1
|
Groenink L, Verdouw PM, Zhao Y, Ter Heegde F, Wever KE, Bijlsma EY. Pharmacological modulation of conditioned fear in the fear-potentiated startle test: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2023; 240:2361-2401. [PMID: 36651922 PMCID: PMC10593622 DOI: 10.1007/s00213-022-06307-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Fear conditioning is an important aspect in the pathophysiology of anxiety disorders. The fear-potentiated startle test is based on classical fear conditioning and over the years, a broad range of drugs have been tested in this test. Synthesis of the available data may further our understanding of the neurotransmitter systems that are involved in the expression of conditioned fear. METHODS Following a comprehensive search in Medline and Embase, we included 68 research articles that reported on 103 drugs, covering 56 different drug classes. The systematic review was limited to studies using acute, systemic drug administration in naive animals. RESULTS Qualitative data synthesis showed that most clinically active anxiolytics, but not serotonin-reuptake inhibitors, reduced cued fear. Anxiogenic drugs increased fear potentiation in 35% of the experiments, reduced fear potentiation in 29% of the experiments, and were without effect in 29% of the experiments. Meta-analyses could be performed for five drug classes and showed that benzodiazepines, buspirone, 5-HT1A agonists, 5-HT1A antagonists, and mGluR2,3 agonists reduced cued conditioned fear. The non-cued baseline startle response, which may reflect contextual anxiety, was only significantly reduced by benzodiazepines and 5-HT1A antagonists. No associations were found between drug effects and methodological characteristics, except for strain. CONCLUSIONS The fear-potentiated startle test appears to have moderate to high predictive validity and may serve as a valuable tool for the development of novel anxiolytics. Given the limited available data, the generally low study quality and high heterogeneity additional studies are warranted to corroborate the findings of this review.
Collapse
Affiliation(s)
- Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Freija Ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Silvas-Baltazar M, López-Oropeza G, Durán P, Martínez-Canabal A. Olfactory neurogenesis and its role in fear memory modulation. Front Behav Neurosci 2023; 17:1278324. [PMID: 37840547 PMCID: PMC10569173 DOI: 10.3389/fnbeh.2023.1278324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Olfaction is a critical sense that allows animals to navigate and understand their environment. In mammals, the critical brain structure to receive and process olfactory information is the olfactory bulb, a structure characterized by a laminated pattern with different types of neurons, some of which project to distant telencephalic structures, like the piriform cortex, the amygdala, and the hippocampal formation. Therefore, the olfactory bulb is the first structure of a complex cognitive network that relates olfaction to different types of memory, including episodic memories. The olfactory bulb continuously adds inhibitory newborn neurons throughout life; these cells locate both in the granule and glomerular layers and integrate into the olfactory circuits, inhibiting projection neurons. However, the roles of these cells modulating olfactory memories are unclear, particularly their role in fear memories. We consider that olfactory neurogenesis might modulate olfactory fear memories by a plastic process occurring in the olfactory bulb.
Collapse
Affiliation(s)
- Monserrat Silvas-Baltazar
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Grecia López-Oropeza
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Pilar Durán
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alonso Martínez-Canabal
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
5
|
Shultz B, Farkash A, Collins B, Mohammadmirzaei N, Knox D. Fear learning-induced changes in AMPAR and NMDAR expression in the fear circuit. Learn Mem 2022; 29:83-92. [PMID: 35169047 PMCID: PMC8852224 DOI: 10.1101/lm.053525.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
NMDA receptors (NMDARs) and AMPA receptors (AMPARs) in amygdala nuclei and the dorsal hippocampus (dHipp) are critical for fear conditioning. Enhancements in synaptic AMPAR expression in amygdala nuclei and the dHipp are critical for fear conditioning, with some studies observing changes in AMPAR expression across many neurons in these brain regions. Whether similar changes occur in other nodes of the fear circuit (e.g., ventral hippocampus [vHipp]) or changes in NMDAR expression in the fear circuit occur with fear conditioning have not been sufficiently examined. To address this we used near-infrared immunohistochemistry (IHC) to measure AMPAR and NMDAR subunit expression in several nodes of the fear circuit. Long-term changes in GluR1 and GluR2 expression in the ventral hippocampus (vHipp) and anterior cingulate cortex (ACC), enhanced NR2A expression in amygdala nuclei, and changes in the ratio of GluR1/NR2A and GluR2/NR2A in the dHipp was observed with fear conditioning. Most of these changes were dependent on protein synthesis during fear conditioning and were not observed immediately after fear conditioning. The results of the study suggest that global changes in AMPARs and NMDARs occur in multiple nodes within the fear circuit and raise the possibility that these changes contribute to fear memory. Further research examining how global changes in AMPAR, NMDAR, and AMPAR/NMDAR ratios within nodes of the fear circuit contribute to fear memory is needed.
Collapse
Affiliation(s)
- Brianna Shultz
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE 19716
| | - Abigail Farkash
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE 19716
| | - Bailey Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE 19716
| | - Negin Mohammadmirzaei
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE 19716
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE 19716
| |
Collapse
|
6
|
Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L, Schaul S, Patel N, Saenz L, Luo P, Lai P, Torres V, Kota M, Dixit D, Cai X, Qu N, Hyseni I, Yu K, Jiang Y, Tong Q, Sun Z, Arenkiel BR, He Y, Xu P, Xu Y. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. SCIENCE ADVANCES 2022; 8:eabk0185. [PMID: 35044814 PMCID: PMC8769556 DOI: 10.1126/sciadv.abk0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Estrogen receptor–α (ERα) expressed by neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (ERαvlVMH) regulates body weight in females, but the downstream neural circuits mediating this biology remain largely unknown. Here we identified a neural circuit mediating the metabolic effects of ERαvlVMH neurons. We found that selective activation of ERαvlVMH neurons stimulated brown adipose tissue (BAT) thermogenesis, physical activity, and core temperature and that ERαvlVMH neurons provide monosynaptic glutamatergic inputs to 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN). Notably, the ERαvlVMH → DRN circuit responds to changes in ambient temperature and nutritional states. We further showed that 5-HTDRN neurons mediate the stimulatory effects of ERαvlVMH neurons on BAT thermogenesis and physical activity and that ERα expressed by DRN-projecting ERαvlVMH neurons is required for the maintenance of energy balance. Together, these findings support a model that ERαvlVMH neurons activate BAT thermogenesis and physical activity through stimulating 5-HTDRN neurons.
Collapse
Affiliation(s)
- Hui Ye
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana
State University System, Baton Rouge, LA 70808, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Kenji Saito
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Yongjie Yang
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Leslie Saenz
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Pei Luo
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Penghua Lai
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Valeria Torres
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Maya Kota
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Devin Dixit
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Xing Cai
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Na Qu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Kaifan Yu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The
University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine,
University of Texas Health Science Center at Houston, Houston, TX 77030,
USA
| | - Zheng Sun
- Department of Internal Medicine, Baylor College of
Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana
State University System, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
- Department of Physiology and Biophysics, The
University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yong Xu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Hakim M, Beecher K, Jacques A, Chaaya N, Belmer A, Battle AR, Johnson LR, Bartlett SE, Chehrehasa F. Retrieval of olfactory fear memory alters cell proliferation and expression of pCREB and pMAPK in the corticomedial amygdala and piriform cortex. Chem Senses 2022; 47:6673813. [PMID: 35997758 PMCID: PMC9397123 DOI: 10.1093/chemse/bjac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain forms robust associations between odors and emotionally salient memories, making odors especially effective at triggering fearful or traumatic memories. Using Pavlovian olfactory fear conditioning (OFC), a variant of the traditional tone-shock paradigm, this study explored the changes involved in its processing. We assessed the expression of neuronal plasticity markers phosphorylated cyclic adenosine monophosphate response element binding protein (pCREB) and phosphorylated mitogen-activated protein kinase (pMAPK) 24 h and 14 days following OFC, in newborn neurons (EdU+) and in brain regions associated with olfactory memory processing; the olfactory bulb, piriform cortex, amygdale, and hippocampus. Here, we show that all proliferating neurons in the dentate gyrus of the hippocampus and glomerular layer of the olfactory bulb were colocalized with pCREB at 24 h and 14 days post-conditioning, and the number of proliferating neurons at both time points were statistically similar. This suggests the occurrence of long-term potentiation within the neurons of this pathway. Finally, OFC significantly increased the density of pCREB- and pMAPK-positive immunoreactive neurons in the medial and cortical subnuclei of the amygdala and the posterior piriform cortex, suggesting their key involvement in its processing. Together, our investigation identifies changes in neuroplasticity within critical neural circuits responsible for olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Medicine. Division of Psychology, University of Tasmania, Launceston, TAS, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Mouly AM, Bouillot C, Costes N, Zimmer L, Ravel N, Litaudon P. PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cereb Cortex 2021; 32:2717-2728. [PMID: 34668524 DOI: 10.1093/cercor/bhab376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.
Collapse
Affiliation(s)
- Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France.,CERMEP-Life Imaging, Bron Cedex 69677, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Nadine Ravel
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| |
Collapse
|
9
|
Strauch C, Hoang TH, Angenstein F, Manahan-Vaughan D. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cereb Cortex 2021; 32:689-708. [PMID: 34379749 PMCID: PMC8841565 DOI: 10.1093/cercor/bhab226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic–infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118 Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Medical Faculty, Otto-von Guericke University, 39118 Magdeburg, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
10
|
Wang J, Han J, Wang S, Duan Y, Bao C, Luo Y, Xue Q, Cao X. Forebrain GluN2A overexpression impairs fear extinction and NMDAR-dependent long-term depression in the lateral amygdala. Brain Res Bull 2021; 174:1-10. [PMID: 34058285 DOI: 10.1016/j.brainresbull.2021.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic plasticity at the thalamus-lateral amygdala (T-LA) synapses is related to acquisition and extinction of auditory fear memory. However, the roles of the NMDAR GluN2A subunit in acquisition and extinction of auditory fear memory as well as synaptic plasticity at T-LA synapses remain unclear. Here, using electrophysiologic, molecular biological techniques and behavioral methods, we found that the forebrain specific GluN2A overexpression transgenic (TG) mice exhibited normal acquisition but impaired extinction of auditory fear memory. In addition, in vitro electrophysiological data showed normal basal synaptic transmission and NMDAR-dependent long-term potentiation (LTP) at T-LA synapses, but deficit in NMDAR-dependent long-term depression (LTD) at T-LA synapses in GluN2A TG mice. Consistent with the reduced NMDAR-dependent LTD, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization was also weakened during NMDAR-dependent LTD in GluN2A TG mice. Taken together, our findings for the first time indicate that GluN2A overexpression impairs extinction of auditory fear memory and NMDAR-dependent LTD at T-LA synapses, which further confirms the close relationship between NMDAR-dependent LTD and fear extinction.
Collapse
Affiliation(s)
- Jiayue Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jiao Han
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shugen Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Chengrong Bao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
11
|
Hakim M, Battle AR, Belmer A, Bartlett SE, Johnson LR, Chehrehasa F. Pavlovian Olfactory Fear Conditioning: Its Neural Circuity and Importance for Understanding Clinical Fear-Based Disorders. Front Mol Neurosci 2019; 12:221. [PMID: 31607858 PMCID: PMC6761252 DOI: 10.3389/fnmol.2019.00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Odors have proven to be the most resilient trigger for memories of high emotional saliency. Fear associated olfactory memories pose a detrimental threat of potentially transforming into severe mental illness such as fear and anxiety-related disorders. Many studies have deliberated on auditory, visual and general contextual fear memory (CFC) processes; however, fewer studies have investigated mechanisms of olfactory fear memory. Evidence strongly suggests that the neuroanatomical representation of olfactory fear memory differs from that of auditory and visual fear memory. The aim of this review article is to revisit the literature regarding the understanding of the neurobiological process of fear conditioning and to illustrate the circuitry of olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Selena E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Center for the Study of Traumatic Stress, School of Medicine, College of Health and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
Adkins JM, Lynch JF, Hagerdorn P, Esterhuizen M, Jasnow AM. Anterior cingulate cortex and dorsal hippocampal glutamate receptors mediate generalized fear in female rats. Psychoneuroendocrinology 2019; 107:109-118. [PMID: 31125757 PMCID: PMC7779207 DOI: 10.1016/j.psyneuen.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 11/19/2022]
Abstract
Exhibiting fear to non-threatening cues or contexts-generalized fear-is a shared characteristic of several anxiety disorders, which afflict women more than men. Female rats generalize contextual fear at a faster rate than males and this is due, in part, to actions of estradiol in the dorsal CA1 hippocampus (dCA1). To understand the mechanisms underlying estradiol's effects on generalization, we infused estradiol into the anterior cingulate cortex (ACC) or ventral CA1 hippocampus (vCA1) of ovariectomized (OVX) female rats. Estradiol acts within the ACC, but not the vCA1, to promote generalized fear. We next examined if AMPA or NMDA receptor antagonists (NBQX, APV) infused into the dCA1 or the ACC of female rats could block generalized fear induced by systemic injections of estradiol. Immediate pre-testing infusions of NBQX or APV into either region eliminated estradiol-induced generalization. Specific blockade of GluN2B receptors with infusions of Ro 25-6981 into the dCA1 or ACC also eliminated generalized fear. Our results suggest that in addition to the dCA1, the ACC is an important locus for the effects of estradiol on fear generalization. Moreover, within these regions, AMPA and NMDA-GluN2B receptors are necessary for estradiol-induced generalization of fear responses, suggesting a critical involvement of glutamatergic transmission. Furthermore, we identified a novel role for GluN2B in mediating the effects of estradiol on generalized fear in female rats. These data potentially implicate GluN2B receptors in more general forms of memory retrieval inaccuracies, and form the foundation for exploration of glutamate receptor pharmacology for treatments of anxiety disorders involving generalization.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Joseph F Lynch
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17604, United States
| | - Payton Hagerdorn
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Monique Esterhuizen
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States.
| |
Collapse
|
13
|
Chronic stress induces cell type-selective transcriptomic and electrophysiological changes in the bed nucleus of the stria terminalis. Neuropharmacology 2019; 150:80-90. [PMID: 30878403 DOI: 10.1016/j.neuropharm.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023]
Abstract
Distinct regions and cell types in the anterolateral group of the bed nucleus of the stria terminalis (BNSTALG) act to modulate anxiety in opposing ways. A history of chronic stress increases anxiety-like behavior with lasting electrophysiological effects on the BNSTALG. However, the opposing circuits within the BNSTALG suggest that stress may have differential effects on the individual cell types that comprise these circuits to shift the balance to favor anxiogenesis. Yet, the effects of stress are generally examined by treating all neurons within a particular region of the BNST as a homogenoeus population. We used patch-clamp electrophysiology and single-cell quantitative reverse transcriptase PCR (scRT-PCR) to determine how chronic shock stress (CSS) affects electrophysiological and neurochemical properties of Type I, Type II, and Type III neurons in the BNSTALG. We report that CSS resulted in changes in the input resistance, time constant, action potential waveform, and firing rate of Type III but not Type I or II neurons. Additionally, only the Type III neurons exhibited an increase in Crf mRNA and a decrease in striatal-enriched protein tyrosine phosphatase (Ptpn5) mRNA after CSS. In contrast, only non-Type III cells showed a reduction in calcium-permeable AMPA receptor (CP-AMPAR) current and changes in mRNA expression of genes encoding AMPA receptor subunits after CSS. Importantly, none of the effects of CSS observed were seen in all cell types. Our results suggest that Type III neurons play a unique role in the BNSTALG circuit and represent a population of CRF neurons particularly sensitive to chronic stress.
Collapse
|
14
|
Memory formation in the absence of experience. Nat Neurosci 2019; 22:933-940. [PMID: 31036944 DOI: 10.1038/s41593-019-0389-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Memory is coded by patterns of neural activity in distinct circuits. Therefore, it should be possible to reverse engineer a memory by artificially creating these patterns of activity in the absence of a sensory experience. In olfactory conditioning, an odor conditioned stimulus (CS) is paired with an unconditioned stimulus (US; for example, a footshock), and the resulting CS-US association guides future behavior. Here we replaced the odor CS with optogenetic stimulation of a specific olfactory glomerulus and the US with optogenetic stimulation of distinct inputs into the ventral tegmental area that mediate either aversion or reward. In doing so, we created a fully artificial memory in mice. Similarly to a natural memory, this artificial memory depended on CS-US contingency during training, and the conditioned response was specific to the CS and reflected the US valence. Moreover, both real and implanted memories engaged overlapping brain circuits and depended on basolateral amygdala activity for expression.
Collapse
|
15
|
Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice. J Neurosci 2018; 38:4623-4640. [PMID: 29669746 DOI: 10.1523/jneurosci.3559-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings.SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
Collapse
|
16
|
Ebrahimi-Ghiri M, Rostampour M, Jamshidi-Mehr M, Nasehi M, Zarrindast MR. Role of CA1 GABAA and GABAB receptors on learning deficit induced by D-AP5 in passive avoidance step-through task. Brain Res 2018; 1678:164-173. [DOI: 10.1016/j.brainres.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
17
|
Clinard CT, Barnes AK, Adler SG, Cooper MA. Winning agonistic encounters increases testosterone and androgen receptor expression in Syrian hamsters. Horm Behav 2016; 86:27-35. [PMID: 27619945 PMCID: PMC5159211 DOI: 10.1016/j.yhbeh.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022]
Abstract
Winning aggressive disputes is one of several experiences that can alter responses to future stressful events. We have previously tested dominant and subordinate male Syrian hamsters in a conditioned defeat model and found that dominant individuals show less change in behavior following social defeat stress compared to subordinates and controls, indicating a reduced conditioned defeat response. Resistance to the effects of social defeat in dominants is experience-dependent and requires the maintenance of dominance relationships for 14days. For this study we investigated whether winning aggressive interactions increases plasma testosterone and whether repeatedly winning increases androgen receptor expression. First, male hamsters were paired in daily 10-min aggressive encounters and blood samples were collected immediately before and 15min and 30min after the formation of dominance relationships. Dominants showed an increase in plasma testosterone at 15min post-interaction compared to their pre-interaction baseline, whereas subordinates and controls showed no change in plasma testosterone. Secondly, we investigated whether 14days of dominant social status increased androgen or estrogen alpha-receptor immunoreactivity in brain regions that regulate the conditioned defeat response. Dominants showed more androgen, but not estrogen alpha, receptor immuno-positive cells in the dorsal medial amygdala (dMeA) and ventral lateral septum (vLS) compared to subordinates and controls. Finally, we showed that one day of dominant social status was insufficient to increase androgen receptor immunoreactivity compared to subordinates. These results suggest that elevated testosterone signaling at androgen receptors in the dMeA and vLS might contribute to the reduced conditioned defeat response exhibited by dominant hamsters.
Collapse
Affiliation(s)
- Catherine T Clinard
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Abigail K Barnes
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Samuel G Adler
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
18
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
19
|
Incubation of Fear Is Regulated by TIP39 Peptide Signaling in the Medial Nucleus of the Amygdala. J Neurosci 2015; 35:12152-61. [PMID: 26338326 DOI: 10.1523/jneurosci.1736-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Fear-related psychopathologies such as post-traumatic stress disorder are characterized by impaired extinction of fearful memories. Recent behavioral evidence suggests that the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39), via its receptor, the parathyroid hormone 2 receptor (PTH2R), modulates fear memory. Here we examined the anatomical and cellular localization of TIP39 signaling that contributes to the increase in fear memory over time following a traumatic event, called fear memory incubation. Contextual freezing, a behavioral sign of fear memory, was significantly greater in PTH2R knock-out than wild-type male mice 2 and 4 weeks after a 2 s 1.5 mA footshock. PTH2R knock-out mice had significantly reduced c-Fos activation in the medial amygdala (MeA) following both footshock and fear recall, but had normal activation in the hypothalamic paraventricular nucleus and the amygdalar central nucleus compared with wild-type. We therefore investigated the contribution of MeA TIP39 signaling to fear incubation. Similar to the effect of global TIP39 signaling loss, blockade of TIP39 signaling in the MeA by lentivirus-mediated expression of a secreted PTH2R antagonist augmented fear incubation. Ablation of MeA PTH2R-expressing neurons also strengthened the fear incubation effect. Using the designer receptor exclusively activated by designer drug pharmacogenetic approach, transient inhibition of MeA PTH2R-expressing neurons before or immediately after the footshock, but not at the time of fear recall, enhanced fear incubation. Collectively, the findings demonstrate that TIP39 signaling within the MeA at the time of an aversive event regulates the increase over time in fear associated with the event context. SIGNIFICANCE STATEMENT Fear-related psychopathologies such as post-traumatic stress disorder (PTSD) are characterized by excessive responses to trauma-associated cues. Fear responses can increase over time without additional cue exposure or stress. This work shows that modulatory processes within the medial nucleus of the amygdala near the time of a traumatic event influence the strength of fear responses that occur much later. The modulatory processes include signaling by the neuropeptide TIP39 and neurons that express its receptor. These findings will help in the understanding of why traumatic events sometimes have severe psychological consequences. One implication is that targeting neuromodulation in the medial amygdala could potentially help prevent development of PTSD.
Collapse
|
20
|
Rosen JB, Asok A, Chakraborty T. The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front Neurosci 2015; 9:292. [PMID: 26379483 PMCID: PMC4548190 DOI: 10.3389/fnins.2015.00292] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
In the last several years, the importance of understanding what innate threat and fear is, in addition to learning of threat and fear, has become evident. Odors from predators are ecologically relevant stimuli used by prey animals as warnings for the presence of danger. Of importance, these odors are not necessarily noxious or painful, but they have innate threat-like properties. This review summarizes the progress made on the behavioral and neuroanatomical fundamentals of innate fear of the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a component of fox feces. TMT is one of several single molecule components of predator odors that have been isolated in the last several years. Isolation of these single molecules has allowed for rapid advances in delineating the behavioral constraints and selective neuroanatomical pathways of predator odor induced fear. In naïve mice and rats, TMT induces a number of fear and defensive behaviors, including robust freezing, indicating it is an innate threat stimulus. However, there are a number of behavioral constraints that we do not yet understand. Similarly, while some of the early olfactory sensory pathways for TMT-induced fear are being delineated, the pathways from olfactory systems to emotional and motor output regions are less well understood. This review will focus on what we know and what we still need to learn about the behavior and neuroanatomy of TMT-induced fear.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of DelawareNewark, DE, USA
| | | | | |
Collapse
|
21
|
Malvaez M, Greenfield VY, Wang AS, Yorita AM, Feng L, Linker KE, Monbouquette HG, Wassum KM. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Sci Rep 2015; 5:12511. [PMID: 26212790 PMCID: PMC4648450 DOI: 10.1038/srep12511] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/17/2015] [Indexed: 11/09/2022] Open
Abstract
Environmental stimuli have the ability to generate specific representations of the rewards they predict and in so doing alter the selection and performance of reward-seeking actions. The basolateral amygdala participates in this process, but precisely how is unknown. To rectify this, we monitored, in near-real time, basolateral amygdala glutamate concentration changes during a test of the ability of reward-predictive cues to influence reward-seeking actions (Pavlovian-instrumental transfer). Glutamate concentration was found to be transiently elevated around instrumental reward seeking. During the Pavlovian-instrumental transfer test these glutamate transients were time-locked to and correlated with only those actions invigorated by outcome-specific motivational information provided by the reward-predictive stimulus (i.e., actions earning the same specific outcome as predicted by the presented CS). In addition, basolateral amygdala AMPA, but not NMDA glutamate receptor inactivation abolished the selective excitatory influence of reward-predictive cues over reward seeking. These data support [corrected] the hypothesis that transient glutamate release in the BLA can encode the outcome-specific motivational information provided by reward-predictive stimuli.
Collapse
Affiliation(s)
| | | | - Alice S. Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Lili Feng
- Dept. of Chemical Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Kay E. Linker
- Dept. of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Kate M. Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Butler CW, Wilson YM, Gunnersen JM, Murphy M. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. ACTA ACUST UNITED AC 2015; 22:370-84. [PMID: 26179231 PMCID: PMC4509919 DOI: 10.1101/lm.037663.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory.
Collapse
Affiliation(s)
- Christopher W Butler
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yvette M Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark Murphy
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
23
|
Cortese BM, Leslie K, Uhde TW. Differential odor sensitivity in PTSD: Implications for treatment and future research. J Affect Disord 2015; 179:23-30. [PMID: 25845746 PMCID: PMC4437877 DOI: 10.1016/j.jad.2015.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. METHODS Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. RESULTS Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. LIMITATIONS The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. CONCLUSION The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival.
Collapse
Affiliation(s)
| | - Kimberly Leslie
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, US
| | - Thomas W. Uhde
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, US
| |
Collapse
|
24
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Płaźnik A. Midazolam treatment before re-exposure to contextual fear reduces freezing behavior and amygdala activity differentially in high- and low-anxiety rats. Pharmacol Biochem Behav 2014; 129:34-44. [PMID: 25482326 DOI: 10.1016/j.pbb.2014.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022]
Abstract
The aim of this study was to examine the effects of benzodiazepine (midazolam) administration on rat conditioned fear responses and on local brain activity (c-Fos and CRF expressions) of low- (LR) and high- (HR)anxiety rats after the first and second contextual fear test sessions. The animals were divided into LR and HR groups based on the duration of their conditioned freezing response in the first contextual fear test. The fear-re-conditioned LR and HR animals (28 days later) had increased freezing durations compared with those durations during the first conditioned fear test. These behavioral effects were accompanied by increased c-Fos expression in the medial amygdala (MeA), the basolateral amygdala (BLA), and the paraventricular hypothalamic nuclei and elevated CRF expression in the MeA. All these behavioral and immunochemical effects of fear re-conditioning were stronger in the LR group compared with the effects in the HR group. Moreover, in the LR rats, the re-conditioning led to decreased CRF expression in the primary motor cortex (M1) and to increased CRF expression in the BLA. The pretreatment of rats with midazolam before the second exposure to the aversive context significantly attenuated the conditioned fear response, lowered the serum corticosterone concentration, decreased c-Fos and CRF expressions in the MeA and in the BLA, and increased CRF complex density in M1 area only in the LR group. These studies have demonstrated that LR rats are more sensitive to re-exposure to fear stimuli and that midazolam pretreatment was associated with modified brain activity in the amygdala and in the prefrontal cortex in this group of animals. The current data may facilitate a better understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes accompanying some anxiety disorders characterized by stronger reactivity to re-exposure to stressful challenges, e.g., posttraumatic stress disorder.
Collapse
Affiliation(s)
- Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Hegoburu C, Parrot S, Ferreira G, Mouly AM. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory. ACTA ACUST UNITED AC 2014; 21:651-5. [PMID: 25403452 PMCID: PMC4236412 DOI: 10.1101/lm.036558.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation.
Collapse
Affiliation(s)
- Chloé Hegoburu
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| | - Guillaume Ferreira
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France Université de Bordeaux, Nutrition et Neurobiologie Intégrée, Bordeaux, France
| | - Anne-Marie Mouly
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, University Lyon1, Lyon, France
| |
Collapse
|
26
|
McCue MG, LeDoux JE, Cain CK. Medial amygdala lesions selectively block aversive pavlovian-instrumental transfer in rats. Front Behav Neurosci 2014; 8:329. [PMID: 25278858 PMCID: PMC4166994 DOI: 10.3389/fnbeh.2014.00329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/03/2014] [Indexed: 11/13/2022] Open
Abstract
Pavlovian conditioned stimuli (CSs) play an important role in the reinforcement and motivation of instrumental active avoidance (AA). Conditioned threats can also invigorate ongoing AA responding [aversive Pavlovian-instrumental transfer (PIT)]. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal, and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al., 2013, Learning and Memory). This analysis identified medial amygdala (MeA) as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian-instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling) and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats.
Collapse
Affiliation(s)
- Margaret G McCue
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA
| | - Joseph E LeDoux
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; Center for Neural Science, New York University , New York, NY , USA
| | - Christopher K Cain
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research , Orangeburg, NY , USA ; Child and Adolescent Psychiatry, New York University Medical School , New York, NY , USA
| |
Collapse
|
27
|
Zhang S, Jin X, You Z, Wang S, Lim G, Yang J, McCabe M, Li N, Marota J, Chen L, Mao J. Persistent nociception induces anxiety-like behavior in rodents: role of endogenous neuropeptide S. Pain 2014; 155:1504-1515. [PMID: 24793908 DOI: 10.1016/j.pain.2014.04.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Anxiety disorder is a comorbid condition of chronic pain. Analgesics and anxiolytics, subject to addiction and abuse, are currently used to manage pain and anxiety symptoms. However, the cellular mechanism underlying chronic pain and anxiety interaction remains to be elucidated. We report that persistent nociception following peripheral nerve injury induced anxiety-like behavior in rodents. Brain expression and release of neuropeptide S (NPS), a proposed endogenous anxiolytic peptide, was diminished in rodents with coexisting nociceptive and anxiety-like behaviors. Intracerebroventricular administration of exogenous NPS concurrently improved both nociceptive and anxiety-like behaviors. At the cellular level, NPS enhanced intra-amygdaloidal inhibitory transmission by increasing presynaptic gamma-aminobutyric acid (GABA) release from interneurons. These findings indicate that the interaction between nociceptive and anxiety-like behaviors in rodents may be regulated by the altered NPS-mediated intra-amygdaloidal GABAergic inhibition. The data suggest that enhancing the brain NPS function may be a new strategy to manage comorbid pain and anxiety.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Department of Anesthesia and Pain Therapy, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li W. Learning to smell danger: acquired associative representation of threat in the olfactory cortex. Front Behav Neurosci 2014; 8:98. [PMID: 24778610 PMCID: PMC3985029 DOI: 10.3389/fnbeh.2014.00098] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023] Open
Abstract
Neuroscience research over the past few decades has reached a strong consensus that the amygdala plays a key role in emotion processing. However, many questions remain unanswered, especially concerning emotion perception. Based on mnemonic theories of olfactory perception and in light of the highly associative nature of olfactory cortical processing, here I propose a sensory cortical model of olfactory threat perception (i.e., sensory-cortex-based threat perception): the olfactory cortex stores threat codes as acquired associative representations (AARs) formed via aversive life experiences, thereby enabling encoding of threat cues during sensory processing. Rodent and human research in olfactory aversive conditioning was reviewed, indicating learning-induced plasticity in the amygdala and the olfactory piriform cortex. In addition, as aversive learning becomes consolidated in the amygdala, the associative olfactory (piriform) cortex may undergo (long-term) plastic changes, resulting in modified neural response patterns that underpin threat AARs. This proposal thus brings forward a sensory cortical pathway to threat processing (in addition to amygdala-based processes), potentially accounting for an alternative mechanism underlying the pathophysiology of anxiety and depression.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, University of Wisconsin-Madison Madison, WI, USA ; Waisman Center, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
29
|
Tipps ME, Raybuck JD, Lattal KM. Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 2013; 112:87-100. [PMID: 24345414 DOI: 10.1016/j.nlm.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
A large body of literature demonstrates the effects of abused substances on memory. These effects differ depending on the drug, the pattern of delivery (acute or chronic), and the drug state at the time of learning or assessment. Substance use disorders involving these drugs are often comorbid with anxiety disorders, such as post-traumatic stress disorder (PTSD). When the cognitive effects of these drugs are considered in the context of the treatment of these disorders, it becomes clear that these drugs may play a deleterious role in the development, maintenance, and treatment of PTSD. In this review, we examine the literature evaluating the cognitive effects of three commonly abused drugs: nicotine, cocaine, and alcohol. These three drugs operate through both common and distinct neurobiological mechanisms and alter learning and memory in multiple ways. We consider how the cognitive and affective effects of these drugs interact with the acquisition, consolidation, and extinction of learned fear, and we discuss the potential impediments that substance abuse creates for the treatment of PTSD.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
30
|
Bozorgmehr T, Ardiel EL, McEwan AH, Rankin CH. Mechanisms of plasticity in a Caenorhabditis elegans mechanosensory circuit. Front Physiol 2013; 4:88. [PMID: 23986713 PMCID: PMC3750945 DOI: 10.3389/fphys.2013.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
Despite having a small nervous system (302 neurons) and relatively short lifespan (14–21 days), the nematode Caenorhabditis elegans has a substantial ability to change its behavior in response to experience. The behavior discussed here is the tap withdrawal response, whereby the worm crawls backwards a brief distance in response to a non-localized mechanosensory stimulus from a tap to the side of the Petri plate within which it lives. The neural circuit that underlies this behavior is primarily made up of five sensory neurons and four pairs of interneurons. In this review we describe two classes of mechanosensory plasticity: adult learning and memory and experience dependent changes during development. As worms develop through young adult and adult stages there is a shift toward deeper habituation of response probability that is likely the result of changes in sensitivity to stimulus intensity. Adult worms show short- intermediate- and long-term habituation as well as context dependent habituation. Short-term habituation requires glutamate signaling and auto-phosphorylation of voltage-dependent potassium channels and is modulated by dopamine signaling in the mechanosensory neurons. Long-term memory (LTM) for habituation is mediated by down-regulation of expression of an AMPA-type glutamate receptor subunit. Intermediate memory involves an increase in release of an inhibitory neuropeptide. Depriving larval worms of mechanosensory stimulation early in development leads to fewer synaptic vesicles in the mechanosensory neurons and lower levels of an AMPA-type glutamate receptor subunit in the interneurons. Overall, the mechanosensory system of C. elegans shows a great deal of experience dependent plasticity both during development and as an adult. The simplest form of learning, habituation, is not so simple and is mediated and/or modulated by a number of different processes, some of which we are beginning to understand.
Collapse
Affiliation(s)
- Tahereh Bozorgmehr
- Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | | | |
Collapse
|
31
|
Davis M, Walker DL. Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock. Brain Struct Funct 2013; 219:1969-82. [PMID: 23934654 DOI: 10.1007/s00429-013-0616-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
Abstract
A core symptom of post-traumatic stress disorder is hyper-arousal-manifest in part by increases in the amplitude of the acoustic startle reflex. Gewirtz et al. (Prog Neuropsychopharmacol Biol Psychiatry 22:625-648, 1998) found that, in rats, persistent shock-induced startle increases were prevented by pre-test electrolytic lesions of the bed nucleus of the stria terminalis (BNST). We used reversible inactivation to determine if similar effects reflect actions on (a) BNST neurons themselves versus fibers-of-passage, (b) the development versus expression of such increases, and (c) associative fear versus non-associative sensitization. Twenty-four hours after the last of three shock sessions, startle was markedly enhanced when rats were tested in a non-shock context. These increases decayed over the course of several days. Decay was unaffected by context exposure, and elevated startle was restored when rats were tested for the first time in the original shock context. Thus, both associative and non-associative components could be measured under different conditions. Pre-test intra-BNST infusions of the AMPA receptor antagonist NBQX (3 μg/side) blocked the non-associative (as did infusions into the basolateral amygdala) but not the associative component, whereas pre-shock infusions disrupted both. NBQX did not affect baseline startle or shock reactivity. These results indicate that AMPA receptors in or very near to the BNST are critical for the expression and development of non-associative shock-induced startle sensitization, and also for context fear conditioning, but not context fear expression. More generally, they suggest that treatments targeting the BNST may be clinically useful for treating trauma-related hyper-arousal and perhaps for retarding its development.
Collapse
Affiliation(s)
- Michael Davis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE (Yerkes Neuroscience Bldg), Rm. 5214, Atlanta, USA
| | | |
Collapse
|
32
|
Contreras CM, Gutiérrez-García AG, Molina-Jiménez T. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala. Behav Brain Res 2013; 252:101-9. [PMID: 23721965 DOI: 10.1016/j.bbr.2013.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/26/2022]
Abstract
Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition.
Collapse
Affiliation(s)
- Carlos M Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | | | | |
Collapse
|
33
|
Do Monte FH, Souza RR, Wong TT, Carobrez ADP. Systemic or intra-prelimbic cortex infusion of prazosin impairs fear memory reconsolidation. Behav Brain Res 2013; 244:137-41. [PMID: 23380678 DOI: 10.1016/j.bbr.2013.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/19/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
Abstract
The alpha-1 adrenergic antagonist prazosin has been used to alleviate the symptoms of PTSD, but the mechanism remains unclear. One possibility is that prazosin may disrupt fear memory reconsolidation, leading to attenuation of fear responses. To test this hypothesis, we administered a single systemic injection of prazosin during the reconsolidation of olfactory fear conditioning in rats. We found that a post-retrieval injection of prazosin disrupted subsequent retrieval of fear. Similarly, intra-prelimbic cortex infusion of prazosin during the reconsolidation period also disrupted subsequent retrieval of fear. These findings suggest that fear memory undergoes reconsolidation through activation of alpha-1 adrenergic receptors in the prelimbic cortex.
Collapse
Affiliation(s)
- Fabricio H Do Monte
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
34
|
Lau HL, Timbers TA, Mahmoud R, Rankin CH. Genetic dissection of memory for associative and non-associative learning inCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2012; 12:210-23. [DOI: 10.1111/j.1601-183x.2012.00863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
|
35
|
Hendriksen H, Bink DI, Daniels EG, Pandit R, Piriou C, Slieker R, Westphal KG, Olivier B, Oosting RS. Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for post-traumatic stress disorder. Neuropharmacology 2012; 63:733-42. [DOI: 10.1016/j.neuropharm.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
36
|
Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012; 6:33. [PMID: 22933993 PMCID: PMC3423790 DOI: 10.3389/fnana.2012.00033] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022] Open
Abstract
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Facultat de Ciències Biològiques, Laboratory of Functional and Comparative Neuroanatomy, Departament de Biologia Cel·lular, Universitat de València València, Spain
| | | | | | | | | |
Collapse
|
37
|
Johansen JP, Wolff SB, Lüthi A, LeDoux JE. Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 2012; 71:1053-60. [PMID: 22169096 PMCID: PMC3319499 DOI: 10.1016/j.biopsych.2011.10.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 10/14/2022]
Abstract
Neural circuits underlie our ability to interact in the world and to learn adaptively from experience. Understanding neural circuits and how circuit structure gives rise to neural firing patterns or computations is fundamental to our understanding of human experience and behavior. Fear conditioning is a powerful model system in which to study neural circuits and information processing and relate them to learning and behavior. Until recently, technological limitations have made it difficult to study the causal role of specific circuit elements during fear conditioning. However, newly developed optogenetic tools allow researchers to manipulate individual circuit components such as anatomically or molecularly defined cell populations, with high temporal precision. Applying these tools to the study of fear conditioning to control specific neural subpopulations in the fear circuit will facilitate a causal analysis of the role of these circuit elements in fear learning and memory. By combining this approach with in vivo electrophysiological recordings in awake, behaving animals, it will also be possible to determine the functional contribution of specific cell populations to neural processing in the fear circuit. As a result, the application of optogenetics to fear conditioning could shed light on how specific circuit elements contribute to neural coding and to fear learning and memory. Furthermore, this approach may reveal general rules for how circuit structure and neural coding within circuits gives rise to sensory experience and behavior.
Collapse
Affiliation(s)
- Joshua P. Johansen
- Center for Neural Science, New York University, New York, NY,Laboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Steffen B.E. Wolff
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Switzerland
| | - Joseph E. LeDoux
- Center for Neural Science, New York University, New York, NY,The Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
| |
Collapse
|
38
|
Tulogdi A, Sörös P, Tóth M, Nagy R, Biró L, Aliczki M, Klausz B, Mikics E, Haller J. Temporal changes in c-Fos activation patterns induced by conditioned fear. Brain Res Bull 2012; 88:359-70. [PMID: 22516520 DOI: 10.1016/j.brainresbull.2012.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 01/27/2023]
Abstract
Mechanisms underlying shock-induced conditioned fear - a paradigm frequently used to model posttraumatic stress disorder, PTSD - are usually studied shortly after shocks. Some of the brain regions relevant to conditioned fear were activated in all the c-Fos studies published so far, but the overlap between the activated regions was small across studies. We hypothesized that discrepant findings were due to dynamic neural changes that followed shocks, and a more consistent picture would emerge if consequences were studied after a longer interval. Therefore, we exposed rats to a single session of footshocks and studied their behavioral and neural responses one and 28 days later. The neuronal activation marker c-Fos was studied in 24 brain regions relevant for conditioned fear, e.g. in subdivisions of the prefrontal cortex, hippocampus, amygdala, hypothalamic defensive system, brainstem monoaminergic nuclei and periaqueductal gray. The intensity of conditioned fear (as shown by the duration of contextual freezing) was similar at the two time-points, but the associated neuronal changes were qualitatively different. Surprisingly, however, Multiple Regression Analyses suggested that conditioned fear-induced changes in neuronal activation patterns predicted the duration of freezing with high accuracy at both time points. We suggest that exposure to electric shocks is followed by a period of plasticity where the mechanisms that sustain conditioned fear undergo qualitative changes. Neuronal changes observed 28 days but not 1 day after shocks were consistent with those observed in human studies performed in PTSD patients.
Collapse
Affiliation(s)
- Aron Tulogdi
- Department of Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Excitotoxic lesions of the medial amygdala attenuate olfactory fear-potentiated startle and conditioned freezing behavior. Behav Brain Res 2012; 229:427-32. [DOI: 10.1016/j.bbr.2012.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
|
40
|
Roth TC, Gallagher CM, LaDage LD, Pravosudov VV. Variation in brain regions associated with fear and learning in contrasting climates. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:181-90. [PMID: 22286546 DOI: 10.1159/000335421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/25/2011] [Indexed: 12/25/2022]
Abstract
In environments where resources are difficult to obtain and enhanced cognitive capabilities might be adaptive, brain structures associated with cognitive traits may also be enhanced. In our previous studies, we documented a clear and significant relationship among environmental conditions, memory and hippocampal structure using ten populations of black-capped chickadees (Poecile atricapillus) over a large geographic range. In addition, focusing on just the two populations from the geographical extremes of our large-scale comparison, Alaska and Kansas, we found enhanced problem-solving capabilities and reduced neophobia in a captive-raised population of black-capped chickadees originating from the energetically demanding environment (Alaska) relative to conspecifics from the milder environment (Kansas). Here, we focused on three brain regions, the arcopallium (AP), the nucleus taeniae of the amygdala and the lateral striatum (LSt), that have been implicated to some extent in aspects of these behaviors in order to investigate whether potential differences in these brain areas may be associated with our previously detected differences in cognition. We compared the variation in neuron number and volumes of these regions between these populations, in both wild-caught birds and captive-raised individuals. Consistent with our behavioral observations, wild-caught birds from Kansas had a larger AP volume than their wild-caught conspecifics from Alaska, which possessed a higher density of neurons in the LSt. However, there were no other significant differences between populations in the wild-caught and captive-raised groups. Interestingly, individuals from the wild had larger LSt and AP volumes with more neurons than those raised in captivity. Overall, we provide some evidence that population-related differences in problem solving and neophobia may be associated with differences in volume and neuron numbers of our target brain regions. However, the relationship is not completely clear, and our study raises numerous questions about the relationship between the brain and behavior, especially in captive animals.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, Nev., USA.
| | | | | | | |
Collapse
|
41
|
Markham CM, Luckett CA, Huhman KL. The medial prefrontal cortex is both necessary and sufficient for the acquisition of conditioned defeat. Neuropharmacology 2011; 62:933-9. [PMID: 22001285 DOI: 10.1016/j.neuropharm.2011.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that the basolateral amygdala (BLA) is a key component of a neural circuit mediating memory formation for emotionally relevant stimuli in an ethologically-based model of conditioned fear, termed conditioned defeat (CD). In this model, subjects are socially defeated by a larger, more aggressive hamster. Upon subsequent exposure to a smaller, non-aggressive intruder, the defeated animal will show high levels of submissive behaviors and fail to defend its territory. Here we examined whether the medial prefrontal cortex (mPFC), an area with extensive connections with the amygdala, is also a component of this circuit. Temporary inactivation of the mPFC using muscimol, a GABA(A) receptor agonist, significantly enhanced the acquisition but not expression of CD, while blockade of GABA(A) receptors in the mPFC using bicuculline, a GABA(A) antagonist, impaired acquisition of CD. Given these findings, we next sought to test whether plasticity related to the defeat experience occurs in the mPFC. We infused anisomycin, a protein synthesis inhibitor, in the mPFC but this treatment did not alter the acquisition of CD. In our final experiment, we demonstrated that bicuculline failed to alter the acquisition of CD. Together, these results demonstrate for the first time that while the mPFC is both necessary and sufficient for the acquisition of CD, it does not appear to mediate plasticity related to the defeat experience. In contrast, while plasticity underlying CD does appear to occur in the BLA, GABAergic receptor inhibition in the BLA is not sufficient to enhance CD. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Chris M Markham
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Suite 832, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
42
|
Trogrlic L, Wilson YM, Newman AG, Murphy M. Context fear learning specifically activates distinct populations of neurons in amygdala and hypothalamus. Learn Mem 2011; 18:678-87. [PMID: 21969490 DOI: 10.1101/lm.2314311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-fos-regulated transgene following context fear conditioning. Here, we have extended these studies to look throughout the amygdala for learning-specific activation. We identified two further neuronal populations, in the amygdalo-striatal transition area and medial amygdala, that show learning-specific activation. We also identified a population of hypothalamic neurons that show strong learning-specific activation. In addition, we asked whether these neurons are activated following recall of fear-conditioning memory. None of the populations of neurons we identified showed significant memory-recall-related activation. These findings suggest that a series of discrete populations of neurons are involved in fear learning in amygdala and hypothalamus. The lack of reactivation during memory recall suggests that these neurons either do not undergo substantial change following recall, or that c-fos is not involved in any such activation and change.
Collapse
Affiliation(s)
- Lidia Trogrlic
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
43
|
Parsons RG, Davis M. Gone but not Forgotten. Front Behav Neurosci 2011; 5:51. [PMID: 21887139 PMCID: PMC3157672 DOI: 10.3389/fnbeh.2011.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ryan G Parsons
- Department of Psychiatry and Behavioral Sciences, Emory University Atlanta, GA, USA
| | | |
Collapse
|
44
|
Parkes SL, Westbrook RF. Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev Neurosci 2011; 22:317-33. [DOI: 10.1515/rns.2011.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ER, Baldo MVC, Canteras NS. Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 2010; 172:314-28. [PMID: 20955766 DOI: 10.1016/j.neuroscience.2010.10.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/22/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
Abstract
The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses.
Collapse
Affiliation(s)
- R C Martinez
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | | | | | | |
Collapse
|
46
|
Zimmerman JM, Maren S. NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. Eur J Neurosci 2010; 31:1664-70. [PMID: 20525079 DOI: 10.1111/j.1460-9568.2010.07223.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long-term extinction memory to that CS. In contrast, infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long-term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor-dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.
Collapse
|
47
|
Muravieva EV, Alberini CM. Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 2010; 17:306-13. [PMID: 20516209 DOI: 10.1101/lm.1794710] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies suggested that the beta-adrenergic receptor antagonist propranolol might be a novel, potential treatment for post-traumatic stress disorder (PTSD). This hypothesis stemmed mainly from rodent studies showing that propranolol interferes with the reconsolidation of Pavlovian fear conditioning (FC). However, subsequent investigations in humans have produced controversial evidence about the effect of propranolol on fear memories and an effect on PTSD symptomatology has yet to be reported. Thus, it remains to be established whether propranolol interferes with the reconsolidation of fear memories at large. To address this question, we tested the effect of systemic injections of propranolol administered before or after the retrieval of an inhibitory avoidance (IA) memory elicited with different footshock intensities. In parallel, the same treatment was tested on the reconsolidation of Pavlovian FC. Propranolol showed no effect on the reconsolidation of IA, although the pre-retrieval administration resulted in a significant retrieval impairment. This impairment was transient, and memory returned to control levels at later times. In agreement with previous studies, we found that systemic administration of propranolol disrupts the reconsolidation of Pavlovian FC and that its injection following a retrieval elicited by cue exposure also interferes with the reconsolidation of contextual FC. Hence, propranolol disrupts the reconsolidation of Pavlovian FC, but has no effect on the reconsolidation of IA. The results indicate that the efficacy of systemic administration of propranolol in disrupting the reconsolidation of fear memories is limited.
Collapse
Affiliation(s)
- Elizaveta V Muravieva
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
48
|
Inactivation of the central but not the basolateral nucleus of the amygdala disrupts learning in response to overexpectation of reward. J Neurosci 2010; 30:2911-7. [PMID: 20181588 DOI: 10.1523/jneurosci.0054-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amygdala is critical for associating predictive cues with primary rewarding and aversive outcomes. This is particularly evident in tasks in which information about expected outcomes is required for normal responding. Here we used a pavlovian overexpectation task to test whether outcome signaling by amygdala might also be necessary for changing those representations in the face of unexpected outcomes. Rats were trained to associate several different cues with a food reward. After learning, two of the cues were presented together, in compound, followed by the same reward. Before each compound training session, rats received infusions of 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide or saline into either the basolateral (ABL) or central nucleus (CeN) of amygdala. We found that infusions into CeN abolished the normal decline in responding to the compounded cue in a later probe test, whereas infusions into ABL had no effect. These results are inconsistent with the proposal that signaling of information about expected outcomes by ABL contributes to learning, at least in this setting, and instead implicate the CeN in this process, perhaps attributable to the hypothesized involvement of this area in attention and variations in stimulus processing.
Collapse
|
49
|
Abstract
Recent advances indicate that the amygdala represents valence: a general appetitive/aversive affective characteristic that bears similarity to the neuroeconomic concept of value. Neurophysiological studies show that individual amygdala neurons respond differentially to a range of stimuli with positive or negative affective significance. Meanwhile, increasingly specific lesion/inactivation studies reveal that the amygdala is necessary for processes--for example, fear extinction and reinforcer devaluation--that involve updating representations of value. Furthermore, recent neuroimaging studies suggest that the human amygdala mediates performance on many reward-based decision-making tasks. The encoding of affective significance by the amygdala might be best described as a representation of state value-a representation that is useful for coordinating physiological, behavioral, and cognitive responses in an affective/emotional context.
Collapse
Affiliation(s)
- Sara E Morrison
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | |
Collapse
|
50
|
Vinkers CH, Bijlsma EY, Houtepen LC, Westphal KGC, Veening JG, Groenink L, Olivier B. Medial amygdala lesions differentially influence stress responsivity and sensorimotor gating in rats. Physiol Behav 2009; 99:395-401. [PMID: 20006965 DOI: 10.1016/j.physbeh.2009.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023]
Abstract
BACKGROUND The amygdala is involved in the coordination of stress but is also an important gatekeeper involved in the regulation of vigilance. The amygdala is structurally complex, consisting of several nuclei with specific functions in the affective response to environmental stimuli. There are indications that the medial amygdaloid nucleus may be a pivotal player in acute responses to emotional environmental stimuli. METHODS The present study therefore aimed to study the effects of bilateral electrolytic lesions of the medial amygdala on unconditioned anxiety-related behavior as well as a sensorimotor gating parameter (prepulse inhibition, PPI) in rats. Anxiety-related behavior was assessed with the use of stress-induced hyperthermia (SIH), light-enhanced startle (LES) and open field behavior. RESULTS Bilateral electrolytic lesions of the medial amygdala decreased the SIH response and anxiety-related open field behavior. In contrast, lesioned animals displayed augmented LES and disrupted PPI. No changes in basal locomotor activity, body temperature and acoustic startle were found between lesioned and sham animals. CONCLUSIONS The present study suggests that the medial amygdala is an important player in response to acute environmental stimuli. Decreased unconditioned psychological stress responses were found, whereas LES was enhanced and sensorimotor processing was disrupted. However, considering the existing data on basolateral amygdala involvement in PPI and bed nucleus of the stria terminalis involvement in LES, local infusion studies into the MeA should be performed to further substantiate these findings.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neurosciences, Utrecht University, Sorbonnelaan 16, 3584CA Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|