1
|
Mougkogiannis P, Adamatzky A. Modulation of electrical activity of proteinoid microspheres with chondroitin sulfate clusters. PLoS One 2024; 19:e0313077. [PMID: 39630635 PMCID: PMC11616837 DOI: 10.1371/journal.pone.0313077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Proteinoids-thermal proteins-are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Proteinoids swell in aqueous solution into hollow microspheres. The proteinoid microspheres produce endogenous burst of electrical potential spikes and change patterns of their electrical activity in response to illumination. These microspheres were proposed as proto-neurons in 1950s. To evaluate pathways of potential evolution of these proto-neurons and their applicability of chimera neuromorphic circuits we decided to hybridise them with hondroitin sulphate (CS) clusters, which form a part of the brain extracellular matrix. We found a novel synergistic interaction between CS clusters and proteinoids that dramatically affects patterns of electrical activity of proteinoid microspheres. Our study might shed light on evolution of synaptic plasticity's molecular mechanisms and the role of extracellular matrix-protein interactions in learning, and open up possibilities for novel methods in unconventional computing and the development of adaptable, brain-inspired computational systems.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing Lab, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
2
|
Bayer KU, Giese KP. A revised view of the role of CaMKII in learning and memory. Nat Neurosci 2024:10.1038/s41593-024-01809-x. [PMID: 39558039 DOI: 10.1038/s41593-024-01809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed. Instead, pThr286 mediates the signal processing required for induction of several distinct forms of synaptic plasticity, including Hebbian long-term potentiation and depression and non-Hebbian behavioral timescale synaptic plasticity. We discuss (i) the molecular computations by which CaMKII supports these diverse plasticity mechanisms, (ii) alternative CaMKII mechanisms that may contribute to the maintenance phase of LTP and (iii) the relationship of these mechanisms to behavioral learning and memory.
Collapse
Affiliation(s)
- Karl Ulrich Bayer
- Department of Pharmacology and Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
3
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
4
|
Logan R, Shelton M, Horan N, Xue X, Maturin L, Eacret D, Michaud J, Singh N, Williams B, Gamble M, Seggio J, Kuppe-Fish M, Phan B, Tseng G, Blendy J, Woods LS, Palmer A, George O, Seney M. Sex-specific Concordance of Striatal Transcriptional Signatures of Opioid Addiction in Human and Rodent Brains. RESEARCH SQUARE 2024:rs.3.rs-5006061. [PMID: 39399686 PMCID: PMC11469374 DOI: 10.21203/rs.3.rs-5006061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Opioid use disorder (OUD) has emerged as a severe, ongoing public health emergency. Current, frontline addiction treatment strategies fail to produce lasting abstinence in most users. This underscores the lasting effects of chronic opioid exposure and emphasizes the need to understand the molecular mechanisms of drug seeking and taking, but also how those alterations persist through acute and protracted withdrawal. Here, we used RNA sequencing in post-mortem human tissue from males (n=10) and females (n=10) with OUD and age and sex-matched comparison subjects. We compared molecular alterations in the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC) between humans with OUD and rodent models across distinct stages of opioid use and withdrawal (acute and prolonged) using differential gene expression and network-based approaches. We found that the molecular signature in the NAc of females with OUD mirrored effects seen in the NAc of female mice at all stages of exposure. Conversely, males with OUD showed strong overlap in expression profile with rats in acute withdrawal. Co-expression networks involved in post-transcriptional modification of RNA and epigenetic modification of chromatin state. This study provides fundamental insight into the converging molecular pathways altered by opioids across species. Further, this work helps to disentangle which alterations observed in humans with OUD are driven by acute drug exposure and which alterations are consequences of chronic exposure.
Collapse
Affiliation(s)
- Ryan Logan
- University of Massachusetts Chan Medical School
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abdulmalek S, Connole LM, O'Sullivan NC, Beyna M, Pangalos MN, von Schack D, Ring RH, Murphy KJ. Midkine is upregulated in the hippocampus following both spatial and olfactory reward association learning and enhances memory. J Neurochem 2024; 168:2832-2847. [PMID: 39361112 DOI: 10.1111/jnc.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/06/2024]
Abstract
Hippocampal neuronal plasticity is a fundamental process underpinning learning and memory formation and requiring elaborate molecular mechanisms that result in the dynamic remodelling of synaptic connectivity. The neurotrophic properties of midkine (Mdk) have been implicated in the development and repair of the nervous system, while Mdk knockout resulted in deficits in the formation of certain types of memory. The role of Mdk in the process of memory-associated neuronal plasticity, however, remains poorly understood. We investigated the learning-induced regulation of Mdk in spatial navigation and association learning using the water maze and the odour reward association learning paradigms, characterising a temporal profile of Mdk protein expression post-learning. Both learning events revealed similar patterns of upregulation of expression of the protein in the rat hippocampal dentate gyrus, which were rapid and transient. Moreover, administration of recombinant Mdk during the endogenous Mdk upregulation following learning enhanced memory in the water maze task revealing a pro-cognitive action of Mdk. We further show that, within the adult hippocampus, Mdk mRNA is predominantly expressed in granular and pyramidal neurons and that hippocampal neuronal Mdk expression is regulated by the canonical plasticity-associated neurotransmitter glutamate. Finally, we confirm that the positive action of Mdk on neurite outgrowth previously noted in cortical and cerebellar neurons extends to hippocampal neurons. Together, our findings suggest a role for Mdk in glutamate-mediated hippocampal neuronal plasticity important for long-term memory consolidation.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Laura M Connole
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Mercedes Beyna
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - David von Schack
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Dahleh MMM, Mello CF, Ferreira J, Rubin MA, Prigol M, Guerra GP. CaMKIIα mediates spermidine-induced memory enhancement in rats: A potential involvement of PKA/CREB pathway. Pharmacol Biochem Behav 2024; 240:173774. [PMID: 38648866 DOI: 10.1016/j.pbb.2024.173774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Carlos Fernando Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil.
| |
Collapse
|
8
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Marrocco J, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain. Nat Neurosci 2024; 27:1051-1063. [PMID: 38594596 PMCID: PMC11156538 DOI: 10.1038/s41593-024-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan Marrocco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Reemst K, Lopizzo N, Abbink MR, Engelenburg HJ, Cattaneo A, Korosi A. Molecular underpinnings of programming by early-life stress and the protective effects of early dietary ω6/ω3 ratio, basally and in response to LPS: Integrated mRNA-miRNAs approach. Brain Behav Immun 2024; 117:283-297. [PMID: 38242369 DOI: 10.1016/j.bbi.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Early-life stress (ELS) exposure increases the risk for mental disorders, including cognitive impairments later in life. We have previously demonstrated that an early diet with low ω6/ω3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Several studies have implicated the neuroimmune system in the ELS and diet mediated effects, but currently the molecular pathways via which ELS and early diet exert their long-term impact are not yet fully understood. Here we study the effects of ELS and dietary PUFA ratio on hippocampal mRNA and miRNA expression in adulthood, both under basal as well as inflammatory conditions. Male mice were exposed to chronic ELS by the limiting bedding and nesting material paradigm from postnatal day(P)2 to P9, and provided with a diet containing a standard (high (15:1.1)) or protective (low (1.1:1)) ω6 linoleic acid to ω3 alpha-linolenic acid ratio from P2 to P42. At P120, memory was assessed using the object location task. Subsequently, a single lipopolysaccharide (LPS) injection was given and 24 h later hippocampal genome-wide mRNA and microRNA (miRNA) expression was measured using microarray. Spatial learning deficits induced by ELS in mice fed the standard (high ω6/ω3) diet were reversed by the early-life protective (low ω6/ω3) diet. An integrated miRNA - mRNA analysis revealed that ELS and early diet induced miRNA driven mRNA expression changes into adulthood. Under basal conditions both ELS and the diet affected molecular pathways related to hippocampal plasticity, with the protective (low ω6/ω3 ratio) diet leading to activation of molecular pathways associated with improved hippocampal plasticity and learning and memory in mice previously exposed to ELS (e.g., CREB signaling and endocannabinoid neuronal synapse pathway). LPS induced miRNA and mRNA expression was strongly dependent on both ELS and early diet. In mice fed the standard (high ω6/ω3) diet, LPS increased miRNA expression leading to activation of inflammatory pathways. In contrast, in mice fed the protective diet, LPS reduced miRNA expression and altered target mRNA expression inhibiting inflammatory signaling pathways and pathways associated with hippocampal plasticity, which was especially apparent in mice previously exposed to ELS. This data provides molecular insights into how the protective (low ω6/ω3) diet during development could exert its long-lasting beneficial effects on hippocampal plasticity and learning and memory especially in a vulnerable population exposed to stress early in life, providing the basis for the development of intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Hendrik J Engelenburg
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands.
| |
Collapse
|
10
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
11
|
Bakhtazad A, Asgari Taei A, Parvizi F, Kadivar M, Farahmandfar M. Repeated pre-exposure to morphine inhibited the amnesic effect of ethanol on spatial memory: Involvement of CaMKII and BDNF. Alcohol 2024; 114:9-24. [PMID: 37597575 DOI: 10.1016/j.alcohol.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Evidence has suggested that addiction and memory systems are related, but the signaling cascades underlying this interaction have not been completelyealed yet. The importance of calcium-calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) in the memory processes and also in drug addiction has been previously established. In this present investigation, we examined the effects of repeated morphine pretreatment on impairment of spatial learning and memory acquisition induced by systemic ethanol administration in adult male rats. Also, we assessed how these drug exposures influence the expression level of CaMKII and BDNF in the hippocampus and amygdala. Animals were trained by a single training session of 8 trials, and a probe test containing a 60-s free-swim without a platform was administered 24 h later. Before training trials, rats were treated with a once-daily subcutaneous morphine injection for 3 days followed by a 5-day washout period. The results showed that pre-training ethanol (1 g/kg) impaired spatial learning and memory acquisition and down-regulated the mRNA expression of CaMKII and BDNF. The amnesic effect of ethanol was suppressed in morphine- (15 mg/kg/day) pretreated animals. Furthermore, the mRNA expression level of CaMKII and BDNF increased significantly following ethanol administration in morphine-pretreated rats. Conversely, this improvement in spatial memory acquisition was prevented by daily subcutaneous administration of naloxone (2 mg/kg) 15 min prior to morphine administration. Our findings suggest that sub-chronic morphine treatment reverses ethanol-induced spatial memory impairment, which could be explained by modulating CaMKII and BDNF mRNA expressions in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Parvizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Crestini A, Carbone E, Rivabene R, Ancidoni A, Rosa P, Tata AM, Fabrizi E, Locuratolo N, Vanacore N, Lacorte E, Piscopo P. A Systematic Review on Drugs Acting as Nicotinic Acetylcholine Receptor Agonists in the Treatment of Dementia. Cells 2024; 13:237. [PMID: 38334629 PMCID: PMC10854606 DOI: 10.3390/cells13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Acetylcholine signaling is attenuated in early Alzheimer's disease (AD) and other dementias. A significant reduction in the expression of nicotinic acetylcholine receptors (nAChRs) in the brain of AD patients has also been reported in several molecular biological and in situ labeling studies. The modulation of the functional deficit of the cholinergic system as a pharmacological target could therefore have a clinical benefit, which is not to be neglected. This systematic review was conducted to identify clinical trials, which evaluated the safety and efficacy of nicotinic acetylcholine receptor agonists using Clinicaltrial (CT) and EudraCT databases. Structured searches identified 39 trials, which used 15 different drugs designed to increase the function of the nAChRs. Most of the identified clinical trials were phase II trials, with some of them classified as ongoing for several years. The systematic screening of the literature led to the selection of 14 studies out of the 8261 bibliographic records retrieved. Six trials reported detailed data on adverse events associated with the intervention, while twelve trials reported data on efficacy measures, such as attention, behavior and cognition. Overall, smost of the physical side effects of cholinergic agonists were reported to be well tolerated. Some trials also reported improvements in attention. However, the efficacy of these drugs in other cognitive and behavioral outcomes remains highly controversial.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Elena Carbone
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Roberto Rivabene
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy;
- ICOT (Institute of Traumatology and Orthopaedic Surgery), 04100 Latina, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisa Fabrizi
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
- Doctoral School, The Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Nicoletta Locuratolo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (A.A.); (N.L.); (N.V.); (E.L.)
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (R.R.); (P.P.)
| |
Collapse
|
13
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Chen J, Chen J, Hu J, Huang R, Shen L, Gu H, Chai X, Wang D. Cigarette smoking is linked to an increased risk of delirium following arthroplasty in patients suffering from osteoarthritic pain. CNS Neurosci Ther 2023; 29:3854-3862. [PMID: 37334739 PMCID: PMC10651961 DOI: 10.1111/cns.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
AIMS Postoperative delirium (POD) is a common postoperative complication, and the potential relationship between cigarette smoking and POD is still unclear. The current study evaluated the relationship between preoperative smoking status in patients suffering from osteoarthritic pain and POD after total knee arthroplasty (TKA). METHODS A total of 254 patients who had undergone unilateral TKA were enrolled between November 2021 and December 2022, with no gender limitation. Preoperatively, patients' visual analog scale (VAS) scores at rest and during movement, hospital anxiety and depression (HAD) scores, pain catastrophizing scale (PCS) scores and smoking status were collected. The primary outcome was the incidence of POD, which was evaluated by the confusion assessment method (CAM). RESULTS A total of 188 patients had complete datasets for final analysis. POD was diagnosed in 41 of 188 patients (21.8%) who had complete data for analysis. The incidence of smoking was significantly higher in Group POD than in Group Non-POD (22 of 41 patients [54%] vs. 47 of 147 patients [32%], p < 0.05). The postoperative hospital stays were also longer than those of Group Non-POD (p < 0.001). Multiple logistic regression analysis showed that preoperative smoking (OR: 4.018, 95% CI: 1.158-13.947, p = 0.028) was a risk factor for the occurrence of POD in patients with TKA. The length of hospital stay was correlated with the occurrence of POD. CONCLUSIONS Our findings suggest that patients who smoked preoperatively were at increased risk of developing POD following TKA.
Collapse
Affiliation(s)
- Jie‐ru Chen
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jia‐qi Chen
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ji‐cheng Hu
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Run‐sheng Huang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Liang Shen
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hai Gu
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xiao‐qing Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTCDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
15
|
Heo S, Kang T, Bygrave AM, Larsen MR, Huganir RL. Experience-Induced Remodeling of the Hippocampal Post-synaptic Proteome and Phosphoproteome. Mol Cell Proteomics 2023; 22:100661. [PMID: 37806341 PMCID: PMC10652125 DOI: 10.1016/j.mcpro.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses. We developed a new strategy to identify and quantify the relatively low level of site-specific phosphorylation of PSD proteome from the hippocampus, by using a modified iTRAQ-based TiSH protocol. In the PSD, we identified 3938 proteins and 2761 phosphoproteins in the sequential strategy covering a total of 4968 unique protein groups (at least two peptides including a unique peptide). On the phosphoproteins, we identified a total of 6188 unambiguous phosphosites (75%
Collapse
Affiliation(s)
- Seok Heo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
16
|
Qin Y, Zhang XY, Liu Y, Ma Z, Tao S, Li Y, Peng R, Wang F, Wang J, Feng J, Qiu Z, Jin L, Wang H, Gong X. Downregulation of mGluR1-mediated signaling underlying autistic-like core symptoms in Shank1 P1812L-knock-in mice. Transl Psychiatry 2023; 13:329. [PMID: 37880287 PMCID: PMC10600164 DOI: 10.1038/s41398-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yanyan Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuo Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Rui Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
19
|
Tsujioka S, Sumino A, Nagasawa Y, Sumikama T, Flechsig H, Puppulin L, Tomita T, Baba Y, Kakuta T, Ogoshi T, Umeda K, Kodera N, Murakoshi H, Shibata M. Imaging single CaMKII holoenzymes at work by high-speed atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadh1069. [PMID: 37390213 PMCID: PMC10313165 DOI: 10.1126/sciadv.adh1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in synaptic plasticity. It is a dodecameric serine/threonine kinase that has been highly conserved across metazoans for over a million years. Despite the extensive knowledge of the mechanisms underlying CaMKII activation, its behavior at the molecular level has remained unobserved. In this study, we used high-speed atomic force microscopy to visualize the activity-dependent structural dynamics of rat/hydra/C. elegans CaMKII with nanometer resolution. Our imaging results revealed that the dynamic behavior is dependent on CaM binding and subsequent pT286 phosphorylation. Among the species studies, only rat CaMKIIα with pT286/pT305/pT306 exhibited kinase domain oligomerization. Furthermore, we revealed that the sensitivity of CaMKII to PP2A in the three species differs, with rat, C. elegans, and hydra being less dephosphorylated in that order. The evolutionarily acquired features of mammalian CaMKIIα-specific structural arrangement and phosphatase tolerance may differentiate neuronal function between mammals and other species.
Collapse
Affiliation(s)
- Shotaro Tsujioka
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
20
|
Nagasawa Y, Ueda HH, Kawabata H, Murakoshi H. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics. Biophys Physicobiol 2023; 20:e200027. [PMID: 38496236 PMCID: PMC10941968 DOI: 10.2142/biophysico.bppb-v20.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 03/19/2024] Open
Abstract
Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
Collapse
Affiliation(s)
- Yutaro Nagasawa
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hiromi H Ueda
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruka Kawabata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
21
|
Kuwabara T, Kohno H, Hatakeyama M, Kubo T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. SCIENCE ADVANCES 2023; 9:eadd4201. [PMID: 37146148 PMCID: PMC10162674 DOI: 10.1126/sciadv.add4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary dynamics of diversification of brain neuronal cell types that have underlain behavioral evolution remain largely unknown. Here, we compared transcriptomes and functions of Kenyon cell (KC) types that compose the mushroom bodies between the honey bee and sawfly, a primitive hymenopteran insect whose KCs likely have the ancestral properties. Transcriptome analyses show that the sawfly KC type shares some of the gene expression profile with each honey bee KC type, although unique gene expression profiles have also been acquired in each honey bee KC type. In addition, functional analysis of two sawfly genes suggested that the functions in learning and memory of the ancestral KC type were heterogeneously inherited among the KC types in the honey bee. Our findings strongly suggest that the functional evolution of KCs in Hymenoptera involved two previously hypothesized processes for evolution of cell function: functional segregation and divergence.
Collapse
Affiliation(s)
- Takayoshi Kuwabara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatsugu Hatakeyama
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
23
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read mRNA isoform regulation is pervasive across mammalian brain regions, cell types, and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535281. [PMID: 37066387 PMCID: PMC10103983 DOI: 10.1101/2023.04.02.535281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As expected, splicing varies strongly between cell types. However, certain gene classes including neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in the same cell type across anatomical regions, suggesting differences in network activity may influence cell-type identity. Glial brain-region specificity in isoform expression includes strong poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition from P21 to P28. The same cell type traced across development shows more isoform variability than across adult anatomical regions, indicating a coordinated modulation of functional programs dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave similarly in newly generated data from human hippocampi, these principles may be extrapolated to human brain. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-length brain isoform regulation across development and anatomical regions, providing a previously unappreciated degree of isoform variability across multiple scales of the brain.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | | | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, the Rockefeller University, New York, NY
| | - Erich D Jarvis
- Vertebrate Genome Lab, the Rockefeller University, New York, NY
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Balakrishnan R, Park JY, Cho DY, Ahn JY, Yoo DS, Seol SH, Yoon SH, Choi DK. AD−1 Small Molecule Improves Learning and Memory Function in Scopolamine-Induced Amnesic Mice Model through Regulation of CREB/BDNF and NF-κB/MAPK Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12030648. [PMID: 36978896 PMCID: PMC10045324 DOI: 10.3390/antiox12030648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer’s disease (AD). Based on the potential neuroprotective effects of AD−1 small molecule, we here explored the possible underlying mechanisms of the protective effect of AD-1 small molecule against scopolamine-induced oxidative stress, neuroinflammation, and neuronal apoptosis. According to our findings, scopolamine administration resulted in increased AChE activity, MDA levels, and decreased antioxidant enzymes, as well as the downregulation of the antioxidant response proteins of Nrf2 and HO-1 expression; however, treatment with AD−1 small molecule mitigated the generation of oxidant factors while restoring the antioxidant enzymes status, in addition to improving antioxidant protein levels. Similarly, AD−1 small molecule significantly increased the protein expression of neuroprotective markers such as BDNF and CREB and promoted memory processes in scopolamine-induced mice. Western blot analysis showed that AD−1 small molecule reduced activated microglia and astrocytes via the attenuation of iba-1 and GFAP protein expression. We also found that scopolamine enhanced the phosphorylation of NF-κB/MAPK signaling and, conversely, that AD−1 small molecule significantly inhibited the phosphorylation of NF-κB/MAPK signaling in the brain regions of hippocampus and cortex. We further found that scopolamine promoted neuronal loss by inducing Bax and caspase-3 and reducing the levels of the antiapoptotic protein Bcl-2. In contrast, AD−1 small molecule significantly decreased the levels of apoptotic markers and increased neuronal survival. Furthermore, AD−1 small molecule ameliorated scopolamine-induced impairments in spatial learning behavior and memory formation. These findings revealed that AD−1 small molecule attenuated scopolamine-induced cognitive and memory dysfunction by ameliorating AChE activity, oxidative brain damage, neuroinflammation, and neuronal apoptosis.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Duk-Yeon Cho
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Jae-Yong Ahn
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Sun Yoo
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Sang-Ho Seol
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
- Correspondence:
| |
Collapse
|
25
|
Liao P, Wu QY, Li S, Hu KB, Liu HL, Wang HY, Long ZY, Lu XM, Wang YT. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023; 224:109365. [PMID: 36462635 DOI: 10.1016/j.neuropharm.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Abscisic acid (ABA), a conserved hormone existing in plants and animals, not only regulates blood glucose and inflammation but also has good therapeutic effects on obesity, diabetes, atherosclerosis and inflammatory diseases in animals. Studies have shown that exogenous ABA can pass the blood-brain barrier and inhibit neuroinflammation, promote neurogenesis, enhance synaptic plasticity, improve learning, memory and cognitive ability in the central nervous system. At the same time, ABA plays a crucial role in significant improvement of Alzheimer's disease, depression, and anxiety. Here we review the previous research progress of ABA on the physiological effects and clinical application in the related diseases. By summarizing the biological functions of ABA, we aim to reveal the possible mechanisms of ameliorative function of ABA on learning and memory, to provide a theoretical basis that ABA as a novel and safe drug improves learning memory and cognitive impairment in central system diseases such as aging, neurodegenerative diseases and traumatic brain injury.
Collapse
Affiliation(s)
- Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
26
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
28
|
Inhibition of late mRNA synthesis in the hippocampus impairs consolidation and reconsolidation of spatial memory in male rats. Neurobiol Learn Mem 2022; 195:107687. [DOI: 10.1016/j.nlm.2022.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
|
29
|
Exogenous 3-Iodothyronamine (T1AM) Can Affect Phosphorylation of Proteins Involved on Signal Transduction Pathways in In Vitro Models of Brain Cell Lines, but These Effects Are Not Strengthened by Its Catabolite, 3-Iodothyroacetic Acid (TA1). Life (Basel) 2022; 12:life12091352. [PMID: 36143389 PMCID: PMC9502970 DOI: 10.3390/life12091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
T1AM, a derivative of thyroid hormones, and its major catabolite, TA1, produce effects on memory acquisition in rodents. In the present study, we compared the effects of exogenous T1AM and TA1 on protein belonging to signal transduction pathways, assuming that TA1 may strengthen T1AM’s effects in brain tissue. A hybrid line of cancer cells of mouse neuroblastoma and rat glioma (NG 108-15), as well as a human glioblastoma cell line (U-87 MG) were used. We first characterized the in vitro model by analyzing gene expression of proteins involved in the glutamatergic cascade and cellular uptake of T1AM and TA1. Then, cell viability, glucose consumption, and protein expression were assessed. Both cell lines expressed receptors implicated in glutamatergic pathway, namely Nmdar1, Glur2, and EphB2, but only U-87 MG cells expressed TAAR1. At pharmacological concentrations, T1AM was taken up and catabolized to TA1 and resulted in more cytotoxicity compared to TA1. The major effect, highlighted in both cell lines, albeit on different proteins involved in the glutamatergic signaling, was an increase in phosphorylation, exerted by T1AM but not reproduced by TA1. These findings indicate that, in our in vitro models, T1AM can affect proteins involved in the glutamatergic and other signaling pathways, but these effects are not strengthened by TA1.
Collapse
|
30
|
Zhang Y, Li H, Hu T, Zhao Z, Liu Q, Li H. Disrupting reconsolidation by PKA inhibitor in BLA reduces heroin-seeking behavior. Front Cell Neurosci 2022; 16:996379. [PMID: 36106011 PMCID: PMC9464818 DOI: 10.3389/fncel.2022.996379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Drug abuse is considered a maladaptive pathology of emotional memory and is associated with craving and relapse induced by drug-associated stimuli or drugs. Reconsolidation is an independent memory process with a strict time window followed by the reactivation of drug-associated stimulus depending on the basolateral amygdala (BLA). Pharmacology or behavior treatment that disrupts the reconsolidation can effectively attenuate drug-seeking in addicts. Here, we hypothesized that heroin-memory reconsolidation requires cAMP-dependent protein kinase A (PKA) of BLA based on the fundamental effect of PKA in synaptic plasticity and memory process. After 10 days of acquisition, the rats underwent 11 days of extinction training and then received the intra-BLA infusions of the PKA inhibitor Rp-cAMPS at different time windows with/without a reactivation session. The results show that PKA inhibitor treatment in the reconsolidation time window disrupts the reconsolidation and consequently reduces cue-induced reinstatement, heroin-induced reinstatement, and spontaneous recovery of heroin-seeking behavior in the rats. In contrast, there was no effect on cue-induced reinstatement in the intra-BLA infusion of PKA inhibitor 6 h after reactivation or without reactivation. These data suggest that PKA inhibition disrupts the reconsolidation of heroin-associated memory, reduces subsequent drug seeking, and prevents relapse, which is retrieval-dependent, time-limited, and BLA-dependent.
Collapse
Affiliation(s)
- Yanghui Zhang
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Haoyu Li
| |
Collapse
|
31
|
Tong L, Gao S, Li W, Yang J, Wang P, Li W. TRPM2 mediates CaMKⅡ-Beclin-1 signaling in early cortical injury after induced subarachnoid hemorrhage in mice. J Chem Neuroanat 2022; 125:102144. [PMID: 35988814 DOI: 10.1016/j.jchemneu.2022.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Though early brain injury (EBI) is the primary cause of poor outcomes among patients with subarachnoid hemorrhage (SAH), its exact molecular mechanisms remain unclear. Improved the understanding of how transient receptor potential melastatin-related 2 (TRPM2) is involved in SAH-induced EBI will help develop novel interventions. METHODS Wild type (WT) male C57BL/6J mice were subjected to SAH for 12 h, 24 h or 48 h, after which neurological scores and pathological changes in the hippocampus (CA3, DG, and CA1) and temporal base cortex were observed. Expressions of TRPM2, Ca2+/calmodulin (CaM)-dependent protein kinase Ⅱ (CaMKⅡ), and Beclin-1 in hippocampus (CA3, DG, and CA1) and temporal base cortex were compared across post-SAH timepoints. TRPM2-deficient (TRPM2-/-) male C57BL/6 J mice and a CaMKⅡ inhibitor (KN-93) were used to analyze the effects oTRPM2 on the CaMKⅡ-Beclin-1 signaling post SAH. RESULTS Neurological and temporal base cortex deterioration were more severe with increased time post-SAH induction, whereas hippocampal damage was not observed. Post-SAH, TRPM2-CaMKⅡ-Beclin-1 cascade was activated in the temporal base cortex, but not the hippocampus. Using TRPM2-/- mice and KN-93 administration, SAH-induced EBI was improved, and CaMKⅡ and Beclin-1 expressions in the temporal base cortex were significantly decreased compared with WT mice. TRPM2-/- mice also showed better neurological improvement compared with KN-93 treated mice. CONCLUSION TRPM2 mediates CaMKⅡ-Beclin-1 signaling that aggravates SAH-induced EBI in the temporal base cortex. TRPM2 may be an alternative therapy target in EBI after SAH. DATA AVAILABILITY The datasets generated and/or analysed during the current study are available from the corresponding author.
Collapse
Affiliation(s)
- Lin Tong
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China.
| | - Su Gao
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Wei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Junli Yang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Ping Wang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Weiwei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| |
Collapse
|
32
|
Chen J, Zhu H, Wang R, Su X, Ruan Z, Pan Y, Peng Q. Functional Dissection of Protein Kinases in Sexual Development and Female Receptivity of Drosophila. Front Cell Dev Biol 2022; 10:923171. [PMID: 35757001 PMCID: PMC9220291 DOI: 10.3389/fcell.2022.923171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is crucial for a variety of biological functions, but how it is involved in sexual development and behavior is rarely known. In this study, we performed a screen of RNA interference targeting 177 protein kinases in Drosophila and identified 13 kinases involved in sexual development in one or both sexes. We further identified that PKA and CASK promote female sexual behavior while not affecting female differentiation. Knocking down PKA or CASK in about five pairs of pC1 neurons in the central brain affects the fine projection but not cell number of these pC1 neurons and reduces virgin female receptivity. We also found that PKA and CASK signaling is required acutely during adulthood to promote female sexual behavior. These results reveal candidate kinases required for sexual development and behaviors and provide insights into how kinases would regulate neuronal development and physiology to fine tune the robustness of sexual behaviors.
Collapse
Affiliation(s)
- Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Huan Zhu
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangbin Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zongcai Ruan
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Gil-Marti B, Barredo CG, Pina-Flores S, Trejo JL, Turiegano E, Martin FA. The elusive transcriptional memory trace. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac008. [PMID: 38596710 PMCID: PMC10913820 DOI: 10.1093/oons/kvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 04/11/2024]
Abstract
Memory is the brain faculty to store and remember information. It is a sequential process in which four different phases can be distinguished: encoding or learning, consolidation, storage and reactivation. Since the discovery of the first Drosophila gene essential for memory formation in 1976, our knowledge of its mechanisms has progressed greatly. The current view considers the existence of engrams, ensembles of neuronal populations whose activity is temporally coordinated and represents the minimal correlate of experience in brain circuits. In order to form and maintain the engram, protein synthesis and, probably, specific transcriptional program(s) is required. The immediate early gene response during learning process has been extensively studied. However, a detailed description of the transcriptional response for later memory phases was technically challenging. Recent advances in transcriptomics have allowed us to tackle this biological problem. This review summarizes recent findings in this field, and discusses whether or not it is possible to identify a transcriptional trace for memory.
Collapse
Affiliation(s)
- Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Celia G Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Sara Pina-Flores
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Jose Luis Trejo
- Neurogenesis of the Adult Animal Laboratory. Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council (CSIC), 28049, Madrid, Spain
| | - Enrique Turiegano
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Francisco A Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| |
Collapse
|
34
|
Adel M, Chen N, Zhang Y, Reed ML, Quasney C, Griffith LC. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep. J Neurosci 2022; 42:4297-4310. [PMID: 35474278 PMCID: PMC9145224 DOI: 10.1523/jneurosci.0144-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, in vivo functional imaging studies revealed that associative memory formation is coupled to a cascade of neural plasticity events in distinct compartments of the mushroom body (MB). In-depth investigation of the circuit dynamics, however, will require an ex vivo model that faithfully mirrors these events to allow direct manipulations of circuit elements that are inaccessible in the intact fly. The current ex vivo models have been able to reproduce the fundamental plasticity of aversive short-term memory, a potentiation of the MB intrinsic neuron (Kenyon cells [KCs]) responses after artificial learning ex vivo However, this potentiation showed different localization and encoding properties from those reported in vivo and failed to generate the previously reported suppression plasticity in the MB output neurons (MBONs). Here, we develop an ex vivo model using the female Drosophila brain that recapitulates behaviorally evoked plasticity in the KCs and MBONs. We demonstrate that this plasticity accurately localizes to the MB α'3 compartment and is encoded by a coincidence between KC activation and dopaminergic input. The formed plasticity is input-specific, requiring pairing of the conditioned stimulus and unconditioned stimulus pathways; hence, we name it pairing-dependent plasticity. Pairing-dependent plasticity formation requires an intact CaMKII gene and is blocked by previous-night sleep deprivation but is rescued by rebound sleep. In conclusion, we show that our ex vivo preparation recapitulates behavioral and imaging results from intact animals and can provide new insights into mechanisms of memory formation at the level of molecules, circuits, and brain state.SIGNIFICANCE STATEMENT The mammalian ex vivo LTP model enabled in-depth investigation of the hippocampal memory circuit. We develop a parallel model to study the Drosophila mushroom body (MB) memory circuit. Pairing activation of the conditioned stimulus and unconditioned stimulus pathways in dissected brains induces a potentiation pairing-dependent plasticity (PDP) in the axons of α'β' Kenyon cells and a suppression PDP in the dendrites of their postsynaptic MB output neurons, localized in the MB α'3 compartment. This PDP is input-specific and requires the 3' untranslated region of CaMKII Interestingly, ex vivo PDP carries information about the animal's experience before dissection; brains from sleep-deprived animals fail to form PDP, whereas those from animals who recovered 2 h of their lost sleep form PDP.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Nannan Chen
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Yunpeng Zhang
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Christina Quasney
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
35
|
Martínez-Serra R, Alonso-Nanclares L, Cho K, Giese KP. Emerging insights into synapse dysregulation in Alzheimer's disease. Brain Commun 2022; 4:fcac083. [PMID: 35652120 PMCID: PMC9149787 DOI: 10.1093/braincomms/fcac083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia and a growing worldwide problem, with its incidence expected to increase in the coming years. Since synapse loss is a major pathology and is correlated with symptoms in Alzheimer's disease, synapse dysfunction and loss may underlie pathophysiology. In this context, this review focuses on emerging insights into synaptic changes at the ultrastructural level. The three-dimensional electron microscopy technique unequivocally detects all types of synapses, including multi-synapses, which are indicators of synaptic connectivity between neurons. In recent years it has become feasible to perform sophisticated three-dimensional electron microscopy analyses on post-mortem human Alzheimer's disease brain as tissue preservation and electron microscopy techniques have improved. This ultrastructural analysis found that synapse loss does not always precede neuronal loss, as long believed. For instance, in the transentorhinal cortex and area CA1 of the hippocampus, synapse loss does not precede neuronal loss. However, in the entorhinal cortex, synapse loss precedes neuronal loss. Moreover, the ultrastructural analysis provides details about synapse morphology. For example, changes in excitatory synapses' post-synaptic densities, with fragmented postsynaptic densities increasing at the expense of perforated synapses, are seen in Alzheimer's disease brain. Further, multi-synapses also appear to be altered in Alzheimer's disease by doubling the abundance of multi-innervated spines in the transentorhinal cortex of Alzheimer's disease brain. Collectively, these recent ultrastructural analyses highlight distinct synaptic phenotypes in different Alzheimer's disease brain regions and broaden the understanding of synapse alterations, which may unravel some new therapeutic targets.
Collapse
Affiliation(s)
- Raquel Martínez-Serra
- Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London SE5 9NU, UK
| | - Lidia Alonso-Nanclares
- Instituto Cajal (CSIC - Consejo Superior de
Investigaciones Científicas), Avda. Doctor Arce 37, 28002
Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales (CTB),
Universidad Politécnica de Madrid, Campus de Montegancedo
s/n, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Kwangwook Cho
- Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London SE5 9NU, UK
- UK-Dementia Research Institute at King’s
College London, London SE5 9NU, UK
| | - K. Peter Giese
- Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London SE5 9NU, UK
| |
Collapse
|
36
|
Liu P, Liang J, Jiang F, Cai W, Shen F, Liang J, Zhang J, Sun Z, Sui N. Gnas Promoter Hypermethylation in the Basolateral Amygdala Regulates Reconsolidation of Morphine Reward Memory in Rats. Genes (Basel) 2022; 13:genes13030553. [PMID: 35328106 PMCID: PMC8950747 DOI: 10.3390/genes13030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Impairing reconsolidation may disrupt drug memories to prevent relapse, meanwhile long-term transcription regulations in the brain regions contribute to the occurrence of emotional memories. The basolateral amygdala (BLA) is involved in the drug-cue association, while the nucleus accumbens (NAc) responds to the drug reward. Here, we assessed whether DNA methyltransferases (Dnmts) in these two brain regions function identically in the reconsolidation of morphine reward memory. We show that Dnmts inhibition in the BLA but not in the NAc after memory retrieval impaired reconsolidation of a morphine reward memory. Moreover, the mRNA levels of Dnmt3a and Dnmt3b, rather than Dnmt1, in the BLA were continuously upregulated after retrieval. We further identified the differentially methylated regions (DMRs) in genes in the BLA after retrieval, and focused on the DMRs located in gene promoter regions. Among them were three genes (Gnas, Sox10, and Pik3r1) involved in memory modulation. Furthermore, Gnas promoter hypermethylation was confirmed to be inversely correlated with the downregulation of Gnas mRNA levels. The findings indicate that the specific transcription regulation mechanism in the BLA and NAc on reconsolidation of opiate-associated memories can be dissociable, and DNA hypermethylation of Gnas in the BLA is necessary for the reconsolidation of morphine reward memories.
Collapse
Affiliation(s)
- Peng Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; (J.L.); (W.C.)
| | - Fengze Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; (J.L.); (W.C.)
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.Z.); (Z.S.)
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; (J.L.); (W.C.)
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (J.Z.); (Z.S.)
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (P.L.); (F.J.); (F.S.); (J.L.); (N.S.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 2022; 38:110153. [PMID: 34986356 DOI: 10.1016/j.celrep.2021.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of long-term potentiation (LTP), known as metaplasticity. However, the metaplastic regulation of structural LTP (sLTP) remains unclear. We investigate glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. We find that the neuronal excitation decreases the glutamate uncaging-evoked Ca2+ influx mediated by GluN2B-containing NMDA receptors and suppresses sLTP induction. In addition, single-spine optogenetic stimulation using paCaMKII indicates the suppression of CaMKII signaling. While the inhibition of Ca2+ influx is protein synthesis independent, the paCaMKII-induced sLTP suppression depends on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., dual inhibition of Ca2+ influx and CaMKII signaling). This dual inhibition mechanism may contribute to robust neuronal protection in excitable environments.
Collapse
|
38
|
Cimini V, Van Noorden S, Terlizzi C, Altobelli GG. Calcium/Calmodulin-Dependent Kinases in the Hypothalamus, Pituitary, and Pineal Gland: An Overview. Int J Endocrinol 2022; 2022:1103346. [PMID: 36601542 PMCID: PMC9807307 DOI: 10.1155/2022/1103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
We review the literature on the little-known roles of specific CaMKs in regulating endocrine functions of the pineal gland, the pituitary gland, and the hypothalamus. Melatonin activates hippocampal CaMKII, which then influences dendritogenesis. In the pituitary gland, the signal pathways activated by the CaMK in lower vertebrates, such as fishes, differ from those of mammals. In the teleost anterior pituitary, the activation of CaMKII induces the expression of somatolactin by glucagon b. In rats and humans, CaMKIVs have been associated with gonadotropes and thyrotropes and CaMKII with several types of human tumor cells and with a specific signaling pathway. Neuropeptides such as vasopressin and endothelin are also involved in the CaMKII signaling chain, as is the CaMKIIδ isoform which participates in generating the circadian rhythms of the suprachiasmatic nucleus. What arises from this review is that most of the hypothalamic CaMKs are involved in activities of the endocrine brain. Furthermore, among the CaMKs, type II occurs with the highest frequency followed by CaMKIV and CaMKI.
Collapse
Affiliation(s)
- Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Medical School, “Federico II” University of Naples, Naples, Italy
| | - Susan Van Noorden
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, Medical School, “Federico II” University of Naples, Naples, Italy
| | | |
Collapse
|
39
|
Mitragynine improves cognitive performance in morphine-withdrawn rats. Psychopharmacology (Berl) 2022; 239:313-325. [PMID: 34693456 DOI: 10.1007/s00213-021-05996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited. OBJECTIVES We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects. METHODS Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period. RESULTS Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats. CONCLUSIONS These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.
Collapse
|
40
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
41
|
Navabpour S, Rezayof A, Ghasemzadeh Z. Activation of VTA/CeA/mPFC cannabinoid CB1 receptors induced conditioned drug effects via interacting with hippocampal CAMKII-CREB-BDNF signaling pathway in rats. Eur J Pharmacol 2021; 909:174417. [PMID: 34389313 DOI: 10.1016/j.ejphar.2021.174417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023]
Abstract
The present study intended to investigate whether the activation of cannabinoid CB1 receptors of the ventral tegmental area (VTA), the central amygdala (CeA) and the medial prefrontal cortex (mPFC) could induce conditioned place preference or aversion (CPP or CPA) in adult male Wistar rats. The involvement of hippocampal signaling pathway of Ca2+/calmodulin-dependent protein kinase II (CaMKII)/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) was also examined following a 3-day schedule of conditioning with the injection of arachidonylcyclopropylamide (ACPA; a selective cannabinoid CB1 receptors agonist) into the targeted sites. The results showed that intra-VTA injection of the higher dose of ACPA (5 ng/rat) caused a significant CPP associating with the increased hippocampal level of the phosphorylated (p)-CAMKII/CAMKII. Intra-mPFC injection of ACPA at 3 ng/rat caused a significant CPA associating with the decreased p-CAMKII and p-CREB levels and the increased BDNF level in the hippocampus. Moreover, intra-CeA injection of the ACPA (5 ng/rat) induced a significant CPP which was associated with the increased hippocampal levels of p-CAMKII/total (t) CAMKII, p-CREB/tCREB, and BDNF. Exposing the animals to the CPP apparatus after receiving intra-cerebral vehicle injection increased the hippocampal CAMKII/CREB/BDNF signaling pathway, confirming that CPP is an associative learning task. In all experiments, the conditioning treatment with the different doses of ACPA did not affect locomotor activity in the testing phase. Taken together, it can be concluded that cannabinoid CB1 receptors of the VTA, the CeA, and the mPFC are involved in rewarding/aversion effects through the changes in the hippocampal signaling pathways.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Fralin Biomedical Research Institute, Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
42
|
Mendoza MB, Gutierrez S, Ortiz R, Moreno DF, Dermit M, Dodel M, Rebollo E, Bosch M, Mardakheh FK, Gallego C. The elongation factor eEF1A2 controls translation and actin dynamics in dendritic spines. Sci Signal 2021; 14:14/691/eabf5594. [PMID: 34257105 DOI: 10.1126/scisignal.abf5594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.
Collapse
Affiliation(s)
- Mònica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Sara Gutierrez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Sant Cugat del Vallès 08195, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain.
| |
Collapse
|
43
|
The protective effect and potential mechanism of NRXN1 on learning and memory in ADHD rat models. Exp Neurol 2021; 344:113806. [PMID: 34228999 DOI: 10.1016/j.expneurol.2021.113806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
The learning and memory network is highly complex and remains unclear. The hippocampus is the location of learning and memory function. Impairment of synaptic morphology and synaptic plasticity (i.e., long-term potentiation) appears to cause learning and memory deficits. Several studies have indicated the role of NRXN1 in regulating the synaptic function, but little is known on its role in learning and memory dysfunction associated with attention deficit and hyperactivity disorder (ADHD). Our results showed that overexpression and interference of NRXN1 in vivo, respectively, affected learning and memory, as was assessed by Morris water maze tests, in spontaneously hypertensive rats (SHRs) and Sprague Dawley (SD) rats. We found that SD rats performed better after methylphenidate (MPH) treatment in salvage trials. Accordingly, the change of NRXN1 led to altered synapse-related gene (PSD95, SYN1, GAP43, NLGN1) expression, further providing evidence of its role in the maintenance of synaptic plasticity. We also verified that the expression of synapse-related genes synchronously changed with NRXN1expression in the behavioral assessment. The expression of NRXN1 was confirmed to affect the expression of synapse-related genes after its interference and overexpression in the primary hippocampal neurons in vitro. These results confirmed our hypothesis that NRXN1 might nucleate an overall trans-synaptic signaling network that controls synaptic plasticity and is responsible for impairments in learning and memory in ADHD. These findings suggest a possible protective role of NRXN1 in learning and memory in ADHD. Further RNA-seq sequencing revealed significant differences in the expression of 5-hydroxytryptamine receptor (5-HT6R), which was further verified at the cellular level, and the mechanism of NRXN1 affecting synaptic plasticity was preliminarily discussed.
Collapse
|
44
|
Bright light exposure induces dynamic changes of spatial memory in nocturnal rodents. Brain Res Bull 2021; 174:389-399. [PMID: 34197939 DOI: 10.1016/j.brainresbull.2021.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Bright light has been reported to improve spatial memory of diurnal rodents, yet how it will influence the spatial memory of nocturnal rodents is unknown. Here, we found that dynamic changes in spatial memory and anxiety were induced at different time point after bright light treatment. Mice maintained in brighter light exhibited impaired memory in Y maze at one day after bright light exposure, but showed significantly improved spatial memory in the Y maze and Morris water maze at four weeks after bright light exposure. We also found increased anxiety one day after bright light exposure, which could be the reason of impaired memory. However, no change of anxiety was detected after four weeks. Thus, we further explore the underlying mechanism of the beneficial effects of long term bright light on spatial memory. Golgi staining indicated that the structure of dendritic spines changed, accompanied by increased expression of synaptophysin and postsynaptic density 95 in the hippocampus. Further research has found that bright light treatment leads to elevated CaMKII/CREB phosphorylation levels in the hippocampus, which are associated with synaptic function. Moreover, higher expression of brain-derived neurotrophic factor (BDNF) was followed by increased phosphorylated TrkB levels in the hippocampus, indicating that BDNF/TrkB signaling is also activated during this process. Taken together, these findings revealed that bright light exposure with different duration exert different effects on spatial memory in nocturnal rodents, and the potential molecular mechanism by which long term bright light regulates spatial memory was also demonstrated.
Collapse
|
45
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
46
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
47
|
Alhowail A. Molecular insights into the benefits of nicotine on memory and cognition (Review). Mol Med Rep 2021; 23:398. [PMID: 33786606 PMCID: PMC8025477 DOI: 10.3892/mmr.2021.12037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The health risks of nicotine are well known, but there is some evidence of its beneficial effects on cognitive function. The present review focused on the reported benefits of nicotine in the brain and summarizes the associated underlying mechanisms. Nicotine administration can improve cognitive impairment in Alzheimer's disease (AD), and dyskinesia and memory impairment in Parkinson's disease (PD). In terms of its mechanism of action, nicotine slows the progression of PD by inhibiting Sirtuin 6, a stress‑responsive protein deacetylase, thereby decreasing neuronal apoptosis and improving neuronal survival. In AD, nicotine improves cognitive impairment by enhancing protein kinase B (also referred to as Akt) activity and stimulating phosphoinositide 3‑kinase/Akt signaling, which regulates learning and memory processes. Nicotine may also activate thyroid receptor signaling pathways to improve memory impairment caused by hypothyroidism. In healthy individuals, nicotine improves memory impairment caused by sleep deprivation by enhancing the phosphorylation of calmodulin‑dependent protein kinase II, an essential regulator of cell proliferation and synaptic plasticity. Furthermore, nicotine may improve memory function through its effect on chromatin modification via the inhibition of histone deacetylases, which causes transcriptional changes in memory‑related genes. Finally, nicotine administration has been demonstrated to rescue long‑term potentiation in individuals with sleep deprivation, AD, chronic stress and hypothyroidism, primarily by desensitizing α7 nicotinic acetylcholine receptors. To conclude, nicotine has several cognitive benefits in healthy individuals, as well as in those with cognitive dysfunction associated with various diseases. However, further research is required to shed light on the effect of acute and chronic nicotine treatment on memory function.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52571, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation. Neuropharmacology 2021; 193:108616. [PMID: 34051268 DOI: 10.1016/j.neuropharm.2021.108616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Potentiation of glutamatergic synaptic transmission is thought to underlie memory. The induction of this synaptic potentiation relies on activation of NMDA receptors which allows for calcium influx into the post-synapse. A key mechanistic question for the understanding of synaptic potentiation is what signaling is activated by the calcium influx. Here, I review evidences that at mature synapses the elevated calcium levels activate primarily calcium/calmodulin-dependent kinase II (CaMKII) and cause its autophophorylation. CaMKII autophosphorylation leads to calcium-independent activity of the kinase, so that kinase signaling can outlast NMDA receptor-dependent calcium influx. Prolonged CaMKII signaling induces downstream signaling for AMPA receptor trafficking into the post-synaptic density and causes structural enlargement of the synapse. Interestingly, however, CaMKII autophosphorylation does not have such an essential role in NMDA receptor-dependent synaptic potentiation in early postnatal development and in adult dentate gyrus, where neurogenesis occurs. Additionally, in old age memory-relevant NMDA receptor-dependent synaptic plasticity appears to be due to generation of multi-innervated dendritic spines, which does not require CaMKII autophosphorylation. In conclusion, CaMKII autophosphorylation has a conditional role in the induction of NMDA receptor-dependent synaptic potentiation.
Collapse
|
49
|
Zhong M, Cywiak C, Metto AC, Liu X, Qian C, Pelled G. Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity. Brain Stimul 2021; 14:884-894. [PMID: 34029768 DOI: 10.1016/j.brs.2021.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. OBJECTIVE This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). METHODS Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. RESULTS All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. CONCLUSIONS Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects.
Collapse
Affiliation(s)
- Ming Zhong
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Carolina Cywiak
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Xiang Liu
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
50
|
Mitchell J, Smith CS, Titlow J, Otto N, van Velde P, Booth M, Davis I, Waddell S. Selective dendritic localization of mRNA in Drosophila mushroom body output neurons. eLife 2021; 10:e62770. [PMID: 33724180 PMCID: PMC8004107 DOI: 10.7554/elife.62770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process requires the visualization of the relevant mRNAs within these neuronal compartments. Here, we used single-molecule fluorescence in situ hybridization to localize mRNAs at subcellular resolution in the adult Drosophila brain. mRNAs for subunits of nicotinic acetylcholine receptors and kinases could be detected within the dendrites of co-labeled mushroom body output neurons (MBONs) and their relative abundance showed cell specificity. Moreover, aversive olfactory learning produced a transient increase in the level of CaMKII mRNA within the dendritic compartments of the γ5β'2a MBONs. Localization of specific mRNAs in MBONs before and after learning represents a critical step towards deciphering the role of dendritic translation in the neuronal plasticity underlying behavioral change in Drosophila.
Collapse
Affiliation(s)
- Jessica Mitchell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Carlas S Smith
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Delft Center for Systems and Control, Delft University of TechnologyDelftNetherlands
| | - Josh Titlow
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Pieter van Velde
- Delft Center for Systems and Control, Delft University of TechnologyDelftNetherlands
| | - Martin Booth
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Department of Engineering Science, University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|