1
|
Uguagliati B, Grilli M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024; 13:2037. [PMID: 39768129 PMCID: PMC11674571 DOI: 10.3390/cells13242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development. Astrocytes are involved in numerous functions during brain development, including balancing pro-neurogenic and pro-gliogenic stimuli, sustaining synapse formation, regulating excitatory/inhibitory signal equilibrium, and supporting the maintenance and integration of functional neural circuits. The enhanced number of astrocytes in the brain of DS individuals leads to detrimental consequences for brain development. This review summarizes the mechanisms underlying astrocytic dysfunction in DS, and particularly the dysregulation of key signaling pathways, which promote astrogliogenesis at the expense of neurogenesis. It further examines the implications of astrocytic alterations on dendritic branching, spinogenesis and synaptogenesis, and the impact of the abnormal astrocytic number in neural excitability and in the maintenance of the inhibitory/excitatory balance. Identifying deregulated pathways and the consequences of astrocytic alterations in early DS brain development may help in identifying new therapeutic targets, with the ultimate aim of ameliorating the cognitive disability that affects individuals with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
3
|
Vázquez-Mojena Y, Rodríguez-Labrada R, Córdova-Rodríguez Y, Domínguez-Barrios Y, Fernández-Herrera ME, León-Arcia K, Pavón-Fuentes N, Robinson-Agramonte MDLA, Velázquez-Pérez L. Serum S100β Levels Are Linked with Cognitive Decline and Peripheral Inflammation in Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1509-1520. [PMID: 38347269 DOI: 10.1007/s12311-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/25/2024]
Abstract
Experimental and clinical studies have indicated a potential role of the protein S100β in the pathogenesis and phenotype of neurodegenerative diseases. However, its impact on spinocerebellar ataxia type 2 (SCA2) remains to be elucidated. The objective of the study is to determine the serum levels of S100β in SCA2 and its relationship with molecular, clinical, cognitive, and peripheral inflammatory markers of the disease. Serum concentrations of S100β were measured by enzyme-linked immunosorbent assay in 39 SCA2 subjects and 36 age- and gender-matched controls. Clinical scores of ataxia, non-ataxia symptoms, cognitive dysfunction, and some blood cell count-derived inflammatory indices were assessed. The SCA2 individuals manifested S100β levels similar to the control group, at low nanomolar concentrations. However, the S100β levels were directly associated with a better performance of cognitive evaluation within the SCA2 cohort. Moreover, the S100β levels were inversely correlated with most peripheral inflammatory indices. Indeed, the neutrophil-to-lymphocyte ratio significantly mediated the effect of serum S100β on cognitive performance, even after controlling for the ataxia severity in the causal mediation analysis. Our findings suggested that, within physiologic concentrations, the protein S100β exerts a neuroprotective role against cognitive dysfunction in SCA2, likely via the suppression of pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yaimeé Vázquez-Mojena
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Roberto Rodríguez-Labrada
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba.
- Cuban Centre for Neurosciences, 190 Street, 19818, Between 25 & 27, 11600, Cubanacan, Playa, Havana, Cuba.
| | - Yanetsy Córdova-Rodríguez
- Institute of Nephrology "Abelardo Buch López", 26 Avenue & Rancho Boyeros Avenue10400, Plaza de La Revolución, Havana, Cuba
| | - Yennis Domínguez-Barrios
- Clinical & Surgical Hospital "Calixto Garcia", Universidad Avenue & J St, Vedado10400, Plaza de La Revolución, Havana, Cuba
| | - Mario E Fernández-Herrera
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
| | - Karen León-Arcia
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Nancy Pavón-Fuentes
- Neuroimmunology Dept, International Centre for Neurological Restoration, 25 Avenue 15805, Between 158 St & 160 St, 11300, Playa, Havana, Cuba
| | | | - Luis Velázquez-Pérez
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
- Cuban Academy of Sciences, Cuba St 460, Between Teniente Rey & Amargura, Habana Vieja, 10100, Havana, Cuba
- Faculty of Chemistry, University of Havana, Zapata St Between G St & Carlitos Aguirre St, 10400, Plaza de La Revolución, Havana, Cuba
| |
Collapse
|
4
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
5
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Cha H, Choi JH, Jeon H, Kim JH, Kim M, Kim SJ, Park W, Lim JS, Lee E, Ahn JS, Kim JH, Hong SH, Park JE, Jung JH, Yoo HJ, Lee S. Aquaporin-4 Deficiency is Associated with Cognitive Impairment and Alterations in astrocyte-neuron Lactate Shuttle. Mol Neurobiol 2023; 60:6212-6226. [PMID: 37436602 DOI: 10.1007/s12035-023-03475-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Cognitive impairment refers to notable declines in cognitive abilities including memory, language, and emotional stability leading to the inability to accomplish essential activities of daily living. Astrocytes play an important role in cognitive function, and homeostasis of the astrocyte-neuron lactate shuttle (ANLS) system is essential for maintaining cognitive functions. Aquaporin-4 (AQP-4) is a water channel expressed in astrocytes and has been shown to be associated with various brain disorders, but the direct relationship between learning, memory, and AQP-4 is unclear. We examined the relationship between AQP-4 and cognitive functions related to learning and memory. Mice with genetic deletion of AQP-4 showed significant behavioral and emotional changes including hyperactivity and instability, and impaired cognitive functions such as spatial learning and memory retention. 18 F-FDG PET imaging showed significant metabolic changes in the brains of AQP-4 knockout mice such as reductions in glucose absorption. Such metabolic changes in the brain seemed to be the direct results of changes in the expression of metabolite transporters, as the mRNA levels of multiple glucose and lactate transporters in astrocytes and neurons were significantly decreased in the cortex and hippocampus of AQP-4 knockout mice. Indeed, AQP-4 knockout mice showed significantly higher accumulation of both glucose and lactate in their brains compared with wild-type mice. Our results show that the deficiency of AQP-4 can cause problems in the metabolic function of astrocytes and lead to cognitive impairment, and that the deficiency of AQP4 in astrocyte endfeet can cause abnormalities in the ANLS system.
Collapse
Affiliation(s)
- Hyeuk Cha
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Choi
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hanwool Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Moinay Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Su Jung Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Wonhyoung Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunyeup Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok Ho Hong
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Neuroradiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Hwa Jung
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Ding S, Wang C, Wang W, Yu H, Chen B, Liu L, Zhang M, Lang Y. Autocrine S100B in astrocytes promotes VEGF-dependent inflammation and oxidative stress and causes impaired neuroprotection. Cell Biol Toxicol 2023; 39:1-25. [PMID: 34792689 DOI: 10.1007/s10565-021-09674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains not fully understood. In the present study, we investigated the effect and mechanism of S100B, a predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. We discovered that S100B expressions and autocrine were significantly increased in MHE rat brains and MHE rat brain-derived astrocytes. Furthermore, S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress in MHE astrocytes. MHE astrocytes supported impairment of neuronal survival and growth in a co-culture system. To sum up, a comprehensive understanding of the role of S100B-overexpressed MHE astrocyte in MHE pathogenesis may provide insights into the etiology of MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Chengde Wang
- Neurosurgery department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weikan Wang
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - He Yu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Baihui Chen
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Leping Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Lang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
8
|
Polykretis I, Michmizos KP. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 2022; 50:505-518. [PMID: 35840871 PMCID: PMC9671849 DOI: 10.1007/s10827-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.
Collapse
Affiliation(s)
- Ioannis Polykretis
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
9
|
Mader S, Brimberg L, Vo A, Strohl JJ, Crawford JM, Bonnin A, Carrión J, Campbell D, Huerta TS, La Bella A, Berlin R, Dewey SL, Hellman M, Eidelberg D, Dujmovic I, Drulovic J, Bennett JL, Volpe BT, Huerta PT, Diamond B. In utero exposure to maternal anti-aquaporin-4 antibodies alters brain vasculature and neural dynamics in male mouse offspring. Sci Transl Med 2022; 14:eabe9726. [PMID: 35442708 PMCID: PMC9973562 DOI: 10.1126/scitranslmed.abe9726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fetal brain is constantly exposed to maternal IgG before the formation of an effective blood-brain barrier (BBB). Here, we studied the consequences of fetal brain exposure to an antibody to the astrocytic protein aquaporin-4 (AQP4-IgG) in mice. AQP4-IgG was cloned from a patient with neuromyelitis optica spectrum disorder (NMOSD), an autoimmune disease that can affect women of childbearing age. We found that embryonic radial glia cells in neocortex express AQP4. These cells are critical for blood vessel and BBB formation through modulation of the WNT signaling pathway. Male fetuses exposed to AQP4-IgG had abnormal cortical vasculature and lower expression of WNT signaling molecules Wnt5a and Wnt7a. Positron emission tomography of adult male mice exposed in utero to AQP4-IgG revealed increased blood flow and BBB leakiness in the entorhinal cortex. Adult male mice exposed in utero to AQP4-IgG had abnormal cortical vessels, fewer dendritic spines in pyramidal and stellate neurons, and more S100β+ astrocytes in the entorhinal cortex. Behaviorally, they showed impairments in the object-place memory task. Neural recordings indicated that their grid cell system, within the medial entorhinal cortex, did not map the local environment appropriately. Collectively, these data implicate in utero binding of AQP4-IgG to radial glia cells as a mechanism for alterations of the developing male brain and adds NMOSD to the conditions in which maternal IgG may cause persistent brain dysfunction in offspring.
Collapse
Affiliation(s)
- Simone Mader
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
- Institute of Clinical Neuroimmunology, Biomedical Center of the Ludwig Maximilian University of Munich, Munich 82152, Germany
| | - Lior Brimberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Joshua J. Strohl
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Alexandre Bonnin
- Department of Physiology and Neurosciences, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Joseph Carrión
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Delcora Campbell
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Tomás S. Huerta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Andrea La Bella
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Roseann Berlin
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Stephen L. Dewey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Matthew Hellman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - David Eidelberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, 11000, Serbia
- Department of Neurology, University of North Carolina, School of Medicine, Chapel Hill, NC 27517, USA
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, 11000, Serbia
| | - Jeffrey L. Bennett
- Department of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Denver, School of Medicine, Denver, CO 80045, USA
| | - Bruce T. Volpe
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| | - Patricio T. Huerta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Betty Diamond
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY 11030, USA
| |
Collapse
|
10
|
Mechanism of Zn 2+ and Ca 2+ Binding to Human S100A1. Biomolecules 2021; 11:biom11121823. [PMID: 34944467 PMCID: PMC8699212 DOI: 10.3390/biom11121823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
S100A1 is a member of the S100 family of small ubiquitous Ca2+-binding proteins, which participates in the regulation of cell differentiation, motility, and survival. It exists as homo- or heterodimers. S100A1 has also been shown to bind Zn2+, but the molecular mechanisms of this binding are not yet known. In this work, using ESI-MS and ITC, we demonstrate that S100A1 can coordinate 4 zinc ions per monomer, with two high affinity (KD~4 and 770 nm) and two low affinity sites. Using competitive binding experiments between Ca2+ and Zn2+ and QM/MM molecular modeling we conclude that Zn2+ high affinity sites are located in the EF-hand motifs of S100A1. In addition, two lower affinity sites can bind Zn2+ even when the EF-hands are saturated by Ca2+, resulting in a 2Ca2+:S100A1:2Zn2+ conformer. Finally, we show that, in contrast to calcium, an excess of Zn2+ produces a destabilizing effect on S100A1 structure and leads to its aggregation. We also determined a higher affinity to Ca2+ (KD~0.16 and 24 μm) than was previously reported for S100A1, which would allow this protein to function as a Ca2+/Zn2+-sensor both inside and outside cells, participating in diverse signaling pathways under normal and pathological conditions.
Collapse
|
11
|
S100B dysregulation during brain development affects synaptic SHANK protein networks via alteration of zinc homeostasis. Transl Psychiatry 2021; 11:562. [PMID: 34741005 PMCID: PMC8571423 DOI: 10.1038/s41398-021-01694-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are caused by a combination of genetic predisposition and nongenetic factors. Among the nongenetic factors, maternal immune system activation and zinc deficiency have been proposed. Intriguingly, as a genetic factor, copy-number variations in S100B, a pro-inflammatory damage-associated molecular pattern (DAMP), have been associated with ASD, and increased serum S100B has been found in ASD. Interestingly, it has been shown that increased S100B levels affect zinc homeostasis in vitro. Thus, here, we investigated the influence of increased S100B levels in vitro and in vivo during pregnancy in mice regarding zinc availability, the zinc-sensitive SHANK protein networks associated with ASD, and behavioral outcomes. We observed that S100B affects the synaptic SHANK2 and SHANK3 levels in a zinc-dependent manner, especially early in neuronal development. Animals exposed to high S100B levels in utero similarly show reduced levels of free zinc and SHANK2 in the brain. On the behavioral level, these mice display hyperactivity, increased stereotypic and abnormal social behaviors, and cognitive impairment. Pro-inflammatory factors and zinc-signaling alterations converge on the synaptic level revealing a common pathomechanism that may mechanistically explain a large share of ASD cases.
Collapse
|
12
|
Du J, Yi M, Zhou F, He W, Yang A, Qiu M, Huang H. S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 2021; 14:154. [PMID: 34615523 PMCID: PMC8496084 DOI: 10.1186/s13041-021-00865-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Studies on the development of central nervous system (CNS) primarily rely on the use of specific molecular markers for different types of neural cells. S100B is widely being used as a specific marker for astrocytes in the CNS. However, the specificity of its expression in astrocyte lineage has not been systematically investigated and thus has remained a lingering issue. In this study, we provide several lines of molecular and genetic evidences that S100B is expressed in both protoplasmic astrocytes and myelinating oligodendrocytes. In the developing spinal cord, S100B is first expressed in the ventral neuroepithelial cells, and later in ALDH1L1+/GS+ astrocytes in the gray matter. Meanwhile, nearly all the S100B+ cells in the white matter are SOX10+/MYRF+ oligodendrocytes. Consistent with this observation, S100B expression is selectively lost in the white matter in Olig2-null mutants in which oligodendrocyte progenitor cells (OPCs) are not produced, and dramatically reduced in Myrf-conditional knockout mutants in which OPCs fail to differentiate. Similar expression patterns of S100B are observed in the developing forebrain. Based on these molecular and genetic studies, we conclude that S100B is not a specific marker for astrocyte lineage; instead, it marks protoplasmic astrocytes in the gray matter and differentiating oligodendrocytes.
Collapse
Affiliation(s)
- Junqing Du
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Min Yi
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang Zhou
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanjun He
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Aifen Yang
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Wartchow KM, Rodrigues L, Swierzy I, Buchfelder M, de Souza DO, Gonçalves CA, Kleindienst A. Amyloid-β Processing in Aged S100B Transgenic Mice Is Sex Dependent. Int J Mol Sci 2021; 22:ijms221910823. [PMID: 34639161 PMCID: PMC8509484 DOI: 10.3390/ijms221910823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Leticia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Izabela Swierzy
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Diogo Onofre de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
- Correspondence:
| |
Collapse
|
14
|
Intrauterine hyperglycemia impairs memory across two generations. Transl Psychiatry 2021; 11:434. [PMID: 34417446 PMCID: PMC8379206 DOI: 10.1038/s41398-021-01565-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Studies on humans and animals suggest associations between gestational diabetes mellitus (GDM) with increased susceptibility to develop neurological disorders in offspring. However, the molecular mechanisms underpinning the intergenerational effects remain unclear. Using a mouse model of diabetes during pregnancy, we found that intrauterine hyperglycemia exposure resulted in memory impairment in both the first filial (F1) males and the second filial (F2) males from the F1 male offspring. Transcriptome profiling of F1 and F2 hippocampi revealed that differentially expressed genes (DEGs) were enriched in neurodevelopment and synaptic plasticity. The reduced representation bisulfite sequencing (RRBS) of sperm in F1 adult males showed that the intrauterine hyperglycemia exposure caused altered methylated modification of F1 sperm, which is a potential epigenetic mechanism for the intergenerational neurocognitive effects of GDM.
Collapse
|
15
|
Buatois A, Gerlai R. Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge? Front Behav Neurosci 2020; 14:570704. [PMID: 33390911 PMCID: PMC7773606 DOI: 10.3389/fnbeh.2020.570704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Spatial learning and memory have been studied for several decades. Analyses of these processes pose fundamental scientific questions but are also relevant from a biomedical perspective. The cellular, synaptic and molecular mechanisms underlying spatial learning have been intensively investigated, yet the behavioral mechanisms/strategies in a spatial task still pose unanswered questions. Spatial learning relies upon configural information about cues in the environment. However, each of these cues can also independently form part of an elemental association with the specific spatial position, and thus spatial tasks may be solved using elemental (single CS and US association) learning. Here, we first briefly review what we know about configural learning from studies with rodents. Subsequently, we discuss the pros and cons of employing a relatively novel laboratory organism, the zebrafish in such studies, providing some examples of methods with which both elemental and configural learning may be explored with this species. Last, we speculate about future research directions focusing on how zebrafish may advance our knowledge. We argue that zebrafish strikes a reasonable compromise between system complexity and practical simplicity and that adding this species to the studies with laboratory rodents will allow us to gain a better understanding of both the evolution of and the mechanisms underlying spatial learning. We conclude that zebrafish research will enhance the translational relevance of our findings.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Fernández-Blanco Á, Dierssen M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int J Mol Sci 2020; 21:E9039. [PMID: 33261169 PMCID: PMC7730506 DOI: 10.3390/ijms21239039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.
Collapse
Affiliation(s)
- Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
17
|
|
18
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
19
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Putra M, Sharma S, Gage M, Gasser G, Hinojo-Perez A, Olson A, Gregory-Flores A, Puttachary S, Wang C, Anantharam V, Thippeswamy T. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis 2019; 133:104443. [PMID: 30940499 DOI: 10.1016/j.nbd.2019.03.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in <24 h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such a difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10-16d and 28-34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA exposure, after controlling the acute symptoms, to prevent mortality and some of the long-term neurotoxicity parameters such as epileptiform spiking, SRS, neurodegeneration, reactive gliosis in some brain regions, and certain key proinflammatory cytokines and chemokine.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Andy Hinojo-Perez
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Ashley Olson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Adriana Gregory-Flores
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
21
|
Chen S, Lin M, Tsai J, He P, Luo W, Herschman H, Li H. EP 4 Antagonist-Elicited Extracellular Vesicles from Mesenchymal Stem Cells Rescue Cognition/Learning Deficiencies by Restoring Brain Cellular Functions. Stem Cells Transl Med 2019; 8:707-723. [PMID: 30891948 PMCID: PMC6591556 DOI: 10.1002/sctm.18-0284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Adult brains have limited regenerative capacity. Consequently, both brain damage and neurodegenerative diseases often cause functional impairment for patients. Mesenchymal stem cells (MSCs), one type of adult stem cells, can be isolated from various adult tissues. MSCs have been used in clinical trials to treat human diseases and the therapeutic potentials of the MSC‐derived secretome and extracellular vesicles (EVs) have been under investigation. We found that blocking the prostaglandin E2/prostaglandin E2 receptor 4 (PGE2/EP4) signaling pathway in MSCs with EP4 antagonists increased EV release and promoted the sorting of specific proteins, including anti‐inflammatory cytokines and factors that modify astrocyte function, blood–brain barrier integrity, and microglial migration into the damaged hippocampus, into the EVs. Systemic administration of EP4 antagonist‐elicited MSC EVs repaired deficiencies of cognition, learning and memory, inhibited reactive astrogliosis, attenuated extensive inflammation, reduced microglial infiltration into the damaged hippocampus, and increased blood–brain barrier integrity when administered to mice following hippocampal damage. stem cells translational medicine2019
Collapse
Affiliation(s)
- Shih‐Yin Chen
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Meng‐Chieh Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Jia‐Shiuan Tsai
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Pei‐Lin He
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Wen‐Ting Luo
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Harvey Herschman
- Department of Molecular & Medical PharmacologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Hua‐Jung Li
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| |
Collapse
|
22
|
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ, Vezzani A. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 2018; 72:14-21. [PMID: 29031614 DOI: 10.1016/j.bbi.2017.10.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Approximately 30% of epilepsy patients experience seizures that are not controlled by the available drugs. Moreover, these drugs provide mainly a symptomatic treatment since they do not interfere with the disease's mechanisms. A mechanistic approach to the discovery of key pathogenic brain modifications causing seizure onset, recurrence and progression is instrumental for designing novel and rationale therapeutic interventions that could modify the disease course or prevent its development. In this regard, increasing evidence shows that neuroinflammation is a pathogenic factor in drug-resistant epilepsies. The High Mobility Group Box 1 (HMGB1)/Toll-like receptor 4 axis is a key initiator of neuroinflammation following brain injuries leading to epilepsy, and its activation contributes to seizure mechanisms in animal models. Recent findings have shown dynamic changes in HMGB1 and its isoforms in the brain and blood of animals exposed to acute brain injuries and undergoing epileptogenesis, and in surgically resected epileptic foci in humans. HMGB1 isoforms reflect different pathophysiological processes, and the disulfide isoform, which is generated in the brain during oxidative stress, is implicated in seizures, cell loss and cognitive dysfunctions. Interfering with disulfide HMGB1-activated cell signaling mediates significant therapeutic effects in epilepsy models. Moreover, both clinical and experimental data suggest that HMGB1 isoforms may serve as mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy. These novel findings suggest that the HMGB1 system could be targeted to prevent seizure generation and may provide clinically useful prognostic biomarkers which may also predict the patient's response to therapy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Gaetano Terrone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Alessia Salamone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Federica Frigerio
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Silvia Balosso
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, The Queens Medical Research Institute, Ten University of Edinburgh, Edinburgh, UK
| | - Annamaria Vezzani
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy.
| |
Collapse
|
23
|
Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell 2018; 174:59-71.e14. [PMID: 29804835 DOI: 10.1016/j.cell.2018.05.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.
Collapse
|
24
|
Kong XZ, Song Y, Zhen Z, Liu J. Genetic Variation in S100B Modulates Neural Processing of Visual Scenes in Han Chinese. Cereb Cortex 2018; 27:1326-1336. [PMID: 26733530 DOI: 10.1093/cercor/bhv322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial navigation is a crucial ability for living. Previous animal studies have shown that the S100B gene is causally related to spatial navigation performance in mice. However, the genetic factors influencing human navigation and its neural substrates remain unclear. Here, we provided the first evidence that the S100B gene modulates neural processing of navigationally relevant scenes in humans. First, with a novel protocol, we demonstrated that the spatial pattern of S100B gene expression in postmortem brains was associated with brain activation pattern for spatial navigation in general, and for scene processing in particular. Further, in a large fMRI cohort of healthy adults of Han Chinese (N = 202), we found that S100B gene polymorphisms modulated scene selectivity in the retrosplenial cortex (RSC) and parahippocampal place area. Finally, the serum levels of S100B protein mediated the association between S100B gene polymorphism and scene selectivity in the RSC. Our study takes the first step toward understanding the neurogenetic mechanism of human spatial navigation and suggests a novel approach to discover candidate genes modulating cognitive functions.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Zonglei Zhen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Jia Liu
- School of Psychology.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Kafkafi N, Agassi J, Chesler EJ, Crabbe JC, Crusio WE, Eilam D, Gerlai R, Golani I, Gomez-Marin A, Heller R, Iraqi F, Jaljuli I, Karp NA, Morgan H, Nicholson G, Pfaff DW, Richter SH, Stark PB, Stiedl O, Stodden V, Tarantino LM, Tucci V, Valdar W, Williams RW, Würbel H, Benjamini Y. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Rev 2018; 87:218-232. [PMID: 29357292 PMCID: PMC6071910 DOI: 10.1016/j.neubiorev.2018.01.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
The scientific community is increasingly concerned with the proportion of
published “discoveries” that are not replicated in subsequent
studies. The field of rodent behavioral phenotyping was one of the first to
raise this concern, and to relate it to other methodological issues: the complex
interaction between genotype and environment; the definitions of behavioral
constructs; and the use of laboratory mice and rats as model species for
investigating human health and disease mechanisms. In January 2015, researchers
from various disciplines gathered at Tel Aviv University to discuss these
issues. The general consensus was that the issue is prevalent and of concern,
and should be addressed at the statistical, methodological and policy levels,
but is not so severe as to call into question the validity and the usefulness of
model organisms as a whole. Well-organized community efforts, coupled with
improved data and metadata sharing, have a key role in identifying specific
problems and promoting effective solutions. Replicability is closely related to
validity, may affect generalizability and translation of findings, and has
important ethical implications.
Collapse
Affiliation(s)
| | | | | | - John C Crabbe
- Oregon Health & Science University, and VA Portland Health Care System, United States
| | | | | | | | | | | | | | | | | | - Natasha A Karp
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - William Valdar
- University of North Carolina at Chapel Hill, United States
| | | | | | | |
Collapse
|
26
|
Hagmeyer S, Cristóvão JS, Mulvihill JJE, Boeckers TM, Gomes CM, Grabrucker AM. Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Front Mol Neurosci 2018; 10:456. [PMID: 29386995 PMCID: PMC5776125 DOI: 10.3389/fnmol.2017.00456] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal metal ions such as zinc are essential for brain function. In particular synaptic processes are tightly related to metal and protein homeostasis, for example through extracellular metal-binding proteins. One such protein is neuronal S100B, a calcium and zinc binding damage-associated molecular pattern (DAMP), whose chronic upregulation is associated with aging, Alzheimer’s disease (AD), motor neuron disease and traumatic brain injury (TBI). Despite gained insights on the structure of S100B, it remains unclear how its calcium and zinc binding properties regulate its function on cellular level. Here we report a novel role of S100B in trace metal homeostasis, in particular the regulation of zinc levels in the brain. Our results show that S100B at increased extracellular levels is not toxic, persists at high levels, and is taken up into neurons, as shown by cell culture and biochemical analysis. Combining protein bioimaging and zinc quantitation, along with a zinc-binding impaired S100B variant, we conclude that S100B effectively scavenges zinc ions through specific binding, resulting in a redistribution of the intracellular zinc pool. Our results indicate that scavenging of zinc by increased levels of S100B affects calcium levels in vitro. Thereby S100B is able to mediate the cross talk between calcium and zinc homeostasis. Further, we investigated a possible new neuro-protective role of S100B in excitotoxicity via its effects on calcium and zinc homeostasis. Exposure of cells to zinc-S100B but not the zinc-binding impaired S100B results in an inhibition of excitotoxicity. We conclude that in addition to its known functions, S100B acts as sensor and regulator of elevated zinc levels in the brain and this metal-buffering activity is tied to a neuroprotective role.
Collapse
Affiliation(s)
- Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany.,Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Joana S Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Delaney C, Campbell M. The blood brain barrier: Insights from development and ageing. Tissue Barriers 2017; 5:e1373897. [PMID: 28956691 PMCID: PMC5788423 DOI: 10.1080/21688370.2017.1373897] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
The blood brain barrier is a necessity for cerebral homeostasis and response to environmental insult, thus loss in functionality with age creates opportunities for disease to arise in the aged brain. Understanding how the barrier is developed and maintained throughout the earlier years of adult life can identify key processes that may have beneficial applications in the restoration of the aged brain. With an unprecedented increasing global aged population, the prevention and treatment of age-associated disorders has become a rising healthcare priority demanding novel approaches for the development of therapeutic strategies. The aging cardiovascular system has long been recognised to be a major factor in age-associated diseases such as stroke, atherosclerosis and cardiac arrest. Changes in the highly specialised cerebral vasculature may similarly drive neurodegenerative and neuropsychiatric disease.
Collapse
Affiliation(s)
- Conor Delaney
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Nakamoto K, Aizawa F, Kinoshita M, Koyama Y, Tokuyama S. Astrocyte Activation in Locus Coeruleus Is Involved in Neuropathic Pain Exacerbation Mediated by Maternal Separation and Social Isolation Stress. Front Pharmacol 2017; 8:401. [PMID: 28701953 PMCID: PMC5487383 DOI: 10.3389/fphar.2017.00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
Our previous studies demonstrated that emotional dysfunction associated with early life stress exacerbated nerve injury-induced mechanical allodynia. Sex differences were observed in several anxiety tests, but not in mechanical allodynia. To elucidate the mechanism underlying these findings, we have now investigated the involvement of astrocytes in emotional dysfunction and enhancement of nerve injury-induced mechanical allodynia in mice subjected to maternal separation combined with social isolation (MSSI) as an early life stress. We measured expression of glial fibrillary acidic protein (GFAP), an astrocyte maker, in each brain area by immunohistochemistry. GFAP expression in the locus coeruleus (LC) of female, but not of male mice, significantly increased after MSSI, corresponding to the behavioral changes at 7 and 12 weeks of age. Lipopolysaccharide (LPS)-treated astrocyte-derived supernatant was administered to local brain regions, including LC. Intra-LC injection of conditioned medium from cultured astrocytes treated with LPS increased GFAP expression, anxiety-like behavior and mechanical allodynia in both male and female mice. Furthermore, increases in anxiety-like behavior correlated with increased mechanical allodynia. These findings demonstrate that emotional dysfunction and enhanced nerve injury-induced mechanical allodynia after exposure to MSSI are mediated, at least in part, by astrocyte activation in the LC. Male but not female mice may show resistance to MSSI stress during growth.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin UniversityKobe, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin UniversityKobe, Japan
| | - Megumi Kinoshita
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin UniversityKobe, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani UniversityOsaka, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin UniversityKobe, Japan
| |
Collapse
|
29
|
Adamsky A, Goshen I. Astrocytes in Memory Function: Pioneering Findings and Future Directions. Neuroscience 2017; 370:14-26. [PMID: 28571720 DOI: 10.1016/j.neuroscience.2017.05.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Astrocytes have been generally believed to perform mainly homeostatic and supportive functions for neurons in the central nervous system. Recently, a growing body of evidence suggests previously unrecognized and surprising functions for astrocytes, including regulation of synaptic formation, transmission and plasticity, all of which are considered as the infrastructure for information processing and memory formation and stabilization. This review discusses the involvement of astrocytes in memory functions and the possible mechanisms that may underlie it. We review the important breakthroughs obtained in this field, as well as some of the controversies that arose from the past difficulty to manipulate these cells in a cell type-specific and non-invasive manner. Finally, we present new research avenues based on the advanced tools becoming available in recent years: optogenetics and chemogenetics, and the potential ways in which these tools may further illuminate the role of astrocytes in memory processes.
Collapse
Affiliation(s)
- Adar Adamsky
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
30
|
Vezzani A, Pascente R, Ravizza T. Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions. Neurochem Res 2017; 42:2089-2098. [PMID: 28434163 DOI: 10.1007/s11064-017-2271-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022]
Abstract
The need to find measures that reliably predict the onset of epilepsy after injurious events or how the patient will respond to anti-seizure drugs led to intensive pre-clinical and clinical research to discover non-invasive biomarkers that could increase the sensitivity of existing clinical indicators. The use of experimental models of epileptogenesis and of drug-resistance is instrumental to select the most promising approaches to explore such biomarkers in the pre-clinical setting for further clinical validation. The approaches most frequently used to find clinically useful biomarkers of epileptogenesis include molecular brain imaging, EEG signal analysis and the measure of soluble molecules in biofluids which may reflect brain intrinsic events involved in epilepsy development. Among those, we focused our attention on proton magnetic resonance imaging (1H-MRS)-based analysis of astrocytic activation, and related blood biomarkers, since this cell population appears to be pivotally involved in various epileptogenesis processes triggered by differing insults. Moreover, we also investigated behavioral biomarkers by focusing on cognitive dysfunctions since this deficit represents a typical co-morbidity in epilepsy which may manifest even before the onset of spontaneous seizures. In this review article, we will report our recently published evidence supporting the utility of measuring astrocyte activation, the soluble molecules they release, and the associated cognitive deficits during epileptogenesis for early stratification of animals developing epilepsy. We will discuss the potential clinical translation of our findings for enriching the patient population in preventive clinical trials designed to study anti-epileptogenic treatments.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy.
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| |
Collapse
|
31
|
Pascente R, Frigerio F, Rizzi M, Porcu L, Boido M, Davids J, Zaben M, Tolomeo D, Filibian M, Gray WP, Vezzani A, Ravizza T. Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis 2016; 93:146-55. [PMID: 27173096 DOI: 10.1016/j.nbd.2016.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
One major unmet clinical need in epilepsy is the identification of therapies to prevent or arrest epilepsy development in patients exposed to a potential epileptogenic insult. The development of such treatments has been hampered by the lack of non-invasive biomarkers that could be used to identify the patients at-risk, thereby allowing to design affordable clinical studies. Our goal was to test the predictive value of cognitive deficits and brain astrocyte activation for the development of epilepsy following a potential epileptogenic injury. We used a model of epilepsy induced by pilocarpine-evoked status epilepticus (SE) in 21-day old rats where 60-70% of animals develop spontaneous seizures after around 70days, although SE is similar in all rats. Learning was evaluated in the Morris water-maze at days 15 and 65 post-SE, each time followed by proton magnetic resonance spectroscopy for measuring hippocampal myo-Inositol levels, a marker of astrocyte activation. Rats were video-EEG monitored for two weeks at seven months post-SE to detect spontaneous seizures, then brain histology was done. Behavioral and imaging data were retrospectively analysed in epileptic rats and compared with non-epileptic and control animals. Rats displayed spatial learning deficits within three weeks from SE. However, only epilepsy-prone rats showed accelerated forgetting and reduced learning rate compared to both rats not developing epilepsy and controls. These deficits were associated with reduced hippocampal neurogenesis. myo-Inositol levels increased transiently in the hippocampus of SE-rats not developing epilepsy while this increase persisted until spontaneous seizures onset in epilepsy-prone rats, being associated with a local increase in S100β-positive astrocytes. Neuronal cell loss was similar in all SE-rats. Our data show that behavioral deficits, together with a non-invasive marker of astrocyte activation, predict which rats develop epilepsy after an acute injury. These measures have potential clinical relevance for identifying individuals at-risk for developing epilepsy following exposure to epileptogenic insults, and consequently, for designing adequately powered antiepileptogenesis trials.
Collapse
Affiliation(s)
- Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Federica Frigerio
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Luca Porcu
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marina Boido
- Neuroscience Institute "Cavalieri Ottolenghi", Department of Neuroscience, University of Torino, Torino, Italy
| | - Joe Davids
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniele Tolomeo
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marta Filibian
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - William P Gray
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| |
Collapse
|
32
|
Sydow A, Hochgräfe K, Könen S, Cadinu D, Matenia D, Petrova O, Joseph M, Dennissen FJ, Mandelkow EM. Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathol Commun 2016; 4:17. [PMID: 26916334 PMCID: PMC4766625 DOI: 10.1186/s40478-016-0281-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Introduction Mutations of Tau are associated with several neurodegenerative disorders. Recently, the Tau mutation A152T was described as a novel risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. In vitro Tau-A152T shows a decreased binding to microtubules and a reduced tendency to form abnormal fibers. Results To study the effects of this mutation we generated a mouse model expressing human full-length Tau with this mutation (hTau40AT). At young age (2–3 months) immunohistological analysis reveals pathological Tau conformation and Tau-hyperphosphorylation combined with Tau missorting into the somatodendritic compartment of neurons. With increasing age there is Tau aggregation including co-aggregates of endogenous mouse Tau and exogenous human Tau, accompanied by loss of synapses (especially presynaptic failure) and neurons. From ~10 months onwards the mice show a prominent neuroinflammatory response as judged by activation of microglia and astrocytes. This progressive neuroinflammation becomes visible by in vivo bioluminescence imaging after crossbreeding of hTau40AT mice and Gfap-luciferase reporter mice. In contrast to other Tau-transgenic models and Alzheimer disease patients with reduced protein clearance, hTau40AT mice show a strong induction of autophagy. Although Tau-hyperphosphorylation and aggregation is also present in spinal cord and motor cortex (due to the Thy1.2 promoter), neuromotor performance is not affected. Deficits in spatial reference memory are manifest at ~16 months and are accompanied by neuronal death. Conclusions The hTau40AT mice mimic pathological hallmarks of tauopathies including a cognitive phenotype combined with pronounced neuroinflammation visible by bioluminescence. Thus the mice are suitable for mechanistic studies of Tau induced toxicity and in vivo validation of neuroprotective compounds. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0281-z) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Bluhm B, Laffer B, Hirnet D, Rothermundt M, Ambree O, Lohr C. Normal cerebellar development in S100B-deficient mice. THE CEREBELLUM 2015; 14:119-27. [PMID: 25342137 DOI: 10.1007/s12311-014-0606-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The calcium-binding protein S100B has been shown to support neuron proliferation, migration and neurite growth in vitro, while the significance of S100B for neuronal development in vivo is controversial. We have investigated the effect of S100B deficiency on cerebellar development in S100B knockout mice at an age of 5 and 10 days after birth (P5 and P10). This time range covers important developmental steps in the cerebellum such as granule cell proliferation and migration, as well as dendritic growth of Purkinje cells. Bergmann glial cells contain a particularly high concentration of S100B and serve as scaffold for both migrating granule cells and growing Purkinje cell dendrites. This renders the postnatal cerebellum ideal as a model system to study the importance of S100B for glial and neuronal development. We measured the length of Bergmann glial processes, the width of the external granule cell layer as a measure of granule cell proliferation, the decrease in width of the external granule cell layer between P5 and P10 as a measure of granule cell migration, and the length of Purkinje cell dendrites in wild-type and S100B knockout mice. None of these parameters showed significant differences between wild-type and knockout mice. In addition, wild-type and knockout mice performed equally in locomotor behaviour tests. The results indicate that S100B-deficient mice have normal development of the cerebellum and no severe impairment of motor function.
Collapse
Affiliation(s)
- Björn Bluhm
- Division of Neurophysiology, Biocenter Grindel, Martin-Luther-King-Pl. 3, D-20146, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Kabadi SV, Stoica BA, Zimmer DB, Afanador L, Duffy KB, Loane DJ, Faden AI. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:2010-20. [PMID: 26154869 PMCID: PMC4671122 DOI: 10.1038/jcbfm.2015.165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration. We examined the effects of S100B inhibition in a controlled cortical impact model, using S100B knockout mice or administration of neutralizing S100B antibody. Both interventions significantly reduced TBI-induced lesion volume, improved retention memory function, and attenuated microglial activation. The neutralizing antibody also significantly reduced sensorimotor deficits and improved neuronal survival in the cortex. However, S100B did not alter microglial activation in BV2 cells or primary microglial cultures stimulated by lipopolysaccharide or interferon gamma. Further, proximity ligation assays did not support direct interaction in the brain between S100B and AGER following TBI. Future studies are needed to elucidate specific pathways underlying S100B-mediated neuroinflammatory actions after TBI. Our results strongly implicate S100B in TBI-induced neuroinflammation, cell loss, and neurologic dysfunction, thereby indicating that it is a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A Stoica
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Danna B Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauriaselle Afanador
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara B Duffy
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J Loane
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I Faden
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Astrocyte-mediated metaplasticity in the hippocampus: Help or hindrance? Neuroscience 2015; 309:113-24. [DOI: 10.1016/j.neuroscience.2015.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
36
|
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105:40-53. [PMID: 23850597 DOI: 10.1016/j.nlm.2013.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
Abstract
We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
37
|
S100B gene polymorphisms predict prefrontal spatial function in both schizophrenia patients and healthy individuals. Schizophr Res 2012; 134:89-94. [PMID: 22019077 DOI: 10.1016/j.schres.2011.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 01/27/2023]
Abstract
Animal studies have strongly implicated a role of S100B in spatial ability and our recent study of humans found that S100B gene polymorphisms (rs9722, rs1051169, and rs2839357) were associated with schizophrenia patients' spatial ability (as assessed by a block design task and a mental rotation task). In this study, we explored the associations between these and three additional SNPs in S100B and prefrontal functions (working memory and executive control) among 434 schizophrenia patients and 412 healthy controls. Results showed that, for both schizophrenia patients and healthy controls, two SNPs were significantly associated with prefrontal functions in the spatial domain (P value threshold was set at 0.014 after correcting for multiple comparisons), with the AA genotype of rs9722 and the GG genotype of rs2839357 linked to poorer performance. No SNP was associated with prefontal functions in the verbal domain (all Ps >0.05). These results extend our previous study and further confirm the important roles of the S100B gene in spatial abilities.
Collapse
|
38
|
Pustylnyak VO, Lisachev PD, Shtark MB, Epstein OI. Regulation of S100B gene in rat hippocampal CA1 area during long term potentiation. Brain Res 2011; 1394:33-9. [DOI: 10.1016/j.brainres.2011.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/29/2022]
|
39
|
Risk variants in the S100B gene, associated with elevated S100B levels, are also associated with visuospatial disability of schizophrenia. Behav Brain Res 2011; 217:363-8. [DOI: 10.1016/j.bbr.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 01/22/2023]
|
40
|
Abstract
The zebrafish has been prominently utilized in developmental biology for the past three decades and numerous genetic tools have been developed for it. Due to the accumulated genetic knowledge the zebrafish has now been considered an excellent research tool in other disciplines of biology too, including behavioral neuroscience and behavior genetics. Given the complexity of the vertebrate brain in general and the large number of human brain disorders whose mechanisms remain mainly unmapped in particular, there is a substantial need for appropriate laboratory research organisms that may be utilized to model such diseases and facilitate the analysis of their mechanisms. The zebrafish may have a bright future in this research field. It offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and it is prolific). These features have made zebrafish an excellent choice, for example, for large scale mutation and drug screening. Such approaches may have a chance to tackle the potentially large number of molecular targets and mechanisms involved in complex brain disorders. However, although promising, the zebrafish is admittedly a novel research tool and only few empirical examples exist to support this claim. In this chapter, first I briefly review some of the rapidly evolving genetic methods available for zebrafish. Second, I discuss some promising examples for how zebrafish have been used to model and analyze molecular mechanisms of complex brain disorders. Last, I present some recently developed zebrafish behavioral paradigms that may have relevance for a spectrum of complex human brain disorders including those associated with abnormalities of learning and memory, fear and anxiety, and social behavior. Although at this point co-application of the genetics and behavioral approaches is rare with zebrafish, I argue that the rapid accumulation of knowledge in both of these disciplines will make zebrafish a prominent research tool for the genetic analysis of complex brain disorders.
Collapse
|
41
|
Kim HSR, Seto-Ohshima A, Nishiyama H, Itohara S. Normal delay eyeblink conditioning in mice devoid of astrocytic S100B. Neurosci Lett 2010; 489:148-53. [PMID: 21146588 DOI: 10.1016/j.neulet.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
S100B is a small calcium binding protein synthesized and secreted mostly by astrocytes. Mice devoid of S100B (S100B-KO) develop without detectable anatomic abnormalities of the brain, but exhibit enhanced hippocampal long-term potentiation and enhanced performance in hippocampus-dependent learning and memory tasks, indicating that S100B has a crucial role in hippocampal neuronal plasticity. In the present study, we examined whether S100B has a similar role in the cerebellar regions, because Bergmann glia, a specialized subset of astrocytes in the cerebellar cortex, express a particularly large amount of S100B under physiologic conditions. Unlike in the hippocampus-dependent tasks, S100B-KO mice were indistinguishable from wild-type mice in both cerebellum-dependent motor coordination and delay eyeblink conditioning, a well-established paradigm for cerebellum-dependent learning and memory. These results suggest that S100B has differential roles in the hippocampus and cerebellum.
Collapse
Affiliation(s)
- Hye-Soo R Kim
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | | | | |
Collapse
|
42
|
A Comparison of the Dynamics of S100B, S100A1, and S100A6 mRNA Expression in Hippocampal CA1 Area of Rats during Long-Term Potentiation and after Low-Frequency Stimulation. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20862335 PMCID: PMC2939401 DOI: 10.1155/2010/720958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/27/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023] Open
Abstract
The interest in tissue- and cell-specific S100 proteins physiological roles in the brain remains high. However, necessary experimental data for the assessment of their dynamics in one of the most important brain activities, its plasticity, is not sufficient. We studied the expression of S100B, S100A1, and S100A6 mRNA in the subfield CA1 of rat hippocampal slices after tetanic and low-frequency stimulation by real-time PCR. Within 30 min after tetanization, a 2-4 fold increase of the S100B mRNA level was observed as compared to the control (intact slices) or to low-frequency stimulation. Subsequently, the S100B mRNA content gradually returned to baseline. The amount of S100A1 mRNA gradually increased during first hour and maintained at the achieved level in the course of second hour after tetanization. The level of S100A6 mRNA did not change following tetanization or low-frequency stimulation.
Collapse
|
43
|
Gerlai R. High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 2010; 15:2609-22. [PMID: 20428068 PMCID: PMC6257226 DOI: 10.3390/molecules15042609] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 01/26/2023] Open
Abstract
The zebrafish has been in the forefront of developmental biology for three decades and has become a favorite of geneticists. Due to the accumulated genetic knowledge and tools developed for the zebrafish it is gaining popularity in other disciplines, including neuroscience. The zebrafish offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and prolific). Such features make zebrafish an excellent choice for high throughput mutation and drug screening. For the identification of mutation or drug induced alteration of brain function arguably the best methods are behavioral test paradigms. This review does not present experimental examples for the identification of particular genes or drugs. Instead it describes how behavioral screening methods may enable one to find functional alterations in the vertebrate brain. Furthermore, the review is not comprehensive. The behavioral test examples presented are biased according to the personal interests of the author. They will cover research areas including learning and memory, fear and anxiety, and social behavior. Nevertheless, the general principles will apply to other functional domains and should represent a snapshot of the rapidly evolving behavioral screening field with zebrafish.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Rm 3035, Ontario, Canada.
| |
Collapse
|
44
|
Sakatani S, Yamada K, Homma C, Munesue S, Yamamoto Y, Yamamoto H, Hirase H. Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 2009; 4:e8309. [PMID: 20016851 PMCID: PMC2788702 DOI: 10.1371/journal.pone.0008309] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/23/2009] [Indexed: 12/03/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors. In diabetes and Alzheimer's disease, pathological progression is accelerated by activation of RAGE. However, how RAGE influences gross behavioral activity patterns in basal condition has not been addressed to date. In search for a functional role of RAGE in normal mice, a series of standard behavioral tests were performed on adult RAGE knockout (KO) mice. We observed a solid increase of home cage activity in RAGE KO. In addition, auditory startle response assessment resulted in a higher sensitivity to auditory signal and increased prepulse inhibition in KO mice. There were no significant differences between KO and wild types in behavioral tests for spatial memory and anxiety, as tested by Morris water maze, classical fear conditioning, and elevated plus maze. Our results raise a possibility that systemic therapeutic treatments to occlude RAGE activation may have adverse effects on general activity levels or sensitivity to auditory stimuli.
Collapse
Affiliation(s)
- Seiichi Sakatani
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kazuyuki Yamada
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Chihiro Homma
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hajime Hirase
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama, Japan
- * E-mail:
| |
Collapse
|
45
|
Yang L, Li F, Zhang H, Ge W, Mi C, Sun R, Liu C. Astrocyte activation and memory impairment in the repetitive febrile seizures model. Epilepsy Res 2009; 86:209-20. [DOI: 10.1016/j.eplepsyres.2009.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
46
|
Blackburn D, Sargsyan S, Monk PN, Shaw PJ. Astrocyte function and role in motor neuron disease: A future therapeutic target? Glia 2009; 57:1251-64. [DOI: 10.1002/glia.20848] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Abstract
Most molecular and cellular studies of cognitive function have focused on either normal or pathological states, but recent research with transgenic mice has started to address the mechanisms of enhanced cognition. These results point to key synaptic and nuclear signalling events that can be manipulated to facilitate the induction or increase the stability of synaptic plasticity, and therefore enhance the acquisition or retention of information. Here, we review these surprising findings and explore their implications to both mechanisms of learning and memory and to ongoing efforts to develop treatments for cognitive disorders. These findings represent the beginning of a fundamental new approach in the study of enhanced cognition.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
48
|
|
49
|
Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 2009; 56:1463-77. [PMID: 18615636 DOI: 10.1002/glia.20712] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes have an important role in synaptic formation and function but how astrocytic processes become associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum. We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. In addition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Rac1 and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result in decreased coverage of the spine. Furthermore, we found that areas in which BG expressed dn-Rac1, and therefore had a lower level of synaptic ensheathment, showed an overall increase in synapse number. These analyses reveal how BG processes grow to surround synaptic structures, elucidate the importance of BG process structure for proper development of synaptic ensheathment, and reveal a role for ensheathment in synapse formation.
Collapse
Affiliation(s)
- Jocelyn J Lippman
- Department of Neuroscience, Brown University, Box G-LN, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
50
|
Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 2008; 28:10928-36. [PMID: 18945900 DOI: 10.1523/jneurosci.3693-08.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
S100B is the principal calcium-binding protein of astrocytes and known to be secreted to extracellular space. Although secreted S100B has been reported to promote neurite extension and cell survival via its receptor [receptor for advanced glycation end products (RAGE)], effects of extracellular S100B on neural activity have been mostly unexplored. Here, we demonstrate that secreted S100B enhances kainate-induced gamma oscillations. Local infusion of S100B in S100B(-/-) mice enhanced hippocampal kainate-induced gamma oscillations in vivo. In a complementary set of experiments, local application of anti-S100B antibody in wild-type mice attenuated the gamma oscillations. Both results indicate that the presence of extracellular S100B enhances the kainate-induced gamma oscillations. In acutely isolated hippocampal slices, kainate application increased S100B secretion in a neural-activity-dependent manner. Further pharmacological experiments revealed that S100B secretion was critically dependent on presynaptic release of neurotransmitter and activation of metabotropic glutamate receptor 3. Moreover, the kainate-induced gamma oscillations were attenuated by the genetic deletion or antibody blockade of RAGE in vivo. These results suggest RAGE activation by S100B enhances the gamma oscillations. Together, we propose a novel pathway of neuron-glia communications--astrocytic release of S100B modulates neural network activity through RAGE activation.
Collapse
|