ca(2+)-channel complex, was identified in the homozygous deletion region of chromosome 3p21.3 in human lung and breast cancers. Expression deficiency of the CACNA2D2 in cancer cells suggests a possible link of it to Ca(2+) signaling in the pathogenesis of lung cancer and other cancers. We investigated the effects of overexpression of CACNA2D2 on intracellular Ca(2+) contents, mitochondria homeostasis, cell proliferation, and apoptosis by adenoviral vector-mediated wild-type CACNA2D2 gene transfer in 3p21.3-deficient nonsmall cell lung cancer cell lines. Exogenous expression of CACNA2D2 significantly inhibited tumor cell growth compared with the controls. Overexpression of CACNA2D2 induced apoptosis in H1299 (12.5%), H358 (13.7%), H460 (22.3%), and A549 (50.1%) cell lines. Levels of intracellular free Ca(2+) were elevated in AdCACNA2D2-transduced cells compared with the controls. Mitochondria membrane depolarization was observed prior to apoptosis in Ad-CACNA2D2 and Adp53-transduced H460 and A549 cells. Release of cyt c into the cytosol, caspase 3 activation, and PARP cleavage were also detected in these cells. Together, these results suggest that one of the pathways in CACNA2D2-induced apoptosis is mediated through disruption of mitochondria membrane integrity, the release of cyt c, and the activation of caspases, a process that is associated with regulation of cytosolic free Ca(2+) contents.
Collapse
Affiliation(s)
- Giovanni L Carboni
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Arikkath J, Felix R, Ahern C, Chen CC, Mori Y, Song I, Shin HS, Coronado R, Campbell KP. Molecular characterization of a two-domain form of the neuronal voltage-gated P/Q-type calcium channel alpha(1)2.1 subunit. FEBS Lett 2002; 532:300-8. [PMID: 12482583 DOI: 10.1016/s0014-5793(02)03693-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We characterized the neuronal two-domain (95kD-alpha(1)2.1) form of the alpha(1)2.1 subunit of the voltage-gated calcium channels using genetic and molecular analysis. The 95kD-alpha(1)2.1 is absent in neuronal preparations from CACNA1A null mouse demonstrating that alpha(1)2.1 and 95kD-alpha(1)2.1 arise from the same gene. A recombinant two-domain form (alpha(1AI-II)) of alpha(1)2.1 associates with the beta subunit and is trafficked to the plasma membrane. Translocation of the alpha(1AI-II) to the plasma membrane requires association with the beta subunit, since a mutation in the alpha(1AI-II) that inhibits beta subunit association reduces membrane trafficking. Though the alpha(1AI-II) protein does not conduct any voltage-gated currents, we have previously shown that it generates a high density of non-linear charge movements [Ahern et al., Proc. Natl. Acad. Sci. USA 98 (2001) 6935-6940]. In this study, we demonstrate that co-expression of the alpha(1AI-II) significantly reduces the current amplitude of alpha(1)2.1/beta(1a)/alpha(2)delta channels, via competition for the beta subunit. Taken together, our results demonstrate a dual functional role for the alpha(1AI-II) protein, both as a voltage sensor and modulator of P/Q-type currents in recombinant systems. These studies suggest an in vivo role for the 95kD-alpha(1)2.1 in altering synaptic activity via protein-protein interactions and/or regulation of P/Q-type currents.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Howard Hughes Medical Institute, Department of Physiology, University of Iowa College of Medicine, 400 Eckstein Medical Research Building, Iowa City, IA 52242-1101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. J Neurosci 2002. [PMID: 12122038 DOI: 10.1523/jneurosci.22-14-05791.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamic regulation of AMPA-type receptors at the synapse is proposed to play a critical role in alterations of the synaptic strength seen in cellular models of learning and memory such as long-term potentiation in the hippocampus. Stargazin, previously identified as an AMPA receptor (AMPAR)-interacting protein, is critical for surface expression and synaptic targeting of AMPARs. Stargazin interacts with postsynaptic density-95/discs large/zona occludens-1 (PDZ) proteins via a C-terminal PDZ binding motif. Interestingly, the C terminal of stargazin also predicts phosphorylation at a threonine residue critical for PDZ protein binding. Because protein phosphorylation regulates synaptic plasticity, we characterized this site and the effects of stargazin phosphorylation on AMPAR function. In vitro peptide phosphorylation assays and Western blot analysis with phospho-stargazin-specific antibodies indicate that the critical threonine within the stargazin PDZ binding site is phosphorylated by protein kinase A. This phosphorylation disrupts stargazin interaction and clustering with postsynaptic density-95 (PSD-95) in transfected COS-7 cells. Furthermore, a stargazin construct with a Thr-to-Glu mutation that mimics phosphorylation fails to cluster at synaptic spines and downregulates synaptic AMPAR function in cultured hippocampal neurons. These data suggest that phosphorylation of the stargazin PDZ ligand can disrupt stargazin interaction with PSD-95 and thereby regulate synaptic AMPAR function.
Collapse
|
35
|
Abstract
The epilepsies encompass diverse seizure disorders afflicting as many as 50 million people worldwide. Many forms of epilepsy are intractable to current therapies and there is a pressing need to develop agents and strategies to not only suppress seizures, but also cure epilepsy. Recent insights from molecular genetics and pharmacology now point to an important role for voltage-dependent calcium channels in epilepsy. In this article, I first provide an introduction to the classification of the epilepsies and an overview of neuronal Ca(2+) channels. Next, I attempt to review the evidence for a role of Ca(2+) channels in epilepsy and the insights gained from genetics and pharmacology. Lastly, I describe new avenues for how such information might be exploited in the development of therapeutic reagents.
Collapse
Affiliation(s)
- Owen T Jones
- Division of Neuroscience, School of Biological Sciences, University of Manchester, 1.136 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
36
|
Choi J, Ko J, Park E, Lee JR, Yoon J, Lim S, Kim E. Phosphorylation of stargazin by protein kinase A regulates its interaction with PSD-95. J Biol Chem 2002; 277:12359-63. [PMID: 11805122 DOI: 10.1074/jbc.m200528200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stargazin is the first transmembrane protein known to associate with AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) glutamate receptors (AMPARs) and regulate their synaptic targeting by two distinct mechanisms, specifically via delivery of AMPARs to the surface membrane and synaptic targeting of these receptors by binding to PSD-95/SAP-90 and related PDZ proteins. However, it is not known whether and how this stargazin-mediated synaptic targeting of AMPARs is regulated. Stargazin interacts with the PDZ domains of PSD-95 through the C-terminal PDZ-binding motif. The stargazin C terminus contains a consensus sequence for phosphorylation by cAMP-dependent protein kinase A (PKA). Phosphorylation site-specific stargazin antibodies reveal that the stargazin C terminus is phosphorylated at the Thr-321 residue in heterologous cells and in vivo. Stargazin phosphorylation is enhanced by the catalytic subunit of PKA. Mutations mimicking stargazin phosphorylation (T321E and T321D) lead to elimination of yeast two-hybrid interactions, in vitro coimmunoprecipitation, and coclustering between stargazin and PSD-95. Phosphorylated stargazin shows a selective loss of coimmunoprecipitation with PSD-95 in heterologous cells and limited enrichment in postsynaptic density fractions of rat brain. These results suggest that phosphorylation of the stargazin C terminus by PKA regulates its interaction with PSD-95 and synaptic targeting of AMPARs.
Collapse
Affiliation(s)
- Jeonghoon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Moss FJ, Viard P, Davies A, Bertaso F, Page KM, Graham A, Cantí C, Plumpton M, Plumpton C, Clare JJ, Dolphin AC. The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression. EMBO J 2002; 21:1514-23. [PMID: 11927536 PMCID: PMC125363 DOI: 10.1093/emboj/21.7.1514] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2001] [Revised: 02/05/2002] [Accepted: 02/07/2002] [Indexed: 11/14/2022] Open
Abstract
We have cloned and characterized a new member of the voltage-dependent Ca(2+) channel gamma subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential gamma subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated gamma(7). Expression of human gamma(7) has been localized specifically to brain. N-type current through Ca(V)2.2 channels was almost abolished when co-expressed transiently with gamma(7) in either Xenopus oocytes or COS-7 cells. Furthermore, immunocytochemistry and western blots show that gamma(7) has this effect by causing a large reduction in expression of Ca(V)2.2 rather than by interfering with trafficking or biophysical properties of the channel. No effect of transiently expressed gamma(7) was observed on pre-existing endogenous N-type calcium channels in sympathetic neurones. Low homology to the stargazin-like gamma subunits, different gene structure and the unique functional properties of gamma(7) imply that it represents a distinct subdivision of the family of proteins identified by their structural and sequence homology to stargazin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary Plumpton
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and
Gene Expression and Protein Biochemistry, and Bioinformatics Unit, GlaxoSmithKline, Medicines Research Center, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK Corresponding author e-mail: P.Viard, A.Davies and F.Bertaso contributed equally to this work
| | - Christopher Plumpton
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and
Gene Expression and Protein Biochemistry, and Bioinformatics Unit, GlaxoSmithKline, Medicines Research Center, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK Corresponding author e-mail: P.Viard, A.Davies and F.Bertaso contributed equally to this work
| | - Jeffrey J. Clare
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and
Gene Expression and Protein Biochemistry, and Bioinformatics Unit, GlaxoSmithKline, Medicines Research Center, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK Corresponding author e-mail: P.Viard, A.Davies and F.Bertaso contributed equally to this work
| | - Annette C. Dolphin
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and
Gene Expression and Protein Biochemistry, and Bioinformatics Unit, GlaxoSmithKline, Medicines Research Center, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK Corresponding author e-mail: P.Viard, A.Davies and F.Bertaso contributed equally to this work
| |
Collapse
|
38
|
Kious BM, Baker CVH, Bronner-Fraser M, Knecht AK. Identification and characterization of a calcium channel gamma subunit expressed in differentiating neurons and myoblasts. Dev Biol 2002; 243:249-59. [PMID: 11884034 DOI: 10.1006/dbio.2001.0570] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient elevations of intracellular calcium (calcium transients) play critical roles in many developmental processes, including differentiation. Although the factors that regulate calcium transients are not clearly defined, calcium influx may be controlled by molecules interacting with calcium channels, including channel regulatory subunits. Here, we describe the chick gamma4 regulatory subunit (CACNG4), the first such subunit to be characterized in early development. CACNG4 is expressed early in the cranial neural plate, and later in the cranial and dorsal root ganglia; importantly, the timing of this later expression correlates precisely with the onset of neuronal differentiation. CACNG4 expression is also observed in nonneuronal tissues undergoing differentiation, specifically the myotome and a subpopulation of differentiating myoblasts in the limb bud. Finally, within the distal cranial ganglia, we show that CACNG4 is expressed in placode-derived cells (prospective neurons), but also, surprisingly, in neural crest-derived cells, previously shown to form only glia in this location; contrary to these previous results, we find that neural crest cells can form neurons in the distal ganglia. Given the proposed role of CACNG4 in modulating calcium channels and its expression in differentiating cells, we suggest that CACNG4 may promote differentiation via regulation of intracellular calcium levels.
Collapse
Affiliation(s)
- Brent M Kious
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
39
|
Ottolenghi C, Fellous M, Barbieri M, McElreavey K. Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related genes and the evolution of sex determination. Genomics 2002; 79:333-43. [PMID: 11863363 DOI: 10.1006/geno.2002.6711] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in the evolutionary genetics of sex determination indicate that DMRT1 may be a vertebrate equivalent of the Drosophila melanogaster master sex regulator gene, doublesex. The role of DMRT1 seems to be confined to some aspects of male sex differentiation, whereas in Drosophila, doublesex has wider developmental effects in both sexes. This suggests other homologs of doublesex may exist in the vertebrate genome and encode sex-specific functions not displayed by DMRT1. We identified and characterized five novel human DM genes, distinct from previously described family members. Human DM genes map to three well-defined regions of chromosomes 1, 9, and 19 (one gene on chromosome 19 having an additional homolog on chromosome X). We collated data indicating these chromosomal regions harbor multiple syntenic genes sharing highly specific paralogy relations, suggesting that they arose early during vertebrate evolution. The 9p21-p24.3 bands represent the ancestral copy and harbor closely linked DM genes that may reflect the overall diversity of the fruit fly DM gene family. The human genome contains a small number of potential doublesex homologs that may be involved in human sexual development. Identifying highly conserved chromosomal regions, such as distal 9p, is an important tool to trace complex ancient evolutionary processes inaccessible by other approaches.
Collapse
Affiliation(s)
- Chris Ottolenghi
- Immunogénétique Humaine, INSERM E0021, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, 75724, France.
| | | | | | | |
Collapse
|
40
|
Chu PJ, Robertson HM, Best PM. Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 2001; 280:37-48. [PMID: 11738816 DOI: 10.1016/s0378-1119(01)00738-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The gamma subunits of voltage-dependent calcium channels influence calcium current properties and may be involved in other physiological functions. Five distinct gamma subunits have been described from human and/or mouse. The first identified member of this group of proteins, gamma(1), is a component of the L-type calcium channel expressed in skeletal muscle. A second member, gamma(2), identified from the stargazer mouse regulates the targeting of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors to the postsynaptic membrane. We report here the identification of three novel gamma subunits from rat and mouse as well as the unidentified rat, mouse and human orthologs of the previously described subunits. Phylogenetic analysis of the 24 mammalian gamma subunits suggests the following relationship ((((gamma(2), gamma(3)), (gamma(4), gamma(8))), (gamma(5), gamma(7))), (gamma(1), gamma(6))) that indicates that they evolved from a common ancestral gamma subunit via gene duplication. Our analysis reveals that the novel gamma subunit gamma(6) most closely resembles gamma(1) and shares with it the lack of a PSD-95/DLG/ZO-1 (PDZ)-binding motif that is characteristic of most other gamma subunits. Rat gamma subunit mRNAs are expressed in multiple tissues including brain, heart, lung, and testis. The expression of gamma(1) mRNA and the long isoform of gamma(6) mRNA is most robust in skeletal muscle, while gamma(6) is also highly expressed in cardiac muscle. Based on our analysis of the molecular evolution, primary structure, and tissue distribution of the gamma subunits, we propose that gamma(1) and gamma(6) may share common physiological functions distinct from the other homologous gamma subunits.
Collapse
Affiliation(s)
- P J Chu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
41
|
Sharp AH, Black JL, Dubel SJ, Sundarraj S, Shen JP, Yunker AM, Copeland TD, McEnery MW. Biochemical and anatomical evidence for specialized voltage-dependent calcium channel gamma isoform expression in the epileptic and ataxic mouse, stargazer. Neuroscience 2001; 105:599-617. [PMID: 11516827 DOI: 10.1016/s0306-4522(01)00220-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inherited forms of ataxia and absence seizures in mice have been linked to defects in voltage-dependent calcium channel subunits. However, a correlation between the sites of neuronal dysfunction and the impact of the primary lesion upon calcium channel subunit expression or function has not been clearly established. For example, the mutation in stargazer mice has pleiotropic consequences including synaptic alterations in cerebellar granule cells, hippocampal CA3/mossy fibers, and cortical neurons in layer V that, presumably, lead to ataxia and seizures. Genetic analysis of stargazer mice determined that the defective gene encodes a protein expressed in brain (gamma2) with limited homology to the skeletal muscle L-type calcium channel gamma1 subunit. Although additional gamma isoforms have been subsequently identified primarily in neural tissue, little was known about the proteins they encode. Therefore, this study explored the distribution and biochemical properties of gamma2 and other gamma isoforms in wild-type and stargazer brain. We cloned human gamma2, gamma3, and gamma4 isoforms, produced specific anti-peptide antibodies to gamma isoforms and characterized both heterologously expressed and endogenous gamma. We identified regional specificity in the expression of gamma isoforms by western analysis and immunohistochemistry. We report for the first time that the mutation in the stargazer gene resulted in the loss of gamma2 protein. Furthermore, no compensatory changes in the expression of gamma3 or gamma4 protein were evident in stargazer brain. In contrast to other voltage-dependent calcium channel subunits, gamma immunostaining was striking in that it was primarily detected in regions highly enriched in excitatory glutamatergic synapses and faintly detected in cell bodies, suggesting a role for gamma in synaptic functions. Sites of known synaptic dysfunction in stargazer (the hippocampal CA3 region, dentate gyrus, and cerebellar molecular layer) were revealed as relying primarily upon gamma2, as total gamma isoform expression was dramatically decreased in these regions. Electron microscopy localized anti-gamma antibody immunostaining to dendritic structures of hippocampal mossy fiber synapses, with enrichment at postsynaptic densities. To assess the association of native gamma with voltage-dependent calcium channel or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits, gamma isoforms (gamma2, gamma3 and gamma4) were detergent solubilized from mouse forebrain. Antibodies against a highly conserved C-terminal epitope present in gamma2, gamma3 and gamma4 immunoprecipitated voltage-dependent calcium channel subunits (alpha1B), providing the first in vivo evidence that gamma and voltage-dependent calcium channels form stable complexes. Furthermore, both anti-gamma2 antibodies and anti-alpha1B antibodies independently immunoprecipitated the AMPA receptor subunit, GluR1, from mouse forebrain homogenates. In summary, loss of gamma2 immunoreactivity in stargazer is precisely localized so as to contribute to previously characterized synaptic defects. The data in this paper provide compelling evidence that gamma isoforms form complexes in vivo with voltage-dependent calcium channels as well as AMPA receptors, are selectively and differentially expressed in neuronal processes, and localize primarily to dendritic structures in the hippocampal mossy fiber region.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Ataxia/genetics
- Ataxia/metabolism
- Ataxia/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Brain/ultrastructure
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Signaling/genetics
- Dendrites/metabolism
- Dendrites/ultrastructure
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Gene Expression/physiology
- Hippocampus/metabolism
- Hippocampus/ultrastructure
- Immunohistochemistry/methods
- Mice
- Mice, Neurologic Mutants/abnormalities
- Mice, Neurologic Mutants/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Sequence Homology, Amino Acid
- Synapses/metabolism
- Synapses/ultrastructure
Collapse
Affiliation(s)
- A H Sharp
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kang MG, Chen CC, Felix R, Letts VA, Frankel WN, Mori Y, Campbell KP. Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001; 276:32917-24. [PMID: 11441000 DOI: 10.1074/jbc.m100787200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel gene (Cacng2; gamma(2)) encoding a protein similar to the voltage-activated Ca(2+) channel gamma(1) subunit was identified as the defective gene in the epileptic and ataxic mouse, stargazer. In this study, we analyzed the association of this novel neuronal gamma(2) subunit with Ca(2+) channels of rabbit brain, and the function of the gamma(2) subunit in recombinant neuronal Ca(2+) channels expressed in Xenopus oocytes. Our results showed that the gamma(2) subunit and a closely related protein (called gamma(3)) co-sedimented and co-immunoprecipitated with neuronal Ca(2+) channel subunits in vivo. Electrophysiological analyses showed that gamma(2) co-expression caused a significant decrease in the current amplitude of both alpha(1B)(alpha(1)2.2)-class (36.8%) and alpha(1A)(alpha(1)2.1)-class (39.7%) Ca(2+) channels (alpha(1)beta(3)alpha(2)delta). Interestingly, the inhibitory effects of the gamma(2) subunit on current amplitude were dependent on the co-expression of the alpha(2)delta subunit. In addition, co-expression of gamma(2) or gamma(1) also significantly decelerates the activation kinetics of alpha(1B)-class Ca(2+) channels. Taken together, these results suggest that the gamma(2) subunit is an important constituent of the neuronal Ca(2+) channel complex and that it down-regulates neuronal Ca(2+) channel activity. Furthermore, the gamma(2) subunit likely contributes to the fine-tuning of neuronal Ca(2+) channels by counterbalancing the effects of the alpha(2)delta subunit.
Collapse
Affiliation(s)
- M G Kang
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Green PJ, Warre R, Hayes PD, McNaughton NC, Medhurst AD, Pangalos M, Duckworth DM, Randall AD. Kinetic modification of the alpha(1I) subunit-mediated T-type Ca(2+) channel by a human neuronal Ca(2+) channel gamma subunit. J Physiol 2001; 533:467-78. [PMID: 11389205 PMCID: PMC2278624 DOI: 10.1111/j.1469-7793.2001.0467a.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Voltage-sensitive Ca(2+) channels (VSCCs) are often heteromultimeric complexes. The VSCC subtype specifically expressed by skeletal muscle has long been known to contain a gamma subunit, gamma(1), that is only expressed in this tissue. Recent work, initiated by the identification of the mutation present in the stargazer mouse, has led to the identification of a series of novel potential Ca(2+) channel gamma subunits expressed in the CNS. 2. Based on bioinformatic techniques we identified and cloned the human gamma(2), gamma(3) and gamma(4) subunits. 3. TaqMan analysis was used to quantitatively characterise the mRNA expression patterns of all the gamma subunits. All three subunits were extensively expressed in adult brain with overlapping but subunit-specific distributions. gamma(2) and gamma(3) were almost entirely restricted to the brain, but gamma(4) expression was seen in a broad range of peripheral tissues. 4. Using a myc epitope the gamma(2) subunit was tagged both intracellularly at the C-terminus and on a predicted extracellular site between the first and second transmembrane domains. The cellular distribution was then examined immunocytochemically, which indicated that a substantial proportion of the cellular pool of the gamma(2) subunit was present on the plasma membrane and provided initial evidence for the predicted transmembrane topology of the gamma subunits. 5. Using co-transfection techniques we investigated the functional effects of each of the gamma subunits on the biophysics of the T-type VSCC encoded by the alpha(1I) subunit. This revealed a substantially slowed rate of deactivation in the presence of gamma(2). In contrast, there was no significant corresponding effect of either gamma(3) or gamma(4) on alpha(1I) subunit-mediated currents.
Collapse
Affiliation(s)
- P J Green
- Department of Neuroscience, GlaxoSmithKline, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stafstrom CE, Tempel BL. Epilepsy genes: the link between molecular dysfunction and pathophysiology. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 6:281-92. [PMID: 11107193 DOI: 10.1002/1098-2779(2000)6:4<281::aid-mrdd7>3.0.co;2-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our understanding of the genetic basis of epilepsy is progressing at a rapid pace. Gene mutations causing several of the inherited epilepsies have been mapped, and several more are likely to be added in coming years. In this review, we summarize the available information on the genetic basis of human epilepsies and epilepsy syndromes, emphasizing how genetic defects may correlate with the pathophysiological mechanisms of brain hyperexcitability. Mutations leading to epilepsy have been identified in genes encoding voltage- and ligand-gated ion channels (benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, generalized epilepsy with febrile seizures "plus"), neurotransmitter receptors (Angelman syndrome), the molecular cascade of cellular energy production (myoclonic epilepsy with ragged red fibers), and proteins without a known role in neuronal excitability (Unverricht-Lundborg disease). Gene defects can lead to epilepsy by altering multiple and diverse aspects of neuronal function.
Collapse
Affiliation(s)
- C E Stafstrom
- Departments of Neurology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|
45
|
Burgess DL, Gefrides LA, Foreman PJ, Noebels JL. A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 2001; 71:339-50. [PMID: 11170751 DOI: 10.1006/geno.2000.6440] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CACNG1 gene on chromosome 17q24 encodes an integral membrane protein that was originally isolated as the regulatory gamma subunit of voltage-dependent Ca2+ channels from skeletal muscle. The existence of an extended family of gamma subunits was subsequently demonstrated upon identification of CACNG2 (22q13), CACNG3 (16p12-p13), and CACNG4 and CACNG5 (17q24). In this study, we describe a cluster of three novel gamma subunit genes, CACNG6, CACNG7, and CACNG8, located in a tandem array on 19q13.4. Phylogenetic analysis indicates that this array is paralogous to the cluster containing CACNG1, CACNG5, and CACNG4, respectively, on chromosome 17q24. We developed sensitive RT-PCR assays and examined the expression profile of each member of the gamma subunit gene family, CACNG1-CACNG8. Analysis of 24 human tissues plus 3 dissected brain regions revealed that CACNG1 through CACNG8 are all coexpressed in fetal and adult brain and differentially transcribed among a wide variety of other tissues. The expression of distinct complements of gamma subunit isoforms in different cell types may be an important mechanism for regulating Ca2+ channel function.
Collapse
Affiliation(s)
- D L Burgess
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
46
|
Dörr S, Midro AT, Färber C, Giannakudis J, Hansmann I. Construction of a detailed physical and transcript map of the candidate region for Russell-Silver syndrome on chromosome 17q23-q24. Genomics 2001; 71:174-81. [PMID: 11161811 DOI: 10.1006/geno.2000.6413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Russell-Silver syndrome (RSS) is a heterogeneous disorder characterized mainly by pre- and postnatal growth retardation and characteristic dysmorphic features. The genetic cause of this syndrome is unknown. However, two autosomal translocations involving chromosome 17q25 were reported in association with RSS. Molecular analysis of the breakpoint on chromosome 17 of the de novo translocation previously described as t(1;17)(q31;q25) enabled us to refine the localization of the chromosome 17 breakpoint to 17q23-q24. Since no detailed mapping data were available for this region, we established a contig of yeast artificial chromosomes, P1 artificial chromosomes, bacterial artificial chromosomes, and cosmid clones for a 17q segment flanked by the sequence-tagged site (STS) markers D17S1557 and D17S940. This contig covers a physical distance of 4-5 Mb encompassing several novel markers. A transcript map was constructed by assigning genes and expressed sequence tags to the clone contig, and altogether 74 STS markers were mapped. Furthermore, the locus order and content provide insight into several duplication events that have occurred in the chromosomal region 17q23-q24. On the basis of our refined map, we have reduced the translocation breakpoint region to 65 kb between the newly derived markers 58T7 and CF20b. These data provide the molecular tools for the final identification of the RSS gene in 17q23-q24.
Collapse
Affiliation(s)
- S Dörr
- Institut für Humangenetik und Medizinische Biologie, Universität Halle-Wittenberg, Halle/Saale, 06097, Germany
| | | | | | | | | |
Collapse
|
47
|
Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicoll RA. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408:936-43. [PMID: 11140673 DOI: 10.1038/35050030] [Citation(s) in RCA: 657] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stargazer, an ataxic and epileptic mutant mouse, lacks functional AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate) receptors on cerebellar granule cells. Stargazin, the mutated protein, interacts with both AMPA receptor subunits and synaptic PDZ proteins, such as PSD-95. The interaction of stargazin with AMPA receptor subunits is essential for delivering functional receptors to the surface membrane of granule cells, whereas its binding with PSD-95 and related PDZ proteins through a carboxy-terminal PDZ-binding domain is required for targeting the AMPA receptor to synapses. Expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptors, indicating that stargazin-like mechanisms for targeting AMPA receptors may be widespread in the central nervous system.
Collapse
Affiliation(s)
- L Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecular details of regulation of L-type Ca(2+) channels by protein kinase A (PKA) and protein kinase C (PKC) pathways. Multiple G protein-coupled receptors act through cAMP/PKA pathways to regulate L-type channels. ss-Adrenergic receptor stimulation results in a marked increase in I:(Ca), which is mediated by a cAMP/PKA pathway. Growing evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of I:(Ca), including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the alpha(1C) (Ca(v)1.2) subunit. Both alpha(1C) and ss(2a) subunits of the channel are substrates for PKA in vivo. The regulation of L-type Ca(2+) channels by Gq-linked receptors and associated PKC activation is complex, with both stimulation and inhibition of I:(Ca) being observed. The amino terminus of the alpha(1C) subunit is critically involved in PKC regulation. Crosstalk between PKA and PKC pathways occurs in the modulation of I:(Ca). Ultimately, precise regulation of I:(Ca) is needed for normal cardiac function, and alterations in these regulatory pathways may prove important in heart disease.
Collapse
Affiliation(s)
- T J Kamp
- Department of Medicine, University of Wisconsin, Madison, WI 53792-3248, USA.
| | | |
Collapse
|
49
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|