1
|
Jiang M, Yan W, Zhang Y, Lu Z, Lu T, Zhang D, Li J, Wang L. Phosphodiesterase and psychiatric disorders: a two-sample Mendelian randomization study. J Transl Med 2023; 21:560. [PMID: 37605207 PMCID: PMC10441701 DOI: 10.1186/s12967-023-04368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Phosphodiesterases (PDEs) have been associated with psychiatric disorders in observational studies; however, the causality of associations remains unestablished. METHODS Specifically, cyclic nucleotide PDEs were collected from genome-wide association studies (GWASs), including PDEs obtained by hydrolyzing both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) (PDE1A, PDE2A, and PDE3A), specific to cGMP (PDE5A, PDE6D, and PDE9A) and cAMP (PDE4D and PDE7A). We performed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the relationship between PDEs and nine psychiatric disorders. The inverse-variance-weighted (IVW) method, MR-Egger, and weighted median were used to estimate causal effects. The Cochran's Q test, MR-Egger intercept test, MR Steiger test, leave-one-out analyses, funnel plot, and MR pleiotropy residual sum and outlier (MR-PRESSO) were used for sensitivity analyses. RESULTS The PDEs specific to cAMP were associated with higher-odds psychiatric disorders. For example, PDE4D and schizophrenia (SCZ) (odds ratios (OR) = 1.0531, PIVW = 0.0414), as well as major depressive disorder (MDD) (OR = 1.0329, PIVW = 0.0011). Similarly, PDE7A was associated with higher odds of attention-deficit/hyperactivity disorder (ADHD) (OR = 1.0861, PIVW = 0.0038). Exploring specific PDE subtypes and increase intracellular cAMP levels can inform the development of targeted interventions. We also observed PDEs (which hydrolyzes both cAMP and cGMP) was associated with psychiatric disorders [OR of PDE1A was 1.0836 for autism spectrum disorder; OR of PDE2A was 0.8968 for Tourette syndrome (TS) and 0.9449 for SCZ; and OR of PDE3A was 0.9796 for MDD; P < 0.05]. Furthermore, psychiatric disorders also had some causal effects on PDEs [obsessive-compulsive disorder on increased PDE6D and decreased PDE2A and PDE4D; anorexia nervosa on decreased PDE9A]. The results of MR were found to be robust using multiple sensitivity analysis. CONCLUSIONS In this study, potential causal relationships between plasma PDE proteins and psychiatric disorders were established. Exploring other PDE subtypes not included in this study could provide a more comprehensive understanding of the role of PDEs in psychiatric disorders. The development of specific medications targeting PDE subtypes may be a promising therapeutic approach for treating psychiatric disorders.
Collapse
Affiliation(s)
- Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuyanan Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Zhe Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| |
Collapse
|
2
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
3
|
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Int J Mol Sci 2022; 23:7048. [PMID: 35806059 PMCID: PMC9266933 DOI: 10.3390/ijms23137048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
4
|
Rathi A, Kumar V, Sundar D. Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors. J Biomol Struct Dyn 2022; 41:2108-2117. [PMID: 35060432 DOI: 10.1080/07391102.2022.2028679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Medicinal herbs have been used as traditional medicines for centuries. The molecular mechanism of action of their bioactive molecules against various diseases or therapeutic targets is still being explored. Here, the active compounds (withanolides) of a well-known Indian medicinal herb, Ashwagandha (Withania somnifera), have been studied for their most potential therapeutic targets and their mechanism of action using ligand-based screening and receptor-based approaches. Ligand-based screening predicted the six top therapeutic targets, namely, Protein kinase C alpha (PRKCA), Protein kinase C delta (PRKCD), Protein kinase C epsilon (PRKCE), Androgenic Receptor (AR), Cycloxygenase-2 (PTGS-2) and Phosphodiesterase-4D (PDE4D). Further, when these predictions were validated using receptor-based studies, i.e. molecular docking, molecular dynamics simulation and free energy calculations, it was found that PDE4D was the most potent target for four withanolides, namely, Withaferin-A, 17-Hydroxywithaferin-A, 27-Hydroxywithanone and Withanolide-R. These compounds had a better binding affinity and similar interactions as that of an already known inhibitor (Zardaverine) of PDE4D. These results warrant further in-vitro and in-vivo investigations to examine their therapeutic potential as an inhibitor of PDE4D.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Rathi
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Morriello GJ, Dwyer MP, Chen Y, Ginetti AT, Xu S, Lu J, Abeywickrema P, Wang D, Crespo A, Cabalu TD, Wilson JE, Stachel SJ, Paone DV, Sinz C. Discovery of novel N-1 substituted pyrazolopyrimidinones as potent, selective PDE2 inhibitors. Bioorg Med Chem Lett 2021; 44:128082. [PMID: 33991626 DOI: 10.1016/j.bmcl.2021.128082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
A focused SAR study was conducted on a series of N1-substituted pyrazolopyrimidinone PDE2 inhibitors to reveal compounds with excellent potency and selectivity. The series was derived from previously identified internal leads and designed to enhance steric interactions with key amino acids in the PDE2 binding pocket. Compound 26 was identified as a lead compound with excellent PDE2 selectivity and good physicochemical properties.
Collapse
Affiliation(s)
- Gregori J Morriello
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA.
| | - Michael P Dwyer
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Yili Chen
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Anthony T Ginetti
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Shimin Xu
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Jun Lu
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Pravien Abeywickrema
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Deping Wang
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Alejandro Crespo
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Tamara D Cabalu
- Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Jonathan E Wilson
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Shawn J Stachel
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Daniel V Paone
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Christopher Sinz
- Discovery Chemistry, Merck & Co., Inc., 213 E. Grand Avenue, South San Fransisco, CA 94080, USA
| |
Collapse
|
6
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
7
|
Lai B, Li M, Hu WL, Li W, Gan WB. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning. Dev Neurobiol 2018; 78:859-872. [PMID: 30022611 PMCID: PMC6158093 DOI: 10.1002/dneu.22623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two-photon microscopy to investigate the effect of a selective PDE9 inhibitor PF-04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF-04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF-04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF-04449613 treatment over 1-7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF-04449613 increases synaptic calcium activity and learning-dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Baoling Lai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Miao Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wan-Ling Hu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wei Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wen-Biao Gan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Borghans LGJM, Sambeth A, Prickaerts J, Ramaekers JG, Blokland A. The effects of the soluble guanylate cyclase stimulator riociguat on memory performance in healthy volunteers with a biperiden-induced memory impairment. Psychopharmacology (Berl) 2018; 235:2407-2416. [PMID: 29882087 PMCID: PMC6061766 DOI: 10.1007/s00213-018-4938-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/30/2018] [Indexed: 10/25/2022]
Abstract
RATIONALE After stimulation with nitric oxide, soluble guanylate cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), which stimulates an important signalling pathway for long-term potentiation (LTP). By upregulating cGMP, LTP could be stimulated and thereby enhancing memory processes. The present study investigated the effects of the sGC stimulator riociguat on cognition in healthy volunteers. Participants were pre-treated with and without biperiden, which impairs memory performance, to investigate the memory-enhancing effects of riociguat. METHODS Twenty volunteers participated in a double-blind placebo-controlled six-way crossover design with a cognitive test battery including the verbal learning task (VLT), n-back task, spatial memory test, the attention network test, and a reaction time task. Treatments were placebo and riociguat 0.5 mg, placebo and riociguat 1.0 mg, biperiden 2.0 mg and placebo, biperiden 2.0 mg and riociguat 0.5 mg and biperiden 2.0 mg and riociguat 1.0 mg. RESULTS Blood pressure was found to be decreased and heart rate to be increased after administration of riociguat. Cognitive performance was not enhanced after administration of riociguat. Biperiden decreased episodic memory on the VLT, yet this deficit was not reversed by riociguat. CONCLUSION This supports the notion that biperiden might be a valuable pharmacological model to induce episodic memory impairments as observed in AD/MCI.
Collapse
Affiliation(s)
- Laura G. J. M. Borghans
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Medicine, Health & Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
10
|
Mikami S, Kawasaki M, Ikeda S, Negoro N, Nakamura S, Nomura I, Ashizawa T, Kokubo H, Hoffman ID, Zou H, Oki H, Uchiyama N, Hiura Y, Miyamoto M, Itou Y, Nakashima M, Iwashita H, Taniguchi T. Discovery of a Novel Series of Pyrazolo[1,5-a]pyrimidine-Based Phosphodiesterase 2A Inhibitors Structurally Different from N-((1S)-1-(3-Fluoro-4-(trifluoromethoxy)phenyl)-2-methoxyethyl)-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915), for the Treatment of Cognitive Disorders. Chem Pharm Bull (Tokyo) 2017; 65:1058-1077. [PMID: 29093293 DOI: 10.1248/cpb.c17-00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that selective inhibition of phosphodiesterase (PDE) 2A could potentially be a novel approach to treat cognitive impairment in neuropsychiatric and neurodegenerative disorders through augmentation of cyclic nucleotide signaling pathways in brain regions associated with learning and memory. Following our earlier work, this article describes a drug design strategy for a new series of lead compounds structurally distinct from our clinical candidate 2 (TAK-915), and subsequent medicinal chemistry efforts to optimize potency, selectivity over other PDE families, and other preclinical properties including in vitro phototoxicity and in vivo rat plasma clearance. These efforts resulted in the discovery of N-((1S)-2-hydroxy-2-methyl-1-(4-(trifluoromethoxy)phenyl)propyl)-6-methyl-5-(3-methyl-1H-1,2,4-triazol-1-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (20), which robustly increased 3',5'-cyclic guanosine monophosphate (cGMP) levels in the rat brain following an oral dose, and moreover, attenuated MK-801-induced episodic memory deficits in a passive avoidance task in rats. These data provide further support to the potential therapeutic utility of PDE2A inhibitors in enhancing cognitive performance.
Collapse
Affiliation(s)
- Satoshi Mikami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Masanori Kawasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Shuhei Ikeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Nobuyuki Negoro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Shinji Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Izumi Nomura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Tomoko Ashizawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Hironori Kokubo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | | | | | - Hideyuki Oki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Noriko Uchiyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Yuuto Hiura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Maki Miyamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Yuuki Itou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Masato Nakashima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Hiroki Iwashita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| | - Takahiko Taniguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited
| |
Collapse
|
11
|
Mikami S, Nakamura S, Ashizawa T, Nomura I, Kawasaki M, Sasaki S, Oki H, Kokubo H, Hoffman ID, Zou H, Uchiyama N, Nakashima K, Kamiguchi N, Imada H, Suzuki N, Iwashita H, Taniguchi T. Discovery of Clinical Candidate N-((1S)-1-(3-Fluoro-4-(trifluoromethoxy)phenyl)-2-methoxyethyl)-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915): A Highly Potent, Selective, and Brain-Penetrating Phosphodiesterase 2A Inhibitor for the Treatment of Cognitive Disorders. J Med Chem 2017; 60:7677-7702. [PMID: 28796496 DOI: 10.1021/acs.jmedchem.7b00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phosphodiesterase (PDE) 2A inhibitors have emerged as a novel mechanism with potential therapeutic option to ameliorate cognitive dysfunction in schizophrenia or Alzheimer's disease through upregulation of cyclic nucleotides in the brain and thereby achieve potentiation of cyclic nucleotide signaling pathways. This article details the expedited optimization of our recently disclosed pyrazolo[1,5-a]pyrimidine lead compound 4b, leading to the discovery of clinical candidate 36 (TAK-915), which demonstrates an appropriate combination of potency, PDE selectivity, and favorable pharmacokinetic (PK) properties, including brain penetration. Successful identification of 36 was realized through application of structure-based drug design (SBDD) to further improve potency and PDE selectivity, coupled with prospective design focused on physicochemical properties to deliver brain penetration. Oral administration of 36 demonstrated significant elevation of 3',5'-cyclic guanosine monophosphate (cGMP) levels in mouse brains and improved cognitive performance in a novel object recognition task in rats. Consequently, compound 36 was advanced into human clinical trials.
Collapse
Affiliation(s)
- Satoshi Mikami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoko Ashizawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Izumi Nomura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Kawasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Oki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironori Kokubo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isaac D Hoffman
- Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Hua Zou
- Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Noriko Uchiyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kosuke Nakashima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naomi Kamiguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruka Imada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Noriko Suzuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroki Iwashita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Taniguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
12
|
Dorner-Ciossek C, Kroker KS, Rosenbrock H. Role of PDE9 in Cognition. ADVANCES IN NEUROBIOLOGY 2017; 17:231-254. [DOI: 10.1007/978-3-319-58811-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Fernández-Fernández D, Rosenbrock H, Kroker KS. Inhibition of PDE2A, but not PDE9A, modulates presynaptic short-term plasticity measured by paired-pulse facilitation in the CA1 region of the hippocampus. Synapse 2015; 69:484-96. [DOI: 10.1002/syn.21840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Diego Fernández-Fernández
- Department of CNS Diseases Research; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| | - Holger Rosenbrock
- Department of CNS Diseases Research; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| | - Katja S. Kroker
- Department of Drug Discovery Support; Boehringer Ingelheim Pharma GmbH & Co KG; Biberach (Riss) 88397 Germany
| |
Collapse
|
14
|
Bollen E, Akkerman S, Puzzo D, Gulisano W, Palmeri A, D'Hooge R, Balschun D, Steinbusch HWM, Blokland A, Prickaerts J. Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors. Neuropharmacology 2015; 95:361-6. [PMID: 25896769 DOI: 10.1016/j.neuropharm.2015.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/13/2015] [Accepted: 04/03/2015] [Indexed: 01/17/2023]
Abstract
The second messengers cGMP and cAMP have a vital role in synaptic plasticity and memory processes. As such, phosphodiesterases inhibitors (PDE-Is), which prevent the breakdown of these cyclic nucleotides, represent a potential treatment strategy in memory decline. Recently it has been demonstrated that cGMP and cAMP signaling act in sequence during memory consolidation, with early cGMP signaling requiring subsequent cAMP signaling. Here, we sought to confirm this relationship, and to evaluate its therapeutic implications. Combining sub-efficacious doses of the cGMP-specific PDE type 5 inhibitor vardenafil (0.1 mg/kg) and cAMP-specific PDE type 4 inhibitor rolipram (0.01 mg/kg) during the early and late memory consolidation phase, respectively, led to improved memory performance in a 24 h interval object recognition task. Similarly, such a sub-efficacious combination treatment enhanced the transition of early-phase long-term potentiation (LTP) to late-phase LTP in hippocampal slices. In addition, both object memory and LTP were improved after administration of two sub-efficacious doses of the dual substrate PDE type 2 inhibitor BAY60 7550 (0.3 mg/kg) at the early and late consolidation phase, respectively. Taken together, combinations of sub-efficacious doses of cAMP- and cGMP-specific PDE-Is have an additive effect on long-term synaptic plasticity and memory formation and might prove a superior alternative to single PDE-I treatment.
Collapse
Affiliation(s)
- E Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - S Akkerman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - D Puzzo
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, 95125 Catania, Italy
| | - W Gulisano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, 95125 Catania, Italy
| | - A Palmeri
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, 95125 Catania, Italy
| | - R D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, 3000 Leuven, Belgium
| | - D Balschun
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, 3000 Leuven, Belgium
| | - H W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
15
|
Kim T, Folcher M, Charpin-El Hamri G, Fussenegger M. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice. Metab Eng 2015; 29:169-179. [PMID: 25843350 DOI: 10.1016/j.ymben.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies.
Collapse
Affiliation(s)
- Taeuk Kim
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
16
|
Barmashenko G, Buttgereit J, Herring N, Bader M, Ozcelik C, Manahan-Vaughan D, Braunewell KH. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats. Front Mol Neurosci 2014; 7:95. [PMID: 25520616 PMCID: PMC4249455 DOI: 10.3389/fnmol.2014.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.
Collapse
Affiliation(s)
- Gleb Barmashenko
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | - Jens Buttgereit
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Neil Herring
- Max Delbrück Center for Molecular Medicine Berlin, Germany ; Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre - BHF Centre of Research Excellence, University of Oxford Oxford, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Cemil Ozcelik
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | | | - Karl H Braunewell
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
17
|
Kolarow R, Kuhlmann CRW, Munsch T, Zehendner C, Brigadski T, Luhmann HJ, Lessmann V. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion. Front Cell Neurosci 2014; 8:323. [PMID: 25426021 PMCID: PMC4224130 DOI: 10.3389/fncel.2014.00323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.
Collapse
Affiliation(s)
- Richard Kolarow
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Christoph R W Kuhlmann
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Munsch
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany
| | - Christoph Zehendner
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Tanja Brigadski
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Heiko J Luhmann
- University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Volkmar Lessmann
- Medical Faculty, Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany ; University Medical Center, Institute of Physiology, Johannes Gutenberg-University Mainz Mainz, Germany
| |
Collapse
|
18
|
Lu Y, Hu J, Sun W, Duan X, Chen X. Nitric oxide signaling pathway activation inhibits the immune escape of pancreatic carcinoma cells. Oncol Lett 2014; 8:2371-2378. [PMID: 25364398 PMCID: PMC4214498 DOI: 10.3892/ol.2014.2607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of the nitric oxide signaling pathway on immune escape; thus, a tumorigenesis model was established using nude mice. The mice were inoculated with pancreatic carcinoma cells and divided into two groups, a glyceryl trinitrate (GTN) and a placebo group. When tumor volumes reached 150 mm3, the mice in the GTN group were treated with GTN transdermal patches (dose, 7.3 μg/h) while the mice in the placebo group were administered untreated patches. Following treatment, the tumor volume was recorded every 3-4 days and after 28 days, the tumors were analyzed. The results indicated that GTN treatment may reduce the levels of soluble major histocompatibility complex class I chain-related molecules, and natural killer group 2 member D, as well as inhibiting tumor growth.
Collapse
Affiliation(s)
- Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juanjuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaohui Duan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology 2014; 39:2497-505. [PMID: 24813825 PMCID: PMC4207334 DOI: 10.1038/npp.2014.106] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 02/02/2023]
Abstract
Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.
Collapse
|
20
|
Buijnsters P, De Angelis M, Langlois X, Rombouts FJR, Sanderson W, Tresadern G, Ritchie A, Trabanco AA, VanHoof G, Roosbroeck YV, Andrés JI. Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement. ACS Med Chem Lett 2014; 5:1049-53. [PMID: 25221665 DOI: 10.1021/ml500262u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
Abstract
Structure-guided design led to the identification of the novel, potent, and selective phosphodiesterase 2 (PDE2) inhibitor 12. Compound 12 demonstrated a >210-fold selectivity versus PDE10 and PDE11 and was inactive against all other PDE family members up to 10 μM. In vivo evaluation of 12 provided evidence that it is able to engage the target and to increase cGMP levels in relevant brain regions. Hence, 12 is a valuable tool compound for the better understanding of the role of PDE2 in cognitive impairment and other central nervous system related disorders.
Collapse
Affiliation(s)
- Peter Buijnsters
- Neuroscience Medicinal Chemistry, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Meri De Angelis
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| | - Xavier Langlois
- Neuroscience Medicinal Chemistry, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frederik J. R. Rombouts
- Neuroscience Medicinal Chemistry, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Wendy Sanderson
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gary Tresadern
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Alison Ritchie
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, U.K
| | - Andrés A. Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| | - Greet VanHoof
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Yves Van Roosbroeck
- Neuroscience Medicinal Chemistry, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - José-Ignacio Andrés
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| |
Collapse
|
21
|
Akar F, Mutlu O, Celikyurt IK, Bektas E, Tanyeri MH, Ulak G, Tanyeri P, Erden F. Effects of zaprinast and rolipram on olfactory and visual memory in the social transmission of food preference and novel object recognition tests in mice. Drug Target Insights 2014; 8:23-9. [PMID: 24855335 PMCID: PMC4011720 DOI: 10.4137/dti.s14813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/05/2022] Open
Abstract
The role of phosphodiesterase (PDE) inhibitors in central nervous system has been investigated and shown to stimulate neuronal functions and increase neurogenesis in Alzheimer patients. The aim of this study is to investigate effect of PDE5 inhibitor zaprinast and PDE4 inhibitor rolipram on visual memory in novel object recognition (NOR) test, on olfactory memory in social transmission of food preference (STFP) test, and also on locomotion and anxiety in open field test in naive mice. Male Balb-c mice were treated intraperitoneally (i.p.) with zaprinast (3 and 10 mg/kg), rolipram (0.05 and 0.1 mg/kg), or physiological saline. Zaprinast (10 mg/kg) significantly increased cued/non-cued food eaten compared to control group, while rolipram had a partial effect on retention trial of STFP test. Zaprinast (10 mg/kg) and rolipram (0.05 and 0.1 mg/kg) significantly increased ratio index (RI) compared to control group in retention trial of NOR test. There was no significant effect of zaprinast and rolipram on total distance moved, speed, and center zone duration in open field test. Results of this study revealed that both zaprinast and rolipram enhanced visual memory in NOR test, however zaprinast exerted a significant memory-enhancing effect compared to rolipram in STFP test in mice.
Collapse
Affiliation(s)
- Furuzan Akar
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| | - Oguz Mutlu
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| | - Ipek K Celikyurt
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| | - Emine Bektas
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| | - Mehmet H Tanyeri
- Department of Urology, Yenikent Government Hospital, Sakarya, Turkey
| | - Guner Ulak
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| | - Pelin Tanyeri
- Faculty of Medicine, Department of Pharmacology, Sakarya University, Sakarya, Turkey
| | - Faruk Erden
- Medical Faculty, Department of Pharmacology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
22
|
Kroker KS, Mathis C, Marti A, Cassel JC, Rosenbrock H, Dorner-Ciossek C. PDE9A inhibition rescues amyloid beta-induced deficits in synaptic plasticity and cognition. Neurobiol Aging 2014; 35:2072-8. [PMID: 24746365 DOI: 10.1016/j.neurobiolaging.2014.03.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 02/02/2023]
Abstract
The cyclic nucleotide cGMP is an important intracellular messenger for synaptic plasticity and memory function in rodents. Therefore, inhibition of cGMP degrading phosphodiesterases, like PDE9A, has gained interest as potential target for treatment of cognition deficits in indications like Alzheimer's disease (AD). In fact, PDE9A inhibition results in increased hippocampal long-term potentiation and exhibits procognitive effects in rodents. To date, however, no evidence has been published linking PDE9A inhibition to the pathologic hallmarks of AD such as amyloid beta (Aβ) deposition. Therefore, we investigated the role of PDE9A inhibition in an AD relevant context by testing its effects on Aβ-related deficits in synaptic plasticity and cognition. The PDE9A inhibitor BAY 73-6691 was found to restore long-term potentiation impaired by Aβ42 oligomers. Furthermore, we demonstrated that BAY 73-6691 enhanced cGMP levels in the hippocampus of APP transgenic tg2576 mice and improved memory performance of these mice. Altogether, our results support the hypothesis that inhibition of PDE9A could be a beneficial approach for the treatment of memory impairment in AD patients.
Collapse
Affiliation(s)
- Katja S Kroker
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany.
| | - Chantal Mathis
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, Université de Strasbourg UMR 7364, GDR CNRS 2905, Strasbourg, France
| | - Anelise Marti
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, Université de Strasbourg UMR 7364, GDR CNRS 2905, Strasbourg, France
| | - Holger Rosenbrock
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Cornelia Dorner-Ciossek
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| |
Collapse
|
23
|
Reneerkens OA, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HW, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res 2013; 236:16-22. [DOI: 10.1016/j.bbr.2012.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022]
|
24
|
Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX, Arancio O, Marks AR. Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 2012; 150:1055-67. [PMID: 22939628 DOI: 10.1016/j.cell.2012.06.052] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 12/13/2022]
Abstract
The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liddie S, Anderson KL, Paz A, Itzhak Y. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol 2012; 26:1375-82. [PMID: 22596207 DOI: 10.1177/0269881112447991] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning.
Collapse
Affiliation(s)
- Shervin Liddie
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
26
|
García-Barroso C, Ricobaraza A, Pascual-Lucas M, Unceta N, Rico AJ, Goicolea MA, Sallés J, Lanciego JL, Oyarzabal J, Franco R, Cuadrado-Tejedor M, García-Osta A. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 2012; 64:114-23. [PMID: 22776546 DOI: 10.1016/j.neuropharm.2012.06.052] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
Abstract
Previous studies have demonstrated that cognitive function can be restored in mouse models of Alzheimer's disease (AD) following administration of sildenafil, a specific PDE5 inhibitor (Puzzo et al., 2009; Cuadrado-Tejedor et al.). Another very potent PDE5 inhibitor with a longer half-life and safe in chronic treatments, tadalafil, may represent a better alternative candidate for AD therapy. However, tadalafil was proven unable to achieve similar benefits than those of sildenafil in AD animal models (Puzzo et al., 2009). The lack of efficacy was attributed to inability to cross the blood-brain barrier (BBB). In this paper we first measured the blood and brain levels of tadalafil to prove that the compound crosses BBB and that chronic treatment leads to accumulation in the brain of the J20 transgenic mouse model of AD. We demonstrated the presence of PDE5 mRNA in the brain of the mice and also in the human brain. After a 10 week treatment with either of these PDE5 inhibitors, the performance of the J20 mice in the Morris water maze test improved when compared with the transgenic mice that received vehicle. Biochemical analysis revealed that neither sildenafil nor tadalafil altered the amyloid burden, although both compounds reduced Tau phosphorylation in the mouse hippocampus. This study provides evidence of the potential benefits of a chronic tadalafil treatment in AD therapy. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Carolina García-Barroso
- Cell and Molecular Neuropharmacology, Neurosciences Division, Center for Applied Medical Research, CIMA, University of Navarra, Av. Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reneerkens OA, Rutten K, Akkerman S, Blokland A, Shaffer CL, Menniti FS, Steinbusch HW, Prickaerts J. Phosphodiesterase type 5 (PDE5) inhibition improves object recognition memory: Indications for central and peripheral mechanisms. Neurobiol Learn Mem 2012; 97:370-9. [DOI: 10.1016/j.nlm.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 02/16/2012] [Accepted: 02/27/2012] [Indexed: 01/10/2023]
|
28
|
Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H. Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 2012; 62:1964-74. [DOI: 10.1016/j.neuropharm.2011.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/19/2023]
|
29
|
Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Pérez-Roldán JM, García-Barroso C, Franco R, Aguirre N, García-Osta A. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer's disease. Br J Pharmacol 2012; 164:2029-41. [PMID: 21627640 DOI: 10.1111/j.1476-5381.2011.01517.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of phosphodiesterase 5 (PDE5) affect signalling pathways by elevating cGMP, which is a second messenger involved in processes of neuroplasticity. In the present study, the effects of the PDE5 inhibitor, sildenafil, on the pathological features of Alzheimer's disease and on memory-related behaviour were investigated. EXPERIMENTAL APPROACH Sildenafil was administered to the Tg2576 transgenic mouse model of Alzheimer's disease and to age-matched negative littermates (controls). Memory function was analysed using the Morris water maze test and fear conditioning tasks. Biochemical analyses were performed in brain lysates from animals treated with saline or with sildenafil. KEY RESULTS Treatment of aged Tg2576 animals with sildenafil completely reversed their cognitive impairment. Such changes were accompanied in the hippocampus by a reduction of tau hyperphosphorylation and a decrease in the activity of glycogen synthase kinase 3β (GSK3β) and of cyclin-dependent kinase 5 (CDK5) (p25/p35 ratio). Moreover, sildenafil also increased levels of brain-derived neurotrophic factor (BDNF) and the activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus without any detectable modification of brain amyloid burden. CONCLUSIONS AND IMPLICATIONS Sildenafil improved cognitive functions in Tg2576 mice and the effect was not related to changes in the amyloid burden. These data further strengthen the potential of sildenafil as a therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- M Cuadrado-Tejedor
- Division of Neurosciences, CIMA, University of Navarra, Avenida Pio XII 55, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sharma V, Bala A, Deshmukh R, Bedi KL, Sharma PL. Neuroprotective effect of RO-20-1724-a phosphodiesterase4 inhibitor against intracerebroventricular streptozotocin induced cognitive deficit and oxidative stress in rats. Pharmacol Biochem Behav 2012; 101:239-45. [PMID: 22285388 DOI: 10.1016/j.pbb.2012.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 11/21/2011] [Accepted: 01/06/2012] [Indexed: 01/06/2023]
Abstract
Cyclic nucleotides viz cGMP and cAMP are known to play an important role in learning and memory processes. Enhancement of cyclic nucleotide signalling through inhibition of phosphodiesterases (PDEs) has been reported to be beneficial in several neurodegenerative disorders associated with cognitive decline. The present study was undertaken to investigate the effect of RO-20-1724-a PDE4 inhibitor on streptozotocin (STZ) induced experimental sporadic dementia of Alzheimer's type. The STZ was injected twice intracerebroventrically (3 mg/kg i.c.v.) on alternate days (day 1 and day 3) in rats. The STZ injected rats were treated with RO-20-1724 (125, 250 and 500 μg/kgi.p.) for 21 days following first i.c.v. STZ administration. Learning and memory in rats were assessed by passive avoidance [PA (days 14 and 15)] and Morris water maze [MWM (days 17, 18, 19, 20 and 21)] following first i.c.v. STZ administration. On day 22 rat cerebral homogenate was used for all the biochemical estimations. The pharmacological inhibition of PDE4 by RO-20-1724 significantly attenuated STZ induced cognitive deficit and oxidative stress. RO-20-1724 was found to not only improve learning and memory in MWM and PA paradigms but also restore STZ induced elevation in cholinesterase activity. Further, RO-20-1724 significantly reduced malondialdehyde and nitrite levels, and restored the glutathione levels indicating attenuation of oxidative stress. Current data complement previous studies by providing evidence for a subset of cognition enhancing effects after PDE4 inhibition. The observed beneficial effects of RO-20-1724 in spatial memory may be due to its ability to restore cholinergic functions and possibly through its antioxidant mechanisms.
Collapse
Affiliation(s)
- Vivek Sharma
- Neuropharmacology Div., Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | | | | | | | | |
Collapse
|
31
|
Hutson P, Finger E, Magliaro B, Smith S, Converso A, Sanderson P, Mullins D, Hyde L, Eschle B, Turnbull Z, Sloan H, Guzzi M, Zhang X, Wang A, Rindgen D, Mazzola R, Vivian J, Eddins D, Uslaner J, Bednar R, Gambone C, Le-Mair W, Marino M, Sachs N, Xu G, Parmentier-Batteur S. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 2011; 61:665-76. [DOI: 10.1016/j.neuropharm.2011.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
32
|
Rayatnia F, Javadi-Paydar M, Allami N, Zakeri M, Rastegar H, Norouzi A, Dehpour AR. Nitric oxide involvement in consolidation, but not retrieval phase of cognitive performance enhanced by atorvastatin in mice. Eur J Pharmacol 2011; 666:122-30. [DOI: 10.1016/j.ejphar.2011.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 02/08/2023]
|
33
|
Lessmann V, Stroh-Kaffei S, Steinbrecher V, Edelmann E, Brigadski T, Kilb W, Luhmann HJ. The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition. Brain Res 2011; 1391:14-23. [PMID: 21458431 DOI: 10.1016/j.brainres.2011.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/22/2023]
Abstract
BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 μM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Institute of Physiology and Pathophysiology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Terry AV, Callahan PM, Hall B, Webster SJ. Alzheimer's disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011; 99:190-210. [PMID: 21315756 DOI: 10.1016/j.pbb.2011.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology and Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
35
|
The NO-cGMP-PKG signaling pathway coordinately regulates ERK and ERK-driven gene expression at pre- and postsynaptic sites following LTP-inducing stimulation of thalamo-amygdala synapses. Neural Plast 2011; 2010:540940. [PMID: 21461354 PMCID: PMC3065048 DOI: 10.1155/2010/540940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023] Open
Abstract
Long-term potentiation (LTP) at thalamic input synapses to the lateral nucleus of the amygdala (LA) has been proposed as a cellular mechanism of the formation of auditory fear memories. We have previously shown that signaling via ERK/MAPK in both the LA and the medial division of the medial geniculate nucleus/posterior intralaminar nucleus (MGm/PIN) is critical for LTP at thalamo-LA synapses. Here, we show that LTP-inducing stimulation of thalamo-LA inputs regulates the activation of ERK and the expression of ERK-driven immediate early genes (IEGs) in both the LA and MGm/PIN. Further, we show that pharmacological blockade of NMDAR-driven synaptic plasticity, NOS activation, or PKG signaling in the LA significantly impairs high-frequency stimulation-(HFS-) induced ERK activation and IEG expression in both regions, while blockade of extracellular NO signaling in the LA impairs HFS-induced ERK activation and IEG expression exclusively in the MGm/PIN. These findings suggest that NMDAR-driven synaptic plasticity and NO-cGMP-PKG signaling within the LA coordinately regulate ERK-driven gene expression in both the LA and the MGm/PIN following LTP induction at thalamo-LA synapses, and that synaptic plasticity in the LA promotes ERK-driven transcription in MGm/PIN neurons via NO-driven “retrograde signaling”.
Collapse
|
36
|
Ota KT, Monsey MS, Wu MS, Young GJ, Schafe GE. Synaptic plasticity and NO-cGMP-PKG signaling coordinately regulate ERK-driven gene expression in the lateral amygdala and in the auditory thalamus following Pavlovian fear conditioning. Learn Mem 2010; 17:221-35. [PMID: 20351057 DOI: 10.1101/lm.1592510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the present series of experiments, we show that N-methyl-D-aspartate receptor (NMDAR)-driven synaptic plasticity and NO-cGMP-PKG signaling in the LA regulate the training-induced expression of ERK and the ERK-driven immediate early genes (IEGs) Arc/Arg3.1, c-Fos, and EGR-1 in the LA and the MGm/PIN. Rats receiving intra-LA infusion of the NR2B selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibited significant decreases in ERK activation and in the training-induced expression of all three IEGs in the LA and MGm/PIN while intra-LA infusion of the PKG activator 8-Br-cGMP had the opposite effect. Remarkably, those rats given intra-LA infusion of the membrane impermeable NO scavenger c-PTIO exhibited significant decreases in ERK activation and ERK-driven IEG expression in the MGm/PIN, but not in the LA. Together with our previous experiments, these results suggest that synaptic plasticity and the NO-cGMP-PKG signaling pathway promote fear memory consolidation, in part, by regulating ERK-driven transcription in both the LA and the MGm/PIN. They further suggest that synaptic plasticity in the LA during fear conditioning promotes ERK-driven transcription in MGm/PIN neurons via NO-driven "retrograde signaling."
Collapse
Affiliation(s)
- Kristie T Ota
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
37
|
Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 2008; 15:792-805. [PMID: 18832566 DOI: 10.1101/lm.1114808] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and cortical input pathways to the LA. In behavioral experiments, rats given intra-LA infusions of either the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibited dose-dependent impairments or enhancements of fear memory consolidation, respectively. In slice electrophysiology experiments, bath application of Rp-8-Br-PET-cGMPS or the guanylyl cyclase inhibitor LY83583 impaired LTP at thalamic, but not cortical inputs to the LA, while bath application of 8-Br-cGMP or the guanylyl cyclase activator YC-1 resulted in enhanced LTP at thalamic inputs to the LA. Interestingly, YC-1-induced enhancement of LTP in the LA was reversed by concurrent application of the MEK inhibitor U0126, suggesting that the NO-cGMP-PKG signaling pathway may promote synaptic plasticity and fear memory formation in the LA, in part by activating the ERK/MAPK signaling cascade. As a test of this hypothesis, we next showed that rats given intra-LA infusion of the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibit impaired or enhanced activation, respectively, of ERK/MAPK in the LA after fear conditioning. Collectively, our findings suggest that an NO-cGMP-PKG-dependent form of synaptic plasticity at thalamic input synapses to the LA may underlie memory consolidation of Pavlovian fear conditioning, in part, via activation of the ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Kristie T Ota
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
38
|
Bukanova JV, Solntseva EI, Skrebitsky VG. Cyclic nucleotides induce long-term augmentation of glutamate-activated chloride current in molluscan neurons. Cell Mol Neurobiol 2005; 25:1185-94. [PMID: 16388331 DOI: 10.1007/s10571-005-8371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
1. Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect. 2. Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method. 3. In the majority of the cells examined, the application of Glu elicited a Cl- -current. The reversal potential (Er) of this current lied between -35 and -55 mV in different cells. 4. Picrotoxin, a blocker of Cl- -channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl- -channels and the Na+/K+/Cl- -cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials. 5. A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of -60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl- -current rather than to the increase in conductance of Cl- -channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment. 6. The change in the Cl- -homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.
Collapse
Affiliation(s)
- Julia V Bukanova
- Brain Research Institute, Russian Academy of Medical Sciences, Per. Obukha 5, 105064, Moscow, Russia.
| | | | | |
Collapse
|
39
|
O'Connor V, Genin A, Davis S, Karishma KK, Doyère V, De Zeeuw CI, Sanger G, Hunt SP, Richter-Levin G, Mallet J, Laroche S, Bliss TVP, French PJ. Differential Amplification of Intron-containing Transcripts Reveals Long Term Potentiation-associated Up-regulation of Specific Pde10A Phosphodiesterase Splice Variants. J Biol Chem 2004; 279:15841-9. [PMID: 14752115 DOI: 10.1074/jbc.m312500200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed differential display of expressed mRNAs (Liang, P., and Pardee, A. B. (1992) Science 257, 967-971) to identify genes up-regulated after long term potentiation (LTP) induction in the hippocampus of awake adult rats. In situ hybridization confirmed the differential expression of five independently amplified clones representing two distinct transcripts, cl13/19/90 and cl95/96. Neither cl13/19/90 nor cl95/96 showed significant sequence homology to known transcripts (mRNA or expressed sequence tag) or to the mouse or human genome. However, comparison with the rat genome revealed that they are localized to a predicted intron of the phosphodiesterase Pde10A gene. cl13/19/90 and cl95/96 are likely to be part of the Pde10A primary transcript as, using reverse transcriptase-PCR, we could specifically amplify distinct introns of the Pde10A primary transcript, and in situ hybridization demonstrated that a subset of Pde10A splice variants are also up-regulated after LTP induction. These results indicate that amplification of a primary transcript can faithfully report gene activity and that differential display can be used to identify differential expression of RNA species other than mRNA. In transiently transfected Cos7 cells, Pde10A3 reduces the atrial natriuretic peptide-induced elevation in cGMP levels without affecting basal cGMP levels. This cellular function of LTP-associated Pde10A transcripts argues for a role of the cGMP/cGMP-dependent kinase pathway in long term synaptic plasticity.
Collapse
Affiliation(s)
- Vincent O'Connor
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vitolo OV, Sant'Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A 2002; 99:13217-21. [PMID: 12244210 PMCID: PMC130613 DOI: 10.1073/pnas.172504199] [Citation(s) in RCA: 433] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Changes in hippocampal function seem critical for cognitive impairment in Alzheimer's disease (AD). Although there is eventual loss of synapses in both AD and animal models of AD, deficits in spatial memory and inhibition of long-term potentiation (LTP) precede morphological alterations in the models, suggesting earlier biochemical changes in the disease. In the studies reported here we demonstrate that amyloid beta-peptide (Abeta) treatment of cultured hippocampal neurons leads to the inactivation of protein kinase A (PKA) and persistence of its regulatory subunit PKAIIalpha. Consistent with this, CREB phosphorylation in response to glutamate is decreased, and the decrease is reversed by rolipram, a phosphodiesterase inhibitor that raises cAMP and leads to the dissociation of the PKA catalytic and regulatory subunits. It is likely that a similar mechanism underlies Alphabeta inhibition of LTP, because rolipram and forskolin, agents that enhance the cAMP-signaling pathway, can reverse this inhibition. This reversal is blocked by H89, an inhibitor of PKA. These observations suggest that Alphabeta acts directly on the pathways involved in the formation of late LTP and agents that enhance the cAMP/PKA/CREB-signaling pathway have potential for the treatment of AD.
Collapse
Affiliation(s)
- Ottavio V Vitolo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lu YF, Hawkins RD. Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 2002; 88:1270-8. [PMID: 12205148 DOI: 10.1152/jn.2002.88.3.1270] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously found that the nitric oxide (NO)-cGMP-cGMP-dependent protein kinase (PKG) signaling pathway acts in parallel with the cAMP-cAMP-dependent protein kinase (PKA) pathway to produce protein and RNA synthesis-dependent late-phase long-term potentiation (L-LTP) and cAMP response element-binding protein (CREB) phosphorylation in the CA1 region of mouse hippocampus. We have now investigated the possible involvement of a downstream target of PKG, ryanodine receptors. L-LTP can be induced by either multiple-train tetanization, NO or 8-Br-cGMP paired with one-train tetanization, or the cAMP activator forskolin, and all three types of potentiation are accompanied by an increase in phospho-CREB immunofluorescence in the CA1 cell body area. Both the potentiation and the increase in phospho-CREB immunofluorescence induced by multiple-train tetanization or 8-Br-cGMP paired with one-train tetanization are reduced by prolonged perfusion with ryanodine, which blocks Ca(2+) release from ryanodine-sensitive Ca(2+) stores. By contrast, neither the potentiation nor the increase in immunofluorescence induced by forskolin are reduced by depletion of ryanodine and inositol-1,4,5-triphosphate (IP3)-sensitive Ca(2+) stores. These results suggest that NO, cGMP, and PKG cause release of Ca(2+) from ryanodine-sensitive stores, which in turn causes phosphorylation of CREB in parallel with PKA during the induction of L-LTP.
Collapse
Affiliation(s)
- Yun-Fei Lu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. PROGRESS IN BRAIN RESEARCH 1999; 118:155-72. [PMID: 9932440 DOI: 10.1016/s0079-6123(08)63206-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is widespread in the nervous system and is thought to play a role in a variety of different neuronal functions, including learning and memory (see other chapters, this volume). A number of behavioral studies have indicated that NO is involved in several types of learning such as motor learning (Yanagihara and Kondo, 1996), avoidance learning (Barati and Kopf, 1996; Myslivecek et al., 1996), olfactory learning (Okere et. al., 1996; Kendrick et al., 1997), and spatial learning (Holscher et al., 1995; Yamada et al., 1996) (for review of earlier papers see Hawkins, 1996). Moreover, NO is thought to be involved in neuronal plasticity contributing to these different types of learning in different brain areas including the cerebellum (chapter by R. Tsien, this volume) and hippocampus. In this chapter we review evidence on the role of NO in long-term potentiation (LTP), a type of synaptic plasticity in hippocampus that is believed to contribute to declarative forms of learning such as spatial learning.
Collapse
Affiliation(s)
- R D Hawkins
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
43
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the Respective Roles of Nitric Oxide and Carbon Monoxide in Long-Term Potentiation in the Hippocampus. Learn Mem 1999. [DOI: 10.1101/lm.6.1.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Perfusion of hippocampal slices with an inhibitor nitric oxide (NO) synthase blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
|
44
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the Respective Roles of Nitric Oxide and Carbon Monoxide in Long-Term Potentiation in the Hippocampus. Learn Mem 1998. [DOI: 10.1101/lm.5.6.467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perfusion of hippocampal slices with an inhibitor of nitric oxide (NO) synthase-blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
|