1
|
Figge DA, Amaral HDO, Crim J, Cowell RM, Standaert DG, Eskow Jaunarajs KL. Differential Activation States of Direct Pathway Striatal Output Neurons during l-DOPA-Induced Dyskinesia Development. J Neurosci 2024; 44:e0050242024. [PMID: 38664012 PMCID: PMC11211726 DOI: 10.1523/jneurosci.0050-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
l-DOPA-induced dyskinesia (LID) is a debilitating motor side effect arising from chronic dopamine (DA) replacement therapy with l-DOPA for the treatment of Parkinson's disease. LID is associated with supersensitivity of striatal dopaminergic signaling and fluctuations in synaptic DA following each l-DOPA dose, shrinking the therapeutic window. The heterogeneous composition of the striatum, including subpopulations of medium spiny output neurons (MSNs), interneurons, and supporting cells, complicates the identification of cell(s) underlying LID. We used single-nucleus RNA sequencing (snRNA-seq) to establish a comprehensive striatal transcriptional profile during LID development. Male hemiparkinsonian mice were treated with vehicle or l-DOPA for 1, 5, or 10 d, and striatal nuclei were processed for snRNA-seq. Analyses indicated a limited population of DA D1 receptor-expressing MSNs (D1-MSNs) formed three subclusters in response to l-DOPA treatment and expressed cellular markers of activation. These activated D1-MSNs display similar transcriptional changes previously associated with LID; however, their prevalence and transcriptional behavior were differentially influenced by l-DOPA experience. Differentially expressed genes indicated acute upregulation of plasticity-related transcription factors and mitogen-activated protein kinase signaling, while repeated l-DOPA-induced synaptic remodeling, learning and memory, and transforming growth factor-β (TGF-β) signaling genes. Notably, repeated l-DOPA sensitized Inhba, an activin subunit of the TGF-β superfamily, in activated D1-MSNs, and its pharmacological inhibition impaired LID development, suggesting that activin signaling may play an essential role in LID. These data suggest distinct subsets of D1-MSNs become differentially l-DOPA-responsive due to aberrant induction of molecular mechanisms necessary for neuronal entrainment, similar to processes underlying hippocampal learning and memory.
Collapse
Affiliation(s)
- David A Figge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Henrique de Oliveira Amaral
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jack Crim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rita M Cowell
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - David G Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Karen L Eskow Jaunarajs
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
2
|
Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, Rounds JS, Rodriguez A, Beardwood JH, Augustynski AS, Al-Shammari A, Alaghband Y, Alizo Vera V, Berchtold NC, Shanur S, Baldi P, Cotman CW, Wood MA. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nat Commun 2024; 15:3836. [PMID: 38714691 PMCID: PMC11076285 DOI: 10.1038/s41467-024-47996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher W Butler
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Alyssa Rodriguez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Joy H Beardwood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Agatha S Augustynski
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Ameer Al-Shammari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Sharmin Shanur
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Zheng F, Dahlmanns M, Kessler P, Alzheimer C. Increase in activin A may counteract decline in synaptic plasticity with age. Front Aging Neurosci 2024; 16:1382492. [PMID: 38646448 PMCID: PMC11026702 DOI: 10.3389/fnagi.2024.1382492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Activin A, a member of the transforming growth factor β (TGF-β) family, is widely recognized for its neurotrophic and neuroprotective function in the developing and injured brain, respectively. Moreover, in the healthy adult brain, activin A has been shown to tune signal processing at excitatory synapses in a fashion that improves cognitive performance. Because its level in human cerebrospinal fluid rises with age, we wondered whether activin A has a role in mitigating the gradual cognitive decline that healthy individuals experience in late-life. To interrogate the role of activin A in synaptic plasticity in the aging brain, we used an established transgenic mouse line, in which expression of a dominant-negative mutant of activin receptor IB (dnActRIB) serves to disrupt activin receptor signaling in a forebrain-specific fashion. In brain slices of young adult dnActRIB mice (2-4 months old), the NMDA receptor-dependent and -independent forms of long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal cell synapse of the hippocampus were equally impaired relative to the extent of LTP measured in the wild-type preparation. Unexpectedly, the difference between the genotypes disappeared when the two forms of LTP were re-examined in slices from middle-aged mice (13-16 months old). Since the level of activin A and endogenous ActRIB both displayed a significant elevation in middle-aged hippocampus, we reasoned that with such a rise, the dominant-negative effect of the mutant receptors could be overcome. Substantiating this idea, we found that administration of recombinant activin A was indeed capable of restoring full-blown LTP in slices from young dnActRIB mice. Our data suggest that, beginning in the middle-aged brain, endogenous activin receptor signaling appears to become strengthened in an attempt to stave off cognitive decline. If further corroborated, this concept would also hold promise for new therapeutic venues to preserve cognitive functions in the aged brain.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
4
|
Dahlmanns M, Valero-Aracama MJ, Dahlmanns JK, Zheng F, Alzheimer C. Tonic activin signaling shapes cellular and synaptic properties of CA1 neurons mainly in dorsal hippocampus. iScience 2023; 26:108001. [PMID: 37829200 PMCID: PMC10565779 DOI: 10.1016/j.isci.2023.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Dorsal and ventral hippocampus serve different functions in cognition and affective behavior, but the underpinnings of this diversity at the cellular and synaptic level are not well understood. We found that the basal level of activin A, a member of the TGF-β family, which regulates hippocampal circuits in a behaviorally relevant fashion, is much higher in dorsal than in ventral hippocampus. Using transgenic mice with a forebrain-specific disruption of activin receptor signaling, we identified the pronounced dorsal-ventral gradient of activin A as a major factor determining the distinct neurophysiologic signatures of dorsal and ventral hippocampus, ranging from pyramidal cell firing, tuning of frequency-dependent synaptic facilitation, to long-term potentiation (LTP), long-term depression (LTD), and de-potentiation. Thus, the strong activin A tone in dorsal hippocampus appears crucial to establish cellular and synaptic phenotypes that are tailored specifically to the respective network operations in dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria Jesus Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jana Katharina Dahlmanns
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Dahlmanns M, Dahlmanns JK, Schmidt CC, Valero-Aracama MJ, Zheng F, Alzheimer C. Environmental enrichment recruits activin A to recalibrate neural activity in mouse hippocampus. Cereb Cortex 2023; 33:663-675. [PMID: 35257169 DOI: 10.1093/cercor/bhac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The TGF-β family member activin A modulates neural underpinnings of cognitive and affective functions in an activity-dependent fashion. We have previously shown that exploration of a novel and enriched environment (EE) strongly enhanced activin signaling. Whereas the many beneficial effects of EE are amply documented, the underlying mechanisms remain largely elusive. Here, we examined the hypothesis that EE recruits activin to regulate synaptic plasticity in a coordinated, cognition-promoting manner. Elevated activin levels after EE enhanced CA1 pyramidal cell excitability, facilitated synaptic transmission, and promoted long-term potentiation. These EE-induced changes were largely absent in mice expressing a dominant-negative mutant of activin receptor IB. We then interrogated the impact of activin on network oscillations and functional connectivity, using high-speed Ca 2+ imaging to study spike routing within networks formed by dissociated primary hippocampal cultures. Activin facilitated Ca2+ signaling, enhanced the network strength, and shortened the weighted characteristic path length. In the slice preparation, activin promoted theta oscillations during cholinergic stimulation. Thus, we advance activin as an activity-dependent and very early molecular effector that translates behavioral stimuli experienced during EE exposure into a set of synchronized changes in neuronal excitability, synaptic plasticity, and network activity that are all tuned to improve cognitive functions.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jana Katharina Dahlmanns
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Carla C Schmidt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria Jesus Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
7
|
Oberländer K, Witte V, Mallien AS, Gass P, Bengtson CP, Bading H. Dysregulation of Npas4 and Inhba expression and an altered excitation-inhibition balance are associated with cognitive deficits in DBA/2 mice. Learn Mem 2022; 29:55-70. [PMID: 35042829 PMCID: PMC8774195 DOI: 10.1101/lm.053527.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Differences in the learning associated transcriptional profiles between mouse strains with distinct learning abilities could provide insight into the molecular basis of learning and memory. The inbred mouse strain DBA/2 shows deficits in hippocampus-dependent memory, yet the transcriptional responses to learning and the underlying mechanisms of the impairments are unknown. Comparing DBA/2J mice with the reference standard C57BL/6N mouse strain we verify an enhanced susceptibility to kainic acid induced seizures, confirm impairments in hippocampus-dependent spatial memory tasks and uncover additional behavioral abnormalities including deficits in hippocampus-independent learning. Surprisingly, we found no broad dysfunction of the DBA/2J strain in immediate early gene (IEG) activation but instead report brain region-specific and gene-specific alterations. The learning-associated IEGs Arc, c-Fos, and Nr4a1 showed no DBA/2J deficits in basal or synaptic activity induced gene expression in hippocampal or cortical primary neuronal cultures or in the CA1, CA3, or retrosplenial cortex following spatial object recognition (SOR) training in vivo. However, the parietal cortex showed reduced and the dentate gyrus showed enhanced SOR-evoked induction of most IEGs. All DBA/2J hippocampal regions exhibited elevated basal expression of inhibin β A (Inhba) and a learning-associated superinduction of the transcription factor neuronal Per-Arnt-Sim domain protein 4 (Npas4) known to regulate the synaptic excitation-inhibition balance. In line with this, CA1 pyramidal neurons of DBA/2J mice showed fewer inhibitory and more excitatory miniature postsynaptic currents but no alteration in most other electrophysiological properties or gross dendritic morphology. The dysregulation of Npas4 and Inhba expression and synaptic connectivity may underlie the cognitive deficits and increased susceptibility to seizures of DBA/2J mice.
Collapse
Affiliation(s)
- Kristin Oberländer
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Victoria Witte
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - C. Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 2022; 27:296-306. [PMID: 34131268 PMCID: PMC8671568 DOI: 10.1038/s41380-021-01186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise cellular mediators has remained elusive. This has stymied the development of pharmacological interventions to combat these disorders both at the level of progression and relapse. With increased knowledge on the putative role of the transforming growth factor (TGF- β) family of proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being increasingly elucidated. The current review is focused on what is currently known about the TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity related to neuropsychiatric manifestations.
Collapse
|
9
|
Levin SG, Pershina EV, Bugaev-Makarovskiy NA, Chernomorets IY, Konakov MV, Arkhipov VI. Why Do Levels Of Anti-inflammatory Cytokines Increase During Memory Acquisition? Neuroscience 2021; 473:159-169. [PMID: 34418518 DOI: 10.1016/j.neuroscience.2021.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The role of anti-inflammatory cytokines in the mechanisms of learning and memory, modulation of synaptic plasticity in the mammalian brain has not received sufficient attention. These issues are discussed in this review, and among the many cytokines, attention is paid to the most studied in this respect IL-10, IL-4, IL-13 and TGF-β. The level of anti-inflammatory cytokines in the brain tends to increase during memory acquisition, but the significance of such an increase is unclear. We hypothesize that anti-inflammatory cytokines primarily protect and optimize the functioning of neuronal circuits involved in information processing. The increased local activity of neurons during memory acquisition activates many signaling molecules, and some of them can trigger unwanted processes (including neuroinflammation), but increased levels of anti-inflammatory cytokines prevent this triggering. Each of the anti-inflammatory cytokines plays a specific role in supporting information processing. For example, the role of IL-4 and IL-13 in recruiting T cells to the meninges during training in healthy animals has been most studied. It has also been shown that TGF-β is able to optimize late stage LTP in the hippocampus and support the consolidation of memory traces in behavioral studies. Cytokines have an effect on learning and memory through their influence on neuroplasticity, neurogenesis in the hippocampus and regulation of the neurovascular unit. Experiments have shown such an effect, and the data obtained create the prerequisites for new therapeutic approaches to the correction of cognitive impairments.
Collapse
Affiliation(s)
- Sergey G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Nickolay A Bugaev-Makarovskiy
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Irina Yu Chernomorets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Maxim V Konakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
10
|
Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:2109040118. [PMID: 34544873 PMCID: PMC8488609 DOI: 10.1073/pnas.2109040118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
Adult neurogenesis, which is known to be a heritable trait, is thought to be involved in learning, stress-related anxiety, and antidepressant action. In this study, we map genes influencing adult neurogenesis and identify a candidate gene, follistatin (Fst) for further study. By utilizing a brain-specific knockout and viral vector-mediated gene transfer, we reveal the importance of hippocampal FST in neurogenesis, learning, and synaptic plasticity. From RNA sequencing and chromatin immunoprecipitation experiments, we identify Asic4 as a critical downstream target gene regulated by FST. Our work demonstrates that FST functions in the hippocampus at least in part through regulating Asic4 expression. Overall, we illustrate the role of hippocampal Fst in learning and synaptic plasticity. The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.
Collapse
|
11
|
Dentate gyrus activin signaling mediates the antidepressant response. Transl Psychiatry 2021; 11:7. [PMID: 33414389 PMCID: PMC7791138 DOI: 10.1038/s41398-020-01156-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Antidepressants that target monoaminergic systems, such as selective serotonin reuptake inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive disorder, several anxiety disorders, and obsessive-compulsive disorder. However, these treatments are not ideal because only a subset of patients achieve remission. The reasons why some individuals remit to antidepressant treatments while others do not are unknown. Here, we developed a paradigm to assess antidepressant treatment resistance in mice. Exposure of male C57BL/6J mice to either chronic corticosterone administration or chronic social defeat stress induces maladaptive affective behaviors. Subsequent chronic treatment with the SSRI fluoxetine reverses these maladaptive affective behavioral changes in some, but not all, of the mice, permitting stratification into persistent responders and non-responders to fluoxetine. We found several differences in expression of Activin signaling-related genes between responders and non-responders in the dentate gyrus (DG), a region that is critical for the beneficial behavioral effects of fluoxetine. Enhancement of Activin signaling in the DG converted behavioral non-responders into responders to fluoxetine treatment more effectively than commonly used second-line antidepressant treatments, while inhibition of Activin signaling in the DG converted responders into non-responders. Taken together, these results demonstrate that the behavioral response to fluoxetine can be bidirectionally modified via targeted manipulations of the DG and suggest that molecular- and neural circuit-based modulations of DG may provide a new therapeutic avenue for more effective antidepressant treatments.
Collapse
|
12
|
Noise and brain. Physiol Behav 2020; 227:113136. [DOI: 10.1016/j.physbeh.2020.113136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
|
13
|
Neuroadaptations in the dorsal hippocampus underlie cocaine seeking during prolonged abstinence. Proc Natl Acad Sci U S A 2020; 117:26460-26469. [PMID: 33020308 DOI: 10.1073/pnas.2006133117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-β (TGF-β) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.
Collapse
|
14
|
Tumurgan Z, Kanasaki H, Tumurbaatar T, Oride A, Okada H, Hara T, Kyo S. Role of activin, follistatin, and inhibin in the regulation of Kiss-1 gene expression in hypothalamic cell models†. Biol Reprod 2020; 101:405-415. [PMID: 31167231 DOI: 10.1093/biolre/ioz094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Kisspeptin (encoded by the Kiss-1 gene) in the arcuate nucleus (ARC) of the hypothalamus governs the hypothalamic-pituitary-gonadal (HPG) axis by regulating pulsatile release of gonadotropin-releasing hormone (GnRH). Meanwhile, kisspeptin in the anteroventral periventricular nucleus (AVPV) region has been implicated in estradiol (E2)-induced GnRH surges. Kiss-1-expressing cell model mHypoA-55 exhibits characteristics of Kiss-1 neurons in the ARC region. On the other hand, Kiss-1 expressing mHypoA-50 cells originate from the AVPV region. In the mHypoA-55 ARC cells, activin significantly increased Kiss-1 gene expression. Follistatin alone reduced Kiss-1 expression within these cells. Interestingly, activin-induced Kiss-1 gene expression was completely abolished by follistatin. Inhibin A, but not inhibin B reduced Kiss-1 expression. Activin-increased Kiss-1 expression was also abolished by inhibin A. Pretreatment of the cells with follistatin or inhibin A significantly inhibited kisspeptin- or GnRH-induced Kiss-1 gene expression in mHypoA-55 cells. In contrast, in the mHypoA-50 AVPV cell model, activin, follistatin, and inhibin A did not modulate Kiss-1 gene expression. The subunits that compose activin and inhibin, as well as follistatin were expressed in both mHypoA-55 and mHypoA-50 cells. Expression of inhibin βA and βB subunits and follistatin was much higher in mHypoA-55 ARC cells. Furthermore, we found that expression of the inhibin α subunit and follistatin genes was modulated in the presence of E2 in mHypoA-55 ARC cells. The results of this study suggest that activin, follistatin, and inhibin A within the ARC region participate in the regulation of the HPG axis under the influence of E2.
Collapse
Affiliation(s)
- Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
15
|
Tumurgan Z, Kanasaki H, Tumurbaatar T, Oride A, Okada H, Kyo S. Roles of intracerebral activin, inhibin, and follistatin in the regulation of Kiss-1 gene expression: Studies using primary cultures of fetal rat neuronal cells. Biochem Biophys Rep 2020; 23:100785. [PMID: 32715104 PMCID: PMC7369329 DOI: 10.1016/j.bbrep.2020.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
Hypothalamic kisspeptin, encoded by the Kiss-1 gene, governs the hypothalamic-pituitary-gonadal axis by directly regulating the release of gonadotropin-releasing hormone. In this study, we examined the roles of activin, inhibin, and follistatin in the regulation of Kiss-1 gene expression using primary cultures of fetal rat neuronal cells, which express the Kiss-1 gene and kisspeptin. Stimulation with activin significantly increased Kiss-1 gene expression in these cultures by 2.02 ± 0.39-fold. In contrast, a significant decrease in Kiss-1 gene expression was observed with inhibin A and follistatin treatment. Inhibin B did not modulate Kiss-1 gene expression. Activin, inhibin, and follistatin were also expressed in fetal rat brain cultures and their expression was controlled by estradiol (E2). The inhibin α, βA, and βB subunits were upregulated by E2. Similarly, follistatin gene expression was significantly increased by E2 in these cells. Our results suggest the possibility that activin, inhibin, and follistatin expressed in the brain participate in the E2-induced feedback control of the hypothalamic-pituitary-gonadal axis. ・We examined the roles of activin, inhibin, and follistatin in the regulation of Kiss-1 gene expression in primary cultures of fetal rat neuronal cells. ・Activin increased Kiss-1, whereas it was decreased by inhibin A and follistatin. ・Intracerebral inhibin α, βA, and βB subunits were upregulated by estradiol. ・Intracerebral activin, inhibin, and follistatin may participate in the estradiol-induced feedback control of Hypothalamic-pituitary gonadal axis.
Collapse
Affiliation(s)
| | - Haruhiko Kanasaki
- Corresponding author. Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan.
| | | | | | | | | |
Collapse
|
16
|
Follistatin expression in the central nervous system of the adult rat. J Chem Neuroanat 2020; 105:101753. [PMID: 32014555 DOI: 10.1016/j.jchemneu.2020.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
Abstract
Follistatin was initially cloned as a monomeric polypeptide that inhibits the release of follicle-stimulating hormone. Although follistatin also plays pivotal roles in skeletal muscle hypertrophy and immunoregulation in the epididymis, little information is available regarding follistatin function in the adult central nervous system (CNS). Hence, we investigated follistatin expression in the adult rat CNS using immunohistochemistry. Follistatin was intensely expressed in most neurons and their axons. Furthermore, oligodendrocytes, ependymal cells, and some astrocytes also expressed follistatin protein. These data indicate that follistatin is widely expressed throughout the adult CNS. The abundant expression of follistatin in the adult brain suggests that this protein plays important roles in the CNS.
Collapse
|
17
|
Narukawa M, Kamiyoshihara A, Izu H, Fujii T, Matsubara K, Misaka T. Efficacy of Long-Term Feeding of α-Glycerophosphocholine for Aging-Related Phenomena in Old Mice. Gerontology 2020; 66:275-285. [PMID: 31968334 DOI: 10.1159/000504962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
α-Glycerophosphocholine (GPC) is a natural source of choline. It reportedly prevents aging-related decline in cognitive function, but the underlying mechanism remains unclear. Although it is understood that aging influences taste sensitivity and energy regulation, whether GPC exerts antiaging effects on such phenomena requires further elucidation. Here, we used old C57BL/6J mice that were fed a GPC-containing diet, to investigate the molecular mechanisms underlying the prevention of a decline in cognitive function associated with aging and examine the beneficial effects of GPC intake on aging-related phenomena, such as taste sensitivity and energy regulation. We confirmed that GPC intake reduces the aging-related decline in the expression levels of genes related to long-term potentiation. Although we did not observe an improvement in aging-related decline in taste sensitivity, there was a notable improvement in the expression levels of β-oxidation-associated genes in old mice. Our results suggest that the prevention of aging-related decline in cognitive function by GPC intake may be associated with the improvement of gene expression levels of long-term potentiation. Furthermore, GPC intake may positively influence lipid metabolism.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aya Kamiyoshihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hanae Izu
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Tsutomu Fujii
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,
| |
Collapse
|
18
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
19
|
Abstract
Cytokines, in addition to their participation in immune and inflammatory processes, play an important role in synaptic plasticity, neoneurogenesis, and cognitive functions. In our work, we aimed to clarify the role of the transforming growth factor-β (TGF-β), which is recognized as a multifunctional cytokine, in memory processes. Behavioral experiments were carried out in rats using step-through passive avoidance test. The results obtained showed that the learning of animals after treatment with SB431542, a selective inhibitor of TGF-β receptors, was impaired, which indicated a significant memory deterioration. Nevertheless, the memory of rats remained at the control level when TGF-β and SB431542 were coadministered. Thus, the role of TGF-β in memory retrieval after the passive avoidance test was revealed: memory in rats was weakened if the TGF-β signaling pathway was inhibited during learning. Evidently, successful consolidation of at least some types of memory requires a normal level of TGF-β, indicating the modulation of cognitive functions by cytokines under normal physiological conditions.
Collapse
|
20
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
21
|
Nakajima T, Hata R, Kunieda Y, Kondo T. Distribution of Smad mRNA and proteins in the rat brain. J Chem Neuroanat 2017; 90:11-39. [PMID: 29196107 DOI: 10.1016/j.jchemneu.2017.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/27/2017] [Accepted: 11/25/2017] [Indexed: 01/27/2023]
Abstract
Smad proteins are known to transduce the action of TGF-β superfamily proteins including TGF-βs, activins, and bone morphogenetic proteins (BMPs). In this study, we examined the expression of Smad1, -2, -3, -4, -5, and -8 mRNA in the rat brain by means of RT-PCR and in situ hybridization (ISH). In addition, we examined the nuclear accumulation of Smad1, -2, -3, -5, and -8 proteins after intracerebroventricular injection of TGF-β1, activin A, or BMP6 with immunohistochemistry to investigate whether TGF-β, activin, and/or BMP activate Smads in the rat brain. RT-PCR analysis revealed that Smad1, -2, -3, -4, -5, and -8 mRNA was expressed in the brain and that the Smad3 and Smad8 mRNA differed in the expression level between brain regions. For example, there were high levels of expression of Smad3 mRNA in the cerebral cortex, caudate putamen/globus pallidus, and cerebellum, but low levels in the thalamus and midbrain. Expression of Smad8 mRNA was higher in the midbrain, cerebellum, and pons/medulla oblongata in comparison to the olfactory bulb, cerebral cortex, caudate putamen/globus pallidus, hippocampus/dentate gyrus, and thalamus. ISH signals for Smad1 mRNA were widely detected in the brain except for a small number of regions including the olfactory tubercle, posterior region of hypothalamus, and cerebellar nuclei. ISH signals for Smad2 mRNA were abundantly observed in several brain regions including the olfactory bulb, piriform cortex, basal ganglia, cingulate cortex, epithalamus, including the pineal gland and medial habenular nuclei, hypothalamus, inferior colliculi of the midbrain, and some nuclei in the pons, cerebellar cortex, and choroid plexus. ISH signals for Smad3 mRNA were also abundantly observed in several brain regions. Especially strong signals for Smad3 mRNA were observed in the olfactory tubercle, piriform cortex, basal ganglia, dentate gyrus, and cingulate cortex. ISH signals for Smad5 and Smad8 mRNA were restricted to a small number of brain regions, the signal intensity of which was weak. ISH signals for Smad4 mRNA were detected in all regions examined. Intracerebroventricular injection of activin A induced nuclear accumulation of Smad2 and Smad3 immunoreactivity in neurons. In contrast, intracerebroventricular injection of TGF-β1 or BMP6 did not induce nuclear accumulation of the immunoreactivity for any Smad in neurons. These results suggest that activin-Smad signaling plays an important role in brain homeostasis.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan.
| | - Ryusuke Hata
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Yuji Kunieda
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Tomohiro Kondo
- Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
22
|
Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, Li Z, Wu YC, Poplawski SG, Baraban JM, Abel T. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife 2017; 6. [PMID: 28927503 PMCID: PMC5606845 DOI: 10.7554/elife.27872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Xiuping Fu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Rolf Hansen
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Zhi Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Yen-Ching Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States.,Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
23
|
Wang ZJ, Martin JA, Gancarz AM, Adank DN, Sim FJ, Dietz DM. Activin A is increased in the nucleus accumbens following a cocaine binge. Sci Rep 2017; 7:43658. [PMID: 28272550 PMCID: PMC5341561 DOI: 10.1038/srep43658] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Amy M. Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, USA
| | - Danielle N. Adank
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
24
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
26
|
Scholz B, Doidge AN, Barnes P, Hall J, Wilkinson LS, Thomas KL. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall. PLoS One 2016; 11:e0153102. [PMID: 27224427 PMCID: PMC4880201 DOI: 10.1371/journal.pone.0153102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity-associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families' characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory.
Collapse
Affiliation(s)
- Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Amie N. Doidge
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Philip Barnes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Schools of Psychology and Medicine, Behavioral Genetics Group, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Link AS, Zheng F, Alzheimer C. Activin Signaling in the Pathogenesis and Therapy of Neuropsychiatric Diseases. Front Mol Neurosci 2016; 9:32. [PMID: 27242425 PMCID: PMC4861723 DOI: 10.3389/fnmol.2016.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 01/29/2023] Open
Abstract
Activins are members of the transforming growth factor β (TGFβ) family and serve as multifunctional regulatory proteins in many tissues and organs. In the brain, activin A, which is formed by two disulfide-linked βA subunits, is recognized as the predominant player in activin signaling. Over the last years, considerable progress has been made in elucidating novel and unexpected functions of activin in the normal and diseased brain and in deciphering the underlying molecular mechanisms. Initially identified as a neurotrophic and protective factor during development and in several forms of acute injury, the scope of effects of activin A in the adult central nervous system (CNS) has been considerably broadened by now. Here, we will highlight recent findings that bear significance for a better understanding of the pathogenesis of various neuropsychiatric diseases and might hold promise for novel therapeutic strategies. While the basal level of activin A in the adult brain is low, significant short-term up-regulation occurs in response to increased neuronal activity. In fact, brief exposure to an enriched environment (EE) is already sufficient to considerably strengthen activin signaling. Enhancement of this pathway tunes the performance of glutamatergic and GABAergic synapses in a fashion that impacts on cognitive functions and affective behavior, counteracts death-inducing signals through extrasynaptic NMDA receptors (NMDARs), and stimulates adult neurogenesis in the hippocampus. We will discuss how impaired activin signaling is involved in anxiety disorders, depression, drug dependence, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and how reinforcement of activin signaling might be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Andrea S Link
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
28
|
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration. PLoS One 2015; 10:e0139860. [PMID: 26444546 PMCID: PMC4596878 DOI: 10.1371/journal.pone.0139860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.
Collapse
|
29
|
microRNAs Modulate Spatial Memory in the Hippocampus and in the Ventral Striatum in a Region-Specific Manner. Mol Neurobiol 2015; 53:4618-30. [PMID: 26307611 DOI: 10.1007/s12035-015-9398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023]
Abstract
MicroRNAs are endogenous, noncoding RNAs crucial for the post-transcriptional regulation of gene expression. Their role in spatial memory formation, however, is poorly explored. In this study, we analyzed learning-induced microRNA expression in the hippocampus and in the ventral striatum. Among miRNAs specifically downregulated by spatial training, we focused on the hippocampus-specific miR-324-5p and the ventral striatum-specific miR-24. In vivo overexpression of the two miRNAs demonstrated that miR-324-5p is able to impair memory if administered in the hippocampus but not in the ventral striatum, while the opposite is true for miR-24. Overall, these findings demonstrate a causal relationship between miRNA expression changes and spatial memory formation. Furthermore, they provide support for a regional dissociation in the post-transcriptional processes underlying spatial memory in the two brain structures analyzed.
Collapse
|
30
|
Lau D, Bengtson CP, Buchthal B, Bading H. BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear-Calcium-Induced Transcription of inhba/Activin A. Cell Rep 2015; 12:1353-66. [PMID: 26279570 DOI: 10.1016/j.celrep.2015.07.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/20/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022] Open
Abstract
The health of neurons is critically dependent on the relative signaling intensities of survival-promoting synaptic and death-inducing extrasynaptic NMDA receptors. Here, we show that BDNF is a regulator of this balance and promotes neuroprotection by reducing toxic NMDA receptor signaling. BDNF acts by initiating synaptic NMDA-receptor/nuclear-calcium-driven adaptogenomics, leading to increased expression of inhibin β-A (inhba). Inhibin β-A (its homodimer is known as activin A) in turn reduces neurotoxic extrasynaptic NMDA-receptor-mediated calcium influx, thereby shielding neurons against mitochondrial dysfunction, a major cause of excitotoxicity. Thus, BDNF induces acquired neuroprotection by enhancing synaptic activity and lowering extrasynaptic NMDA receptor death signaling through a nuclear calcium-inhibin β-A pathway. This process, which confers protection against ischemic brain damage in a mouse stroke model, may be compromised in Huntington's disease, Alzheimer's disease, or aging-related neurodegenerative conditions that are associated with reduced BDNF levels and/or enhanced extrasynaptic NMDA receptor signaling.
Collapse
Affiliation(s)
- David Lau
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Gancarz AM, Wang ZJ, Schroeder GL, Damez-Werno D, Braunscheidel K, Mueller LE, Humby MS, Caccamise A, Martin JA, Dietz KC, Neve RL, Dietz DM. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat Neurosci 2015; 18:959-61. [PMID: 26030849 PMCID: PMC4599345 DOI: 10.1038/nn.4036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.
Collapse
Affiliation(s)
- Amy M. Gancarz
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Gabrielle L. Schroeder
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Diane Damez-Werno
- Department of Neuroscience at Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin Braunscheidel
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Lauren E. Mueller
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Monica S. Humby
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Aaron Caccamise
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | - Karen C. Dietz
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| | | | - David M. Dietz
- Department of Pharmacology and Toxicology; Research Institute on Addictions; Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
32
|
Tan JW, Duan TT, Zhou QX, Ding ZY, Jing L, Cao J, Wang LP, Mao RR, Xu L. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure. Addict Biol 2015; 20:652-62. [PMID: 24903743 DOI: 10.1111/adb.12158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.
Collapse
Affiliation(s)
- Ji-Wei Tan
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Ting-Ting Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
- School of Life Sciences; University of Science and Technology of China; China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
| | - Ze-Yang Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
- School of Life Sciences; Anhui University; China
| | - Liang Jing
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Jun Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
| | - Li-Ping Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease; Laboratory of Learning and Memory; Kunming Institute of Zoology; The Chinese Academy of Sciences; China
| |
Collapse
|
33
|
A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep 2015; 5:11252. [PMID: 26059637 PMCID: PMC4462026 DOI: 10.1038/srep11252] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/08/2015] [Indexed: 01/06/2023] Open
Abstract
Transforming Growth Factor β1 (TGF-β1) is a well-known neuroprotective and neurotrophic factor demonstrated to play a role in synaptic transmission. However, its involvement in physiological mechanisms underlying synaptic plasticity and memory at hippocampal level has not been thoroughly investigated. Here, we examine the role of TGF-β1 in hippocampal long-term potentiation (LTP) and memory in adult wild type mice. Our data provide evidence that administration of exogenous TGF-β1 is able to convert early-phase-LTP into late-phase-LTP. Furthermore, we show that the block of the endogenous TGF-β1 signaling pathway by the specific TGF-β1 inhibitor SB431542, impairs LTP and object recognition memory. The latter impairment was rescued by administration of exogenous TGF-β1, suggesting that endogenously produced TGF-β1 plays a role in physiological mechanisms underlying LTP and memory. Finally, TGF-β1 functional effect correlates with an increased expression of the phosphorylated transcription factor cAMP-Responsive Element Binding protein.
Collapse
|
34
|
McGehee AM, Moss BJ, Juo P. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 2015; 67:66-74. [PMID: 26054666 DOI: 10.1016/j.mcn.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior.
Collapse
Affiliation(s)
- Annette M McGehee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Biology, Suffolk University, Boston, MA 02114, USA.
| | - Benjamin J Moss
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
35
|
Hasegawa Y, Mukai H, Asashima M, Hojo Y, Ikeda M, Komatsuzaki Y, Ooishi Y, Kawato S. Acute modulation of synaptic plasticity of pyramidal neurons by activin in adult hippocampus. Front Neural Circuits 2014; 8:56. [PMID: 24917791 PMCID: PMC4040441 DOI: 10.3389/fncir.2014.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/11/2014] [Indexed: 11/25/2022] Open
Abstract
Activin A is known as a neuroprotective factor produced upon acute excitotoxic injury of the hippocampus (in pathological states). We attempt to reveal the role of activin as a neuromodulator in the adult male hippocampus under physiological conditions (in healthy states), which remains largely unknown. We showed endogenous/basal expression of activin in the hippocampal neurons. Localization of activin receptors in dendritic spines (=postsynapses) was demonstrated by immunoelectron microscopy. The incubation of hippocampal acute slices with activin A (10 ng/mL, 0.4 nM) for 2 h altered the density and morphology of spines in CA1 pyramidal neurons. The total spine density increased by 1.2-fold upon activin treatments. Activin selectively increased the density of large-head spines, without affecting middle-head and small-head spines. Blocking Erk/MAPK, PKA, or PKC prevented the activin-induced spinogenesis by reducing the density of large-head spines, independent of Smad-induced gene transcription which usually takes more than several hours. Incubation of acute slices with activin for 2 h induced the moderate early long-term potentiation (moderate LTP) upon weak theta burst stimuli. This moderate LTP induction was blocked by follistatin, MAPK inhibitor (PD98059) and inhibitor of NR2B subunit of NMDA receptors (Ro25-6981). It should be noted that the weak theta burst stimuli alone cannot induce moderate LTP. These results suggest that MAPK-induced phosphorylation of NMDA receptors (including NR2B) may play an important role for activin-induced moderate LTP. Taken together, the current results reveal interesting physiological roles of endogenous activin as a rapid synaptic modulator in the adult hippocampus.
Collapse
Affiliation(s)
- Yoshitaka Hasegawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Department of Computer Science, School of Science and Technology, Meiji University Kawasaki, Japan
| | - Makoto Asashima
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan
| | - Muneki Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; National MEXT Project in Special Coordinate Funds for Promoting Science and Technology, The University of Tokyo Meguro, Japan
| |
Collapse
|
36
|
Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci 2013; 337:25-37. [PMID: 24290497 DOI: 10.1016/j.jns.2013.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
Abstract
In this study, we examined the temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. We also examined the association between Smad activation and ischemia-induced pathology in the hippocampus. We found that 1) Smad1, -2, -3, and -5 proteins were detected in the rat hippocampus by means of western blot and immunohistochemistry; 2) after 5 min of ischemia, Smad2 and Smad3 proteins accumulated in the nuclei of pyramidal cells in the CA1 region, which is vulnerable to ischemia; 3) after 3 min of ischemia, which was non-lethal, there was no such nuclear accumulation of Smad2 and Smad3 in the CA1 region; 4) following injection of activin A, nuclear accumulation of Smad2 and Smad3 was induced not only in pyramidal cells of the CA1 region, but also in pyramidal cells of the CA3 region as well as in granule cells of the DG region; 5) activin A-induced nuclear accumulation of Smad2 and Smad3 neither caused degeneration of hippocampal neurons nor prevented degeneration induced by ischemia. These results suggest that in the hippocampus, ischemia-induced activation of Smad2 and Smad3 is associated with the response to stress but is not related to neuronal survival or death.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan.
| | - Masafumi Yanagihara
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Hideki Nishii
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
37
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
38
|
Kopec AM, Carew TJ. Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 2013; 20:531-9. [PMID: 24042849 PMCID: PMC3768197 DOI: 10.1101/lm.031377.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g., Ras–MEK–MAPK) to mediate overlapping functional endpoints. Several GFs have been implicated in memory formation, but due to a high level of convergent signaling, the unique contributions of individual GFs as well as the interactions between GF signaling cascades during the induction of memory is not well known. In this review, we highlight the unique roles of specific GFs in dendritic plasticity, and discuss the spatial and temporal profiles of different GFs during memory formation. Collectively, the data suggest that the roles of GF signaling in long-lasting behavioral and structural plasticity may be best viewed as interactive components in a complex molecular network.
Collapse
Affiliation(s)
- Ashley M Kopec
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
39
|
Martinez-Canabal A, Wheeler AL, Sarkis D, Lerch JP, Lu WY, Buckwalter MS, Wyss-Coray T, Josselyn SA, Frankland PW. Chronic over-expression of TGFβ1 alters hippocampal structure and causes learning deficits. Hippocampus 2013; 23:1198-211. [PMID: 23804429 DOI: 10.1002/hipo.22159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The cytokine transforming growth factor β1 (TGFβ1) is chronically upregulated in several neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis and multiple sclerosis, and following stroke. Although previous studies have shown that TGFβ1 may be neuroprotective, chronic exposure to elevated levels of this cytokine may contribute to disease pathology on its own. In order to study the effects of chronic exposure to TGFβ1 in isolation, we used transgenic mice that over-express a constitutively active porcine TGFβ1 in astrocytes. We found that TGFβ1 over-expression altered brain structure, with the most pronounced volumetric increases localized to the hippocampus. Within the dentate gyrus (DG) of the hippocampus, increases in granule cell number and astrocyte size were responsible for volumetric expansion, with the increased granule cell number primarily related to a marked reduction in death of new granule cells generated in adulthood. Finally, these cumulative changes in DG microstructure and macrostructure were associated with the age-dependent emergence of spatial learning deficits in TGFβ1 over-expressing mice. Together, our data indicate that chronic upregulation of TGFβ1 negatively impacts hippocampal structure and, even in the absence of disease, impairs hippocampus-dependent learning.
Collapse
Affiliation(s)
- Alonso Martinez-Canabal
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L, Carrier Y, Selkoe DJ, Weiner HL. Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-β1 in the CNS. Glia 2013; 61:985-1002. [PMID: 23536313 DOI: 10.1002/glia.22490] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/06/2013] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine expressed throughout the CNS. Previous studies demonstrated that TGF-β1 contributes to maintain neuronal survival, but mechanistically this effect is not well understood. We generated a CNS-specific TGF-β1-deficient mouse model to investigate the functional consequences of TGF-β1-deficiency in the adult mouse brain. We found that depletion of TGF-β1 in the CNS resulted in a loss of the astrocyte glutamate transporter (GluT) proteins GLT-1 (EAAT2) and GLAST (EAAT1) and decreased glutamate uptake in the mouse hippocampus. Treatment with TGF-β1 induced the expression of GLAST and GLT-1 in cultured astrocytes and enhanced astroglial glutamate uptake. Similar to GLT-1-deficient mice, CNS-TGF-β1-deficient mice had reduced brain weight and neuronal loss in the CA1 hippocampal region. CNS-TGF-β1-deficient mice showed GluN2B-dependent aberrant synaptic plasticity in the CA1 area of the hippocampus similar to the glutamate transport inhibitor DL-TBOA and these mice were highly sensitive to excitotoxic injury. In addition, hippocampal neurons from TGF-β1-deficient mice had elevated GluN2B-mediated calcium signals in response to extrasynaptic glutamate receptor stimulation, whereas cells treated with TGF-β1 exhibited reduced GluN2B-mediated calcium signals. In summary, our study demonstrates a previously unrecognized function of TGF-β1 in the CNS to control extracellular glutamate homeostasis and GluN2B-mediated calcium responses in the mouse hippocampus.
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Inoue A, Sawatari E, Hisamoto N, Kitazono T, Teramoto T, Fujiwara M, Matsumoto K, Ishihara T. Forgetting in C. elegans Is Accelerated by Neuronal Communication via the TIR-1/JNK-1 Pathway. Cell Rep 2013; 3:808-19. [DOI: 10.1016/j.celrep.2013.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/21/2012] [Accepted: 02/15/2013] [Indexed: 01/13/2023] Open
|
42
|
DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci U S A 2012; 109:17081-6. [PMID: 23019581 DOI: 10.1073/pnas.1205982109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TGF-β superfamily is conserved throughout metazoan, and its members play essential roles in development and disease. TGF-β has also been implicated in adult neural plasticity. However, the underlying mechanisms are not well understood. Here we report that DBL-1, a Caenorhabditis elegans TGF-β homolog known to control body morphology and immunity, is essential for aversive olfactory learning of potentially harmful bacteria food. We show that DBL-1 generated by the AVA command interneurons, which are critical for sensorimotor responses, regulates aversive olfactory learning, and that the activity of the type I TGF-β receptor SMA-6 in the hypodermis is needed during adulthood to generate olfactory plasticity. These spatial and temporal mechanisms are critical for the DBL-1 signaling to achieve its diverse functions in development and adult neural plasticity. Interestingly, aversive training decreases AVA calcium response, leading to an increase in the DBL-1 signal secreted from AVA, revealing an experience-dependent change that can underlie the role of TGF-β signaling in mediating plasticity.
Collapse
|
43
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
44
|
Yao I, Takao K, Miyakawa T, Ito S, Setou M. Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice. PLoS One 2011; 6:e17317. [PMID: 21390313 PMCID: PMC3044740 DOI: 10.1371/journal.pone.0017317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/31/2011] [Indexed: 11/22/2022] Open
Abstract
SCRAPPER, an F-box protein coded by FBXL20, is a subunit of SCF type E3 ubiquitin ligase. SCRAPPER localizes synapses and directly binds to Rab3-interacting molecule 1 (RIM1), an essential factor for synaptic vesicle release, thus it regulates neural transmission via RIM1 degradation. A defect in SCRAPPER leads to neurotransmission abnormalities, which could subsequently result in neurodegenerative phenotypes. Because it is likely that the alteration of neural transmission in Scrapper mutant mice affect their systemic condition, we have analyzed the behavioral phenotypes of mice with decreased or increased the amount of SCRAPPER. We carried out a series of behavioral test batteries for Scrapper mutant mice. Scrapper transgenic mice overexpressing SCRAPPER in the hippocampus did not show any significant difference in every test argued in this manuscript by comparison with wild-type mice. On the other hand, heterozygotes of Scrapper knockout [SCR (+/−)] mice showed significant difference in the contextual but not cued fear conditioning test. In addition, SCR (+/−) mice altered in some tests reflecting anxiety, which implies the loss of functions of SCRAPPER in the hippocampus. The behavioral phenotypes of Scrapper mutant mice suggest that molecular degradation conferred by SCRAPPER play important roles in hippocampal-dependent fear memory formation.
Collapse
Affiliation(s)
- Ikuko Yao
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Osaka, Japan
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo, Japan
- * E-mail: (IY); (MS)
| | - Keizo Takao
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine Kyoto University, Kyoto, Japan
- Section of Behavior Analysis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine Kyoto University, Kyoto, Japan
- Section of Behavior Analysis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Osaka, Japan
| | - Mitsutoshi Setou
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail: (IY); (MS)
| |
Collapse
|
45
|
Abstract
Activins, which are members of the TGF-β superfamily, were initially isolated from gonads and served as modulators of follicle-stimulating hormone secretion. Activins regulate various biological functions, including induction of the dorsal mesoderm, craniofacial development, and differentiation of numerous cell types. Activin receptors are highly expressed in neuronal cells, and activin mRNA expression is upregulated by neuronal activity. Activins also exhibit neuroprotective action during excitotoxic brain injury. However, very little is known about the functional roles of activins in the brain. We recently generated various types of transgenic mice, demonstrating that activins regulate spine formation, behavioral activity, anxiety, adult neurogenesis, late-phase long-term potentiation, and maintenance of long-term memory. The present chapter describes recent progress in the study of the role of activin in the brain.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, Japan
| | | |
Collapse
|
46
|
Ishikawa M, Nishijima N, Shiota J, Sakagami H, Tsuchida K, Mizukoshi M, Fukuchi M, Tsuda M, Tabuchi A. Involvement of the serum response factor coactivator megakaryoblastic leukemia (MKL) in the activin-regulated dendritic complexity of rat cortical neurons. J Biol Chem 2010; 285:32734-32743. [PMID: 20709749 DOI: 10.1074/jbc.m110.118745] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dynamic changes in neuronal morphology and transcriptional regulation play crucial roles in the neuronal network and function. Accumulating evidence suggests that the megakaryoblastic leukemia (MKL) family members, which function not only as actin-binding proteins but also as serum response factor (SRF) transcriptional coactivators, regulate neuronal morphology. However, the extracellular ligands and signaling pathways, which activate MKL-mediated morphological changes in neurons, remain unresolved. Here, we demonstrate that in addition to MKL1, MKL2, highly enriched in the forebrain, strongly contributes to the dendritic complexity, and this process is triggered by stimulation with activin, a member of the transforming growth factor β (TGF-β) superfamily. Activin promoted dendritic complexity in a SRF- and MKL-dependent manner without drastically affecting MKL localization and protein levels. In contrast, activin promoted the nuclear export of suppressor of cancer cell invasion (SCAI), which is a corepressor for SRF and MKL. Furthermore, overexpression of SCAI blocked activin-induced SRF transcriptional responses and dendritic complexity. Collectively, these results strongly suggest that activin-SCAI-MKL signaling is a novel pathway that regulates the dendritic morphology of rat cortical neurons by excluding SCAI from the nucleus and activating MKL/SRF-mediated gene expression.
Collapse
Affiliation(s)
- Mitsuru Ishikawa
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Naoki Nishijima
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Jun Shiota
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Miho Mizukoshi
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mamoru Fukuchi
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masaaki Tsuda
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Akiko Tabuchi
- From the Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
47
|
Kitamura T, Saitoh Y, Murayama A, Sugiyama H, Inokuchi K. LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in the adult rat dentate gyrus. Mol Brain 2010; 3:13. [PMID: 20426820 PMCID: PMC2868842 DOI: 10.1186/1756-6606-3-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/28/2010] [Indexed: 01/18/2023] Open
Abstract
Neurogenesis occurs in the adult hippocampus of various animal species. A substantial fraction of newly generated neurons die before they mature, and the survival rate of new neurons are regulated in an experience-dependent manner. Previous study showed that high-frequency stimulation (HFS) of perforant path fibers to the hippocampal dentate gyrus (DG) induces the long-term potentiation (LTP) in the DG, and enhances the survival of newly generated neurons in the DG. In this study, we addressed whether a time period exists during which the survival of new neurons is maximally sensitive to the HFS. We found that the enhancement of cell survival by HFS was exclusively restricted to the specific narrow period during immature stages of new neurons (7-10 days after birth). Furthermore, the pharmacological blockade of LTP induction suppressed the enhancement of cell survival by the HFS. These results suggest that the LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in rat DG.
Collapse
Affiliation(s)
- Takashi Kitamura
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo, 194-8511, Japan
| | | | | | | | | |
Collapse
|