1
|
Williams KE, Zou Y, Qiu B, Kono T, Guo C, Garcia D, Chen H, Graves T, Lai Z, Evans-Molina C, Ma YY, Liangpunsakul S, Yong W, Liang T. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells 2023; 13:89. [PMID: 38201293 PMCID: PMC10778370 DOI: 10.3390/cells13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.
Collapse
Affiliation(s)
- Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Bin Qiu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Tatsuyoshi Kono
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Changyong Guo
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Hanying Chen
- Department Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tamara Graves
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Carmella Evans-Molina
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Yao-Ying Ma
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| |
Collapse
|
2
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
3
|
Wang R, Yang M, Wu Y, Liu R, Liu M, Li Q, Su X, Xin Y, Huo W, Deng Q, Ba Y, Huang H. SIRT1 modifies DNA methylation linked to synaptic deficits induced by Pb in vitro and in vivo. Int J Biol Macromol 2022; 217:219-228. [PMID: 35839949 DOI: 10.1016/j.ijbiomac.2022.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
4
|
Maltsev AV, Balaban PM. PP1/PP2A phosphatase inhibition-induced metaplasticity in protein synthesis blocker-treated hippocampal slices: LTP and LTD, or There and Back again. Biochem Biophys Res Commun 2021; 558:64-70. [PMID: 33901925 DOI: 10.1016/j.bbrc.2021.04.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key forms of synaptic plasticity in the hippocampus. LTP and LTD are believed to underlie the processes occurring during learning and memory. Search of mechanisms responsible for switching from LTP to LTD and vice versa is an important fundamental task. Protein synthesis blockers (PSB) are widely used in models of memory impairment and LTP suppression. Here, we found that blockade of serine/threonine phosphatases 1 (PP1) and 2A (PP2A) with the specific blockers, calyculin A (CalyA) or okadaic acid (OA), and simultaneous blockade of the protein translation by anisomycin or cycloheximide leads to a switch from PSB-impaired LTP to LTD. PP1/PP2A-dependent LTD was extremely sensitive to the intensity of the test stimuli, whose increase restored the field excitatory postsynaptic potentials (fEPSP) to the values corresponding to control LTP in the non-treated slices. PP1/PP2A blockade affected the basal synaptic transmission, increasing the paired-pulse facilitation (PPF) ratio, and restored the PSB-impaired PPF 3 h after tetanus. Prolonged exposure to anisomycin led to the NO synthesis increase (measured using fluorescent dye) both in the dendrites and somata of CA1, CA3, dentate gyrus (DG) hippocampal layers. OA partially prevented the NO production in the CA1 dendrites, as well in the CA3 and DG somas. Direct measurements of changes in serine/threonine phosphatase (STPP) activity revealed importance of the PP1/PP2A-dependent component in the late LTP phase (L-LTP) in anisomycin-treated slices. Thus, serine/threonine phosphatases PP1/PP2A influence both basal synaptic transmission and stimulation-induced synaptic plasticity.
Collapse
Affiliation(s)
- Alexander V Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia.
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia
| |
Collapse
|
5
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
6
|
Zeng H, Tan Y, Wang L, Xiang M, Zhou Z, Chen JA, Wang J, Zhang R, Tian Y, Luo J, Huang Y, Lv C, Shu W, Qiu Z. Association of serum microcystin levels with neurobehavior of school-age children in rural area of Southwest China: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111990. [PMID: 33524912 DOI: 10.1016/j.ecoenv.2021.111990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
To investigate whether microcystin-LR (MC-LR) influences children's cognitive function and memory ability, we measured serum MC-LR and whole blood lead levels in 697 primary students, and collected their academic and neurobehavioral test scores. The median of serum MC-LR levels was 0.80 µg/L (the value below the limit of detection to 1.67 µg/L). The shapes of the associations of serum MC-LR levels (cut-point: 0.95 µg/L) with scores on academic achievements, digit symbol substitution test and long-term memory test were parabolic curves. Logistic regression analysis showed that MC-LR at concentrations of 0.80-0.95 µg/L was associated with the increased probability of higher achievements on academic achievements [odds ratio (OR) = 2.20, 95% confidence interval (CI): 1.28-3.79], and also with scores on digit symbol substitution test (OR = 1.73, 95% CI: 1.05-2.86), overall memory quotient (OR = 2.27, 95% CI: 1.21-4.26), long-term memory (OR = 1.85, 95% CI: 1.01-3.38) and short-term memory (OR = 2.13, 95% CI: 1.14-3.98) after adjustment for confounding factors. Antagonism of MC-LR and lead on long-term memory was observed (synergism index = 0.15, 95% CI: 0.03-0.74). In conclusion, serum MC-LR at concentrations of 0.80-0.95 µg/L was positively associated with higher scores on cognitive and neurobehavioral tests, and antagonism between MC-LR at concentrations of 0.80-1.67 µg/L and lead exposure was obviously observed on long-term memory in children. Concerning that MC-LR is a neurotoxin at high doses, our observation is interesting and need further investigation.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Menglong Xiang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-An Chen
- Department of Health Education, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renping Zhang
- The Center for Disease Control and Prevention in Fuling District, Chongqing, China
| | - Yingqiao Tian
- The Center for Disease Control and Prevention in Fuling District, Chongqing, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Lv
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
7
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
8
|
Dunn AR, Hadad N, Neuner SM, Zhang JG, Philip VM, Dumitrescu L, Hohman TJ, Herskowitz JH, O’Connell KMS, Kaczorowski CC. Identifying Mechanisms of Normal Cognitive Aging Using a Novel Mouse Genetic Reference Panel. Front Cell Dev Biol 2020; 8:562662. [PMID: 33042997 PMCID: PMC7517308 DOI: 10.3389/fcell.2020.562662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Developing strategies to maintain cognitive health is critical to quality of life during aging. The basis of healthy cognitive aging is poorly understood; thus, it is difficult to predict who will have normal cognition later in life. Individuals may have higher baseline functioning (cognitive reserve) and others may maintain or even improve with age (cognitive resilience). Understanding the mechanisms underlying cognitive reserve and resilience may hold the key to new therapeutic strategies for maintaining cognitive health. However, reserve and resilience have been inconsistently defined in human studies. Additionally, our understanding of the molecular and cellular bases of these phenomena is poor, compounded by a lack of longitudinal molecular and cognitive data that fully capture the dynamic trajectories of cognitive aging. Here, we used a genetically diverse mouse population (B6-BXDs) to characterize individual differences in cognitive abilities in adulthood and investigate evidence of cognitive reserve and/or resilience in middle-aged mice. We tested cognitive function at two ages (6 months and 14 months) using y-maze and contextual fear conditioning. We observed heritable variation in performance on these traits (h 2 RIx̄ = 0.51-0.74), suggesting moderate to strong genetic control depending on the cognitive domain. Due to the polygenetic nature of cognitive function, we did not find QTLs significantly associated with y-maze, contextual fear acquisition (CFA) or memory, or decline in cognitive function at the genome-wide level. To more precisely interrogate the molecular regulation of variation in these traits, we employed RNA-seq and identified gene networks related to transcription/translation, cellular metabolism, and neuronal function that were associated with working memory, contextual fear memory, and cognitive decline. Using this method, we nominate the Trio gene as a modulator of working memory ability. Finally, we propose a conceptual framework for identifying strains exhibiting cognitive reserve and/or resilience to assess whether these traits can be observed in middle-aged B6-BXDs. Though we found that earlier cognitive reserve evident early in life protects against cognitive impairment later in life, cognitive performance and age-related decline fell along a continuum, with no clear genotypes emerging as exemplars of exceptional reserve or resilience - leading to recommendations for future use of aging mouse populations to understand the nature of cognitive reserve and resilience.
Collapse
Affiliation(s)
- Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Sarah M. Neuner
- The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ji-Gang Zhang
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics and Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
9
|
Chang YM, Ashok Kumar K, Ju DT, Ho TJ, Mahalakshmi B, Lin WT, Day CH, Vijaya Padma V, Liao PH, Huang CY. Dipeptide IF prevents the effects of hypertension-induced Alzheimer's disease on long-term memory in the cortex of spontaneously hypertensive rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:570-581. [PMID: 31889399 DOI: 10.1002/tox.22892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Hypertension (HTN) is one of the most prevalent chronic conditions; it can damage blood vessels and rupture blood vessels can trap in small vessels. This blockage can prevent blood flow and oxygen delivery to brain cells and can result in Alzheimer's disease (AD). HTN- and AD-mediated long-time memory loss and its treatment remain poorly understood. Plant-derived natural compounds are alternative solutions for effectively treating diseases without any side effects. This study revealed that bioactive peptides extracted from potato hydrolysis suppress HTN-mediated long-term memory (LTM) loss and cell apoptosis, thus improving memory formation and neuronal cell survival in the spontaneously hypertensive rat (SHR) rat model. SHR rats were treated with bioactive peptide IF (10 mg/kg orally) and angiotensin-converting enzyme inhibitors (5 mg/kg orally). In this study, we evaluated the molecular expression levels of BDNF-, GluR1-, and CREB-mediated markers protein expression in 24-week-old SHR rats. The study result showed that HTN-induced AD regulated long-term memory (LTM) loss and neuronal degeneration in the SHR animals. The bioactive peptide-treated animals showed an elevated level of survival proteins. Bioactive peptide IF activate CREB-mediated downstream proteins to regulate synaptic plasticity and neuronal survival in the SHR rat model.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- Department of Chinese Medicine, 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - K Ashok Kumar
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Cecilia H Day
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Koeneke A, Ponce G, Troya-Balseca J, Palomo T, Hoenicka J. Ankyrin Repeat and Kinase Domain Containing 1 Gene, and Addiction Vulnerability. Int J Mol Sci 2020; 21:ijms21072516. [PMID: 32260442 PMCID: PMC7177674 DOI: 10.3390/ijms21072516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/13/2023] Open
Abstract
The TaqIA single nucleotide variant (SNV) has been tested for association with addictions in a huge number of studies. TaqIA is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) that codes for a receptor interacting protein kinase. ANKK1 maps on the NTAD cluster along with the dopamine receptor D2 (DRD2), the tetratricopeptide repeat domain 12 (TTC12) and the neural cell adhesion molecule 1 (NCAM1) genes. The four genes have been associated with addictions, although TTC12 and ANKK1 showed the strongest associations. In silico and in vitro studies revealed that ANKK1 is functionally related to the dopaminergic system, in particular with DRD2. In antisocial alcoholism, epistasis between ANKK1 TaqIA and DRD2 C957T SNVs has been described. This clinical finding has been supported by the study of ANKK1 expression in peripheral blood mononuclear cells of alcoholic patients and controls. Regarding the ANKK1 protein, there is direct evidence of its location in adult and developing central nervous system. Together, these findings of the ANKK1 gene and its protein suggest that the TaqIA SNV is a marker of brain differences, both in structure and in dopaminergic function, that increase individual risk to addiction development.
Collapse
Affiliation(s)
- Alejandra Koeneke
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Europea Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Guillermo Ponce
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain;
| | - Johanna Troya-Balseca
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Tomás Palomo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-936009751 (ext. 77833)
| |
Collapse
|
11
|
HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194404. [PMID: 31323436 DOI: 10.1016/j.bbagrm.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
HOX proteins are homeodomain transcription factors critically involved in patterning animal embryos and controlling organogenesis. While the functions of HOX proteins and the processes under their control begin to be well documented, the modalities of HOX protein activity regulation remain poorly understood. Here we show that HOXA2 interacts with PPP1CB, a catalytic subunit of the Ser/Thr PP1 phosphatase complex. This interaction co-localizes in the cytoplasm with a previously described HOXA2 interactor, KPC2, which belongs to the KPC E3 ubiquitin ligase complex. We provide evidence that HOXA2, PPP1CB and KPC2 define a molecularly and functionally interacting complex. Collectively, our experiments support that PPP1CB and KPC2 together inhibit the activity of HOXA2 by activating its nuclear export, but favored HOXA2 de-ubiquitination and stabilization thereby establishing a store of HOXA2 in the cytoplasm.
Collapse
|
12
|
Siddiqui SA, Singh S, Ugale R, Ranjan V, Kanojia R, Saha S, Tripathy S, Kumar S, Mehrotra S, Modi DR, Prakash A. Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Res Bull 2019; 150:86-101. [PMID: 31108155 DOI: 10.1016/j.brainresbull.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) regulate gene expression epigenetically through synchronized removal of acetyl groups from histones required towards memory consolidation. Moreover, dysregulated epigenetic machinery during fear or extinction learning may result in altered expression of some of these genes and result in Post Traumatic Stress Disorder (PTSD). In the present study, region-specific expression of Histone deacetylase 1 (HDAC1) and Histone deacetylase 2 (HDAC2) was correlated to the acetylation of histones H3 and H4 and the resultant conditioned response, in rats undergone fear and extinction learning. The neuronal activation, histone acetylation at H3/H4 and expression of HDAC1/HDAC2 in centrolateral amygdala (CeL) and centromedial amygdala (CeM) of central Amygdala (CeA) and prelimbic (PL) and infralimbic (IL) of Prefrontal cortex (PFC) were found to be associated in a differential manner following fear and extinction learning. Moreover in CeM, the main output of the fear circuitry, the level of HDAC1 was down-regulated following conditioning and up-regulated following extinction as opposed to which HDAC2 was down-regulated in CeM following conditioning but not following extinction. Furthermore, in CeL the HDAC1 was upregulated and HDAC2 was downregulated following conditioning and extinction. This has important implications in speculating of the role of HDACs in fear memory consolidation and its extinction.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, RTM Nagpur University, Nagpur, India
| | - Vandana Ranjan
- Department of Biochemistry, RML University, Faizabad, India
| | - Rohit Kanojia
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sudipta Saha
- Department of Pharmaceutical Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sukanya Tripathy
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shiv Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Department of Biotech, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
13
|
Wu ZX, Cao L, Li XW, Jiang W, Li XY, Xu J, Wang F, Chen GH. Accelerated Deficits of Spatial Learning and Memory Resulting From Prenatal Inflammatory Insult Are Correlated With Abnormal Phosphorylation and Methylation of Histone 3 in CD-1 Mice. Front Aging Neurosci 2019; 11:114. [PMID: 31156421 PMCID: PMC6531990 DOI: 10.3389/fnagi.2019.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Gestational infection causes various neurological deficits in offspring, such as age-related spatial learning and memory (SLM) decline. How inflammation causes age-related SLM dysfunction remains unknown. Previous research has indicated that histone modifications, such as phosphorylation of H3S10 (H3S10p) and trimethylation of H3K9 (H3K9me3) may be involved. In our study, pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS, 50 or 25 μg/kg) or normal saline during gestational days 15-17. After normal parturition, the offspring were randomly separated into 1-, 6-, 12-, 18-, and 22-month-old groups. SLM performance was assessed using a radial six-arm water maze (RAWM). The hippocampal levels of H3S10p and H3K9me3 were detected using an immunohistochemical method. The results indicated that the offspring had significantly impaired SLM, with decreased H3S10p and increased H3K9me3 levels from 12 months onward. Maternal LPS exposure during late gestation significantly and dose-dependently exacerbated the age-related impairment of SLM, with the decrease in H3S10p and increase in H3K9me3 beginning at 12 months in the offspring. The histone modifications (H3S10p and H3K9me3) were significantly correlated with impairment of SLM. Our findings suggest that prenatal exposure to inflammation could exacerbate age-related impairments of SLM and changes in histone modifications in CD-1 mice from 12 months onward, and SLM impairment might be linked to decreased H3S10p and increased H3K9me3.
Collapse
Affiliation(s)
- Zi-Xing Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Xu
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Ferreira M, Beullens M, Bollen M, Van Eynde A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:16-30. [PMID: 30056088 PMCID: PMC7114192 DOI: 10.1016/j.bbamcr.2018.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.
Collapse
Affiliation(s)
- Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Lissek T. Interfacing Neural Network Components and Nucleic Acids. Front Bioeng Biotechnol 2017; 5:53. [PMID: 29255707 PMCID: PMC5722975 DOI: 10.3389/fbioe.2017.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022] Open
Abstract
Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat.
Collapse
Affiliation(s)
- Thomas Lissek
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Kleine Borgmann FB, Gräff J, Mansuy IM, Toni N, Jessberger S. Enhanced plasticity of mature granule cells reduces survival of
newborn neurons in the adult mouse hippocampus. MATTERS SELECT 2016; 2:201610000014. [PMID: 36168317 PMCID: PMC7613637 DOI: 10.19185/matters.201610000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Johannes Gräff
- Brain Research Institute, Laboratory of Neuroepigenetics, University of Zurich and Swiss Federal Institute of Technology Zurich, Department of Fundamental Neuroscience, University of Lausanne
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich
| | - Nicolas Toni
- Departement des neurosciences fondamentales, Universite de Lausanne
| | | |
Collapse
|
17
|
Zhang Z, Yang J, Liu X, Jia X, Xu S, Gong K, Yan S, Zhang C, Shao G. Effects of 5-Aza-2′-deoxycytidine on expression of PP1γ in learning and memory. Biomed Pharmacother 2016; 84:277-283. [DOI: 10.1016/j.biopha.2016.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
|
18
|
Ma L, Bayram Y, McLaughlin HM, Cho MT, Krokosky A, Turner CE, Lindstrom K, Bupp CP, Mayberry K, Mu W, Bodurtha J, Weinstein V, Zadeh N, Alcaraz W, Powis Z, Shao Y, Scott DA, Lewis AM, White JJ, Jhangiani SN, Gulec EY, Lalani SR, Lupski JR, Retterer K, Schnur RE, Wentzensen IM, Bale S, Chung WK. De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. Hum Genet 2016; 135:1399-1409. [PMID: 27681385 DOI: 10.1007/s00439-016-1731-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Intellectual disabilities are genetically heterogeneous and can be associated with congenital anomalies. Using whole-exome sequencing (WES), we identified five different de novo missense variants in the protein phosphatase-1 catalytic subunit beta (PPP1CB) gene in eight unrelated individuals who share an overlapping phenotype of dysmorphic features, macrocephaly, developmental delay or intellectual disability (ID), congenital heart disease, short stature, and skeletal and connective tissue abnormalities. Protein phosphatase-1 (PP1) is a serine/threonine-specific protein phosphatase involved in the dephosphorylation of a variety of proteins. The PPP1CB gene encodes a PP1 subunit that regulates the level of protein phosphorylation. All five altered amino acids we observed are highly conserved among the PP1 subunit family, and all are predicted to disrupt PP1 subunit binding and impair dephosphorylation. Our data suggest that our heterozygous de novo PPP1CB pathogenic variants are associated with syndromic intellectual disability.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Alyson Krokosky
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - Weiyi Mu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joann Bodurtha
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Veronique Weinstein
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | | | | | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Yunru Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalani N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Elif Yilmaz Gulec
- Medical Genetics Section, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016; 7:12594. [PMID: 27558292 PMCID: PMC5007330 DOI: 10.1038/ncomms12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Collapse
Affiliation(s)
- Bisrat T Woldemichael
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Eloïse A Kremer
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Niharika Gaur
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4048, Switzerland
| | - Antonin Marchais
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| |
Collapse
|
20
|
He ZY, Hu WY, Zhang M, Yang ZZ, Zhu HM, Xing D, Ma QH, Xiao ZC. Wip1 phosphatase modulates both long-term potentiation and long-term depression through the dephosphorylation of CaMKII. Cell Adh Migr 2016; 10:237-47. [PMID: 27158969 DOI: 10.4161/19336918.2014.994916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1(-/-) mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.
Collapse
Affiliation(s)
- Zhi-Yong He
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China.,b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Wei-Yan Hu
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia.,e School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University , Kunming , China
| | - Ming Zhang
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China
| | - Zara Zhuyun Yang
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Hong-Mei Zhu
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Da Xing
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China
| | - Quan-Hong Ma
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China.,d Institute of Neuroscience, Suzhou University , Soochow , China
| | - Zhi-Cheng Xiao
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| |
Collapse
|
21
|
Quantitative proteomics reveals protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse. Behav Brain Res 2016; 303:208-17. [DOI: 10.1016/j.bbr.2015.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/20/2022]
|
22
|
Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats. Neurotox Res 2015; 29:243-55. [PMID: 26678494 DOI: 10.1007/s12640-015-9585-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 10/24/2022]
Abstract
General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.
Collapse
|
23
|
Cheng XY, He S, Liang XF, Song Y, Yuan XC, Li L, Wen ZY, Cai WJ, Tao YX. Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish ( Siniperca chuatsi ). Comp Biochem Physiol B Biochem Mol Biol 2015; 189:69-79. [DOI: 10.1016/j.cbpb.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/27/2023]
|
24
|
Verheyen T, Görnemann J, Verbinnen I, Boens S, Beullens M, Van Eynde A, Bollen M. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits. Nucleic Acids Res 2015; 43:5771-84. [PMID: 25990731 PMCID: PMC4499128 DOI: 10.1093/nar/gkv500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits.
Collapse
Affiliation(s)
- Toon Verheyen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Janina Görnemann
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Shannah Boens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
Differential regulation of MeCP2 and PP1 in passive or voluntary administration of cocaine or food. Int J Neuropsychopharmacol 2014; 17:2031-44. [PMID: 24936739 DOI: 10.1017/s1461145714000972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cocaine exposure induces changes in the expression of numerous genes, in part through epigenetic modifications. We have initially shown that cocaine increases the expression of the chromatin remodeling protein methyl-CpG binding protein 2 (MeCP2) and characterized the protein phosphatase-1Cβ (PP1Cβ) gene, as repressed by passive i.p. cocaine injections through a Mecp2-mediated mechanism involving de novo DNA methylation. Both proteins being involved in learning and memory processes, we investigated whether voluntary cocaine administration would similarly affect their expression using an operant self-administration paradigm. Passive and voluntary i.v. cocaine intake was found to induce Mecp2 and to repress PP1Cβ in the prefrontal cortex and the caudate putamen. This observation is consistent with the role of Mecp2 acting as a transcriptional repressor of PP1Cβ and shows that passive intake was sufficient to alter their expression. Surprisingly, striking differences were observed under the same conditions in food-restricted rats tested for food pellet delivery. In the prefrontal cortex and throughout the striatum, both proteins were induced by food operant conditioning, but remained unaffected by passive food delivery. Although cocaine and food activate a common reward circuit, changes observed in the expression of other genes such as reelin and GAD67 provide new insights into molecular mechanisms differentiating neuroadaptations triggered by each reinforcer. The identification of hitherto unknown genes differentially regulated by drugs of abuse and a natural reinforcer should improve our understanding of how two rewarding stimuli differ in their ability to drive behavior.
Collapse
|
26
|
Abstract
The renin-angiotensin system (RAS) is a major regulatory system controlling many different homeostatic mechanisms both within the brain and in the periphery. While it is primarily associated with blood pressure and salt/water regulation, increasing evidence points to the involvement of the RAS in both headache disorders specifically and pain regulation in general. Several publications have indicated that drugs blocking various elements of the renin-angiotensin system lead to a reduction in migraine. Additionally, interventions on different angiotensin peptides or their receptors have been shown to both reduce and increase pain in animal models. As such, modulation of the renin-angiotensin system is a promising approach to the treatment of headaches and other pain conditions.
Collapse
|
27
|
He F, Lupu DS, Niculescu MD. Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring. Int J Dev Neurosci 2014; 36:38-44. [PMID: 24866706 DOI: 10.1016/j.ijdevneu.2014.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles on brain development, memory, and learning. However, the exact mechanisms involved are far from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the expression of genes involved in neurogenesis, memory-related molecular processes, and DNA methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 DNA methylation was decreased by maternal ALA deficiency during gestation, with a more robust effect in the lactation-deficient group. In addition, linear regression analysis revealed positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, between DNA methylation and gene expression. In summary, the interplay between ALA availability during gestation and lactation differentially altered the expression of genes involved in neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 epigenetic status was correlated with ALA availability during gestation. However, the epigenetic status of the genes investigated was not associated with transcript levels, suggesting that either the regulation of these genes is not necessarily under epigenetic control, or that the whole brain model is not adequate for the exploration of epigenetic regulation in the context of this study.
Collapse
Affiliation(s)
- Fuli He
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Daniel S Lupu
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Mihai D Niculescu
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.
| |
Collapse
|
28
|
The role of epigenetic regulation in learning and memory. Exp Neurol 2014; 268:30-6. [PMID: 24837316 DOI: 10.1016/j.expneurol.2014.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
The formation of long-term memory involves a series of molecular and cellular changes, including gene transcription, protein synthesis and synaptic plasticity dynamics. Some of these changes arise during learning and are subsequently retained throughout life. 'Epigenetic' regulation, which involves DNA methylation and histone modifications, plays a critical role in retaining long-term changes in post-mitotic cells. Accumulating evidence suggests that the epigenetic machinery might regulate the formation and stabilization of long-term memory in two ways: a 'gating' role of the chromatin state to regulate activity-triggered gene expression; and a 'stabilizing' role of the chromatin state to maintain molecular and cellular changes induced by the memory-related event. The neuronal activation regulates the dynamics of the chromatin status under precise timing, with subsequent alterations in the gene expression profile. This review summarizes the existing literature, focusing on the involvement of epigenetic regulation in learning and memory. We propose that the identification of different epigenetic regulators and signaling pathways involved in memory-related epigenetic regulations will provide mechanistic insights into the formation of long-term memory.
Collapse
|
29
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|
30
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
31
|
Angiotensin IV upregulates the activity of protein phosphatase 1α in Neura-2A cells. Protein Cell 2013; 4:520-8. [PMID: 23744339 DOI: 10.1007/s13238-013-3005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 01/21/2023] Open
Abstract
The peptide angiotensin IV (Ang IV) is a derivative of angiotensin II. While insulin regulated amino peptidase (IRAP) has been proposed as a potential receptor for Ang IV, the signalling pathways of Ang IV through IRAP remain elusive. We applied high-resolution mass spectrometry to perform a systemic quantitative phosphoproteome of Neura-2A (N2A) cells treated with and without Ang IV using sta ble-isotope labeling by amino acids in cell culture (SILAC), and identified a reduction in the phosphorylation of a major Ser/Thr protein phosphorylase 1 (PP1) upon Ang IV treatment. In addition, spinophilin (spn), a PP1 regulatory protein that plays important functions in the neural system, was expressed at higher levels. Immunoblotting revealed decreased phosphorylation of p70S6 kinase (p70(S6K)) and the major cell cycle modulator retinoblastoma protein (pRB). These changes are consistent with an observed decrease in cell proliferation. Taken together, our study suggests that Ang IV functions via regulating the activity of PP1.
Collapse
|
32
|
Fadel JR, Jolivalt CG, Reagan LP. Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 2013; 12:764-76. [PMID: 23416469 DOI: 10.1016/j.arr.2013.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/25/2023]
Abstract
Through their well described actions in the hypothalamus, appetitive peptides such as insulin, orexin and leptin are recognized as important regulators of food intake, body weight and body composition. Beyond these metabolic activities, these peptides also are critically involved in a wide variety of activities ranging from modulation of immune and neuroendocrine function to addictive behaviors and reproduction. The neurological activities of insulin, orexin and leptin also include facilitation of hippocampal synaptic plasticity and enhancement of cognitive performance. While patients with metabolic disorders such as obesity and diabetes have greater risk of developing cognitive deficits, dementia and Alzheimer's disease (AD), the underlying mechanisms that are responsible for, or contribute to, age-related cognitive decline are poorly understood. In view of the importance of these peptides in metabolic disorders, it is not surprising that there is a greater focus on their potential role in cognitive deficits associated with aging. The goal of this review is to describe the evidence from clinical and pre-clinical studies implicating insulin, orexin and leptin in the etiology and progression of age-related cognitive decline. Collectively, these studies support the hypothesis that leptin and insulin resistance, concepts normally associated with the hypothalamus, are also applicable to the hippocampus.
Collapse
Affiliation(s)
- Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, 6439 Garners Ferry Road, Columbia, SC 29208, USA
| | | | | |
Collapse
|
33
|
Pol Bodetto S, Carouge D, Fonteneau M, Dietrich JB, Zwiller J, Anglard P. Cocaine represses protein phosphatase-1Cβ through DNA methylation and Methyl-CpG Binding Protein-2 recruitment in adult rat brain. Neuropharmacology 2013; 73:31-40. [PMID: 23688924 DOI: 10.1016/j.neuropharm.2013.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Repeated cocaine exposure induces epigenetic factors such as DNA methyl-binding proteins, indicating that resulting changes in gene expression are mediated by alterations in brain DNA methylation. While the activity of protein phosphatase type-1 (PP1) is involved in cocaine effects and in brain plasticity, the expression of the PP1Cβ catalytic subunit gene was identified here as modulated by cocaine. Its expression was induced together with that of PP1Cγ in the brain of Methyl-CpG Binding Protein-2 (Mecp2) mutant mice, whereas PP1Cα expression was not affected, illustrating a different regulation of PP1C isoforms. Repeated cocaine administration was found to increase DNA methylation at the PP1Cβ gene together with its binding to Mecp2 in rat caudate putamen, establishing a link between two genes involved in cocaine-related effects and in learning and memory processes. Cocaine also increased DNMT3 expression, resulting in PP1Cβ repression that did not occur in the presence of DNMT inhibitor. Cocaine-induced PP1Cβ repression was observed in several brain structures, as evaluated by RT-qPCR, immunohistochemistry and Western blot, but did not occur after a single cocaine injection. Our data demonstrate that PP1Cβ is a direct MeCP2-target gene in vivo. They suggest that its repression may participate to behavioral adaptations triggered by the drug.
Collapse
Affiliation(s)
- Sarah Pol Bodetto
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
34
|
Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience 2013; 264:51-63. [PMID: 23291453 DOI: 10.1016/j.neuroscience.2012.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/29/2023]
Abstract
While the importance of epigenetic mechanisms is well established for numerous aspects of cell differentiation and development, recent findings have shown epigenetic processes to be a critical regulatory component in postmitotic neurons. Particularly intriguing, and potentially significant, are data demonstrating epigenetic regulation of cognitive behaviors. Different aspects of learning and memory appear to be regulated at the level of epigenetic chromatin modifications. Furthermore, it is becoming clear that the dysfunction of epigenetic mechanisms can lead to various disorders accompanied by significant mental impairment. Here, we review the evidence for the epigenetic control of cognition and the role of epigenetic dysregulation in mental disorders. A better understanding of epigenetic mechanisms will increase our fundamental knowledge of cognition and also provide new and exciting avenues of treatment for various mental disorders.
Collapse
Affiliation(s)
- A Rudenko
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - L-H Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
36
|
Rahman A, Khan KM, Al-Khaledi G, Khan I, Attur S. Early postnatal lead exposure induces tau phosphorylation in the brain of young rats. ACTA BIOLOGICA HUNGARICA 2012; 63:411-25. [PMID: 23134599 DOI: 10.1556/abiol.63.2012.4.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cognitive impairment is a common feature of both lead exposure and hyperphosphorylation of tau. We, therefore, investigated whether lead exposure would induce tau hyperphosphorylation. Wistar rat pups were exposed to 0.2% lead acetate via their dams' drinking water from postnatal day 1 to 21. Lead in blood and brain were measured by atomic absorption spectrophotometry and the expression of tau, phosphorylated tau and various serine/threonine protein phosphatases (PP1, PP2A, PP2B and PP5) in the brain was analyzed by Western blot. Lead exposure significantly impaired learning and resulted in a significant reduction in the expression of tau but increased the phosphorylation of tau at Ser199/202, Thr212/Ser214 and Thr231. PP2A expression decreased, whereas, PP1 and PP5 expression increased in lead-exposed rats. These results demonstrate that early postnatal exposure to lead decrease PP2A expression and induce tau hyperphosphorylation at several serine and threonine residues. Hyperphosphorylation of tau may be a mechanism of Pb-induced deficits in learning and memory.
Collapse
Affiliation(s)
- A Rahman
- Department of Family Sciences, College for Women, Kuwait University, Kuwait.
| | | | | | | | | |
Collapse
|
37
|
Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation. Nat Commun 2012; 3:991. [PMID: 22871810 DOI: 10.1038/ncomms1997] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/10/2012] [Indexed: 01/14/2023] Open
Abstract
Memory consolidation requires a timely controlled interplay between the hippocampus, a brain region important for memory formation, and the cortex, a region recruited for memory storage. Here we show that memory consolidation is associated with specific epigenetic modifications on histone proteins that have a distinct dynamic in these brain areas. While in the hippocampus, histone post-translational modifications (PTMs) are rapidly and transiently activated after learning, in the cortex they are induced with delay but persist over time. When these histone PTMs are increased in vivo by transgenic intervention or intense training, they facilitate memory consolidation. Conversely, when they are pharmacologically blocked, memory consolidation is impaired. These histone PTMs are further associated with the expression of the immediate early gene zif268, a transcription factor that favours memory consolidation. These findings reveal the spatiotemporal dynamics of histone marks during memory consolidation, and demonstrate their inherent 'mnemonic' property.
Collapse
|
38
|
Esteves SLC, Korrodi-Gregório L, Cotrim CZ, van Kleeff PJM, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1γ isoforms linked interactions in the brain. J Mol Neurosci 2012; 50:179-97. [PMID: 23080069 DOI: 10.1007/s12031-012-9902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases. The catalytic subunit of protein phosphatase 1 (PP1), a major Ser/Thr-phosphatase, associates with a large variety of regulatory subunits that define substrate specificity and determine specific cellular pathway responses. PP1 has been shown to bind to different proteins in the brain in order to execute key and differential functions. This work reports the identification of proteins expressed in the human brain that interact with PP1γ1 and PP1γ2 isoforms by the yeast two-hybrid method. An extensive search of PP1-binding motifs was performed for the proteins identified, revealing already known PP1 regulators but also novel interactors. Moreover, our results were integrated with the data of PP1γ interacting proteins from several public web databases, permitting the development of physical maps of the novel interactions. The PP1γ interactome thus obtained allowed for the identification of novel PP1 interacting proteins, supporting novel functions of PP1γ isoforms in the human brain.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kinases and phosphatases in the epigenetic regulation of cognitive functions. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Brunner AM, Tweedie-Cullen RY, Mansuy IM. Epigenetic modifications of the neuroproteome. Proteomics 2012; 12:2404-20. [PMID: 22696459 DOI: 10.1002/pmic.201100672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/12/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
In the central nervous system, epigenetic processes are involved in a multitude of brain functions ranging from the development and differentiation of the nervous system through to higher-order cognitive processes such as learning and memory. This review summarises the current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems. It describes the MS technologies that have helped the identification and analysis of histones, histone variants and PTMs in the brain. Strategies for the isolation of histones that allow the qualitative analysis of PTMs and their combinatorial patterns are introduced, methods for the relative and absolute quantification of histone PTMs are described, and future challenges are discussed.
Collapse
Affiliation(s)
- Andrea M Brunner
- Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Esteves SLC, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1α interacting proteins in the human brain. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:3-17. [PMID: 22321011 DOI: 10.1089/omi.2011.0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, Portugal
| | | | | | | | | |
Collapse
|
42
|
Rahman A, Khan KM, Al-Khaledi G, Khan I, Al-Shemary T. Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology 2012; 33:370-83. [DOI: 10.1016/j.neuro.2012.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
|
43
|
Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, Panse C, Mansuy IM. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 2012; 7:e36980. [PMID: 22693562 PMCID: PMC3365036 DOI: 10.1371/journal.pone.0036980] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/11/2012] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are biochemical processes required for cellular functions and signalling that occur in every sub-cellular compartment. Multiple protein PTMs exist, and are established by specific enzymes that can act in basal conditions and upon cellular activity. In the nucleus, histone proteins are subjected to numerous PTMs that together form a histone code that contributes to regulate transcriptional activity and gene expression. Despite their importance however, histone PTMs have remained poorly characterised in most tissues, in particular the brain where they are thought to be required for complex functions such as learning and memory formation. Here, we report the comprehensive identification of histone PTMs, of their combinatorial patterns, and of the rules that govern these patterns in the adult mouse brain. Based on liquid chromatography, electron transfer, and collision-induced dissociation mass spectrometry, we generated a dataset containing a total of 10,646 peptides from H1, H2A, H2B, H3, H4, and variants in the adult brain. 1475 of these peptides carried one or more PTMs, including 141 unique sites and a total of 58 novel sites not described before. We observed that these PTMs are not only classical modifications such as serine/threonine (Ser/Thr) phosphorylation, lysine (Lys) acetylation, and Lys/arginine (Arg) methylation, but also include several atypical modifications such as Ser/Thr acetylation, and Lys butyrylation, crotonylation, and propionylation. Using synthetic peptides, we validated the presence of these atypical novel PTMs in the mouse brain. The application of data-mining algorithms further revealed that histone PTMs occur in specific combinations with different ratios. Overall, the present data newly identify a specific histone code in the mouse brain and reveal its level of complexity, suggesting its potential relevance for higher-order brain functions.
Collapse
Affiliation(s)
- Ry Y. Tweedie-Cullen
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea M. Brunner
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Safa Mohanna
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Sichau
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Christian Panse
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Isabelle M. Mansuy
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Winding C, Sun Y, Höger H, Bubna-Littitz H, Pollak A, Schmidt P, Lubec G. Serine/threonine-protein phosphatase 1 α levels are paralleling olfactory memory formation in the CD1 mouse. Electrophoresis 2011; 32:1675-83. [PMID: 21647921 DOI: 10.1002/elps.201000615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 01/11/2023]
Abstract
Although olfactory discrimination has already been studied in several mouse strains, data on protein levels linked to olfactory memory are limited. Wild mouse strains Mus musculus musculus, Mus musculus domesticus and CD1 laboratory outbred mice were tested in a conditioned odor preference task and trained to discriminate between two odors, Rose and Lemon, by pairing one odor with a sugar reward. Six hours following the final test, mice were sacrificed and olfactory bulbs (OB) were taken for gel-based proteomics analyses and immunoblotting. OB proteins were extracted, separated by 2-DE and quantified using specific software (Proteomweaver). Odor-trained mice showed a preference for the previously rewarded odor suggesting that conditioned odor preference occurred. In CD1 mice levels, one out of 482 protein spots was significantly increased in odor-trained mice as compared with the control group; it was in-gel digested by trypsin and chymotrypsin and analyzed by tandem mass spectrometry (nano-ESI-LC-MS/MS). The spot was unambiguously identified as serine/threonine-protein phosphatase PP1-α catalytic subunit (PP-1A) and differential levels observed in gel-based proteomic studies were verified by immunoblotting. PP-1A is a key signalling element in synaptic plasticity and memory processes and is herein shown to be paralleling olfactory discrimination representing olfactory memory.
Collapse
Affiliation(s)
- Christiana Winding
- Division of Neuroproteomics, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Learning and memory consolidation: linking molecular and behavioral data. Neuroscience 2011; 176:12-9. [PMID: 21215299 DOI: 10.1016/j.neuroscience.2010.12.056] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 12/21/2022]
Abstract
This paper puts together and links some classic and recent molecular data and hypothesis from different authors and laboratories related to learning and memory consolidation. Mainly addressed to non-specialists, it describes how the glutamatergic activation of plastic synapses in the hippocampus can give rise to new or enlarged dendritic spines which may constitute the main structural basis of some kind of memories. To establish learning and memory, the nervous system can use part of the same mechanisms which make the basic structure of neurons during the ontogenetic development of the brain. Through different families of kinases, phosphatases and other proteins, the activated N-methyl-d-aspartate (NMDA) receptors and different intracellular signals originated in the post-synaptic membranes can promote the synthesis of new proteins and the dynamic of actin. The consecutive morphological changes in the cytoskeleton of the neuron, later stabilized by new receptors inserted in the post-synaptic membranes, make possible memory consolidation. Short and long-term, as well as persistence, of memory mechanisms are related to these molecular processes. Recent research on system consolidation and memory allocation in neural circuits is also explained.
Collapse
|
46
|
Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience 2010; 173:30-6. [PMID: 21093547 DOI: 10.1016/j.neuroscience.2010.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/08/2023]
Abstract
Complex brain diseases and neurological disorders in human generally result from the disturbance of multiple genes and signaling pathways. These disturbances may derive from mutations, deletions, translocations or rearrangements of specific gene(s). However, over the past years, it has become clear that such disturbances may also derive from alterations in the epigenome affecting several genes simultaneously. Our work recently demonstrated that epigenetic mechanisms in the adult brain are in part regulated by protein phosphatase 1 (PP1), a protein Ser/Thr phosphatase that negatively regulates hippocampus-dependent long-term memory (LTM) and synaptic plasticity. PP1 is abundant in brain structures involved in emotional processing like the amygdala, it may therefore be involved in the regulation of fear memory, a form of memory related to post-traumatic stress disorder (PTSD) in human. Here, we demonstrate that PP1 is a molecular suppressor of fear memory and synaptic plasticity in the amygdala that can control chromatin remodeling in neurons. We show that the selective inhibition of the nuclear pool of PP1 in amygdala neurons significantly alters posttranslational modifications (PTMs) of histones and the expression of several memory-associated genes. These alterations correlate with enhanced fear memory, and with an increase in long-term potentiation (LTP) that is transcription-dependent. Our results underscore the importance of nuclear PP1 in the amygdala as an epigenetic regulator of emotional memory, and the relevance of protein phosphatases as potential targets for therapeutic treatment of brain disorders like PTSD.
Collapse
|