1
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Jácome MA, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic analysis reveals a unique DNA methylation program of metastasis-competent circulating tumor cells in colorectal cancer. Sci Rep 2023; 13:15401. [PMID: 37717096 PMCID: PMC10505142 DOI: 10.1038/s41598-023-42037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Circulating tumor cells (CTCs) and epigenetic alterations are involved in the development of metastasis from solid tumors, such as colorectal cancer (CRC). The aim of this study was to characterize the DNA methylation profile of metastasis-competent CTCs in CRC. The DNA methylome of the human CRC-derived cell line CTC-MCC-41 was analyzed and compared with primary (HT29, Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cells. The association between methylation and the transcriptional profile of CTC-MCC-41 was also evaluated. Differentially methylated CpGs were validated with pyrosequencing and qMSP. Compared to primary and metastatic CRC cells, the methylation profile of CTC-MCC-41 was globally different and characterized by a slight predominance of hypomethylated CpGs mainly distributed in CpG-poor regions. Promoter CpG islands and shore regions of CTC-MCC-41 displayed a unique methylation profile that was associated with the transcriptional program and relevant cancer pathways, mainly Wnt signaling. The epigenetic regulation of relevant genes in CTC-MCC-41 was validated. This study provides new insights into the epigenomic landscape of metastasis-competent CTCs, revealing biological information for metastasis development, as well as new potential biomarkers and therapeutic targets for CRC patients.
Collapse
Grants
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Juan Rodés, Instituto de Salud Carlos III (ISCIII) and Servizo Galego de Saúde (SERGAS), reference number JR17/00016
- PFIS, Instituto de Salud Carlos III (ISCIII) and Fondo Social Europeo, reference number FI19/00240
- Xunta de Galicia, reference number IN606A-2020/004
- Axencia Galega de Innovación (GAIN), Vicepresidencia Segunda e Consellería de Economía, Empresa e Innovación. Reference number IN853B 2018/03
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Instituto de Salud Carlos III (ISCII), reference number CP20/00129
- European Union Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie grant agreement No. 765492, The National Institute of Cancer (INCa, http://www.e-cancer.fr), SIRIC Montpellier Cancer Grant INCa_Inserm_DGOS_12553, and the ERA-NET TRANSCAN 2 JTC 2016 PROLIPSY, la Fondation ARC pour la Recherche sur le cancer and les Fonds de dotation AFER pour la recherche médicale
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Xie RT, Li QY, Sun XC, Zhi QJ, Huang XX, Zhu XC, Miao QZ, Zhou DZ, Han DY. Hypomethylation of Thyroid Peroxidase as a Biomarker for Hepatocellular Carcinoma with Tumor Thrombosis. Curr Med Sci 2022; 42:1248-1255. [PMID: 36542322 DOI: 10.1007/s11596-022-2643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thyroid hormones (THs) regulate multiple physiological activities in the liver, including cellular metabolism, differentiation, and cell growth, and play important roles in the pathogenesis of hepatocellular carcinoma (HCC). Thyroid peroxidase (TPO) is a key molecule involved in the THs synthesis and signaling pathway. As an epigenetic modification, DNA methylation has a critical role in tumorigenesis with diagnostic potential. However, the connection between THs and DNA methylation has been rarely investigated. METHODS The methylation of key TH-related genes was analyzed by in-house epigenome-wide scanning, and we further analyzed the methylation levels of the TPO promotor in 164 sample pairs of HCC and adjacent non-cancerous tissues by Sequenom EpiTYPER assays, and evaluated their clinical implications. RESULTS We identified that the methylation of the TPO promoter was downregulated in the HCC tissues (P<0.0001) with a mean difference ranging from 18.5% to 22.3%. This methylation pattern correlated with several clinical factors, including a multi-satellite tumor, fibrous capsule, and the presence of tumor thrombus. The receiver operator characteristic (ROC) curve analysis further confirmed that the percent methylated reference (PMR) values for TPO were predictive of the tumor [the area under the curve (AUC) ranged from 0.755 to 0.818] and the thrombosis in the HCC patients (the AUC ranged from 0.706 to 0.777). CONCLUSION These findings demonstrated that epigenetic alterations of TPO, as indicated by the PMR values, were a potential biomarker for HCC patients with tumor thrombosis.
Collapse
Affiliation(s)
- Ru-Ting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xue-Chen Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing-Jun Zhi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiang-Xiang Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xing-Chen Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qi-Zeng Miao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dai-Zhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Dong-Yan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
3
|
Rodriguez-Casanova A, Costa-Fraga N, Castro-Carballeira C, González-Conde M, Abuin C, Bao-Caamano A, García-Caballero T, Brozos-Vazquez E, Rodriguez-López C, Cebey V, Palacios P, Cueva JF, López-López R, Costa C, Díaz-Lagares A. A genome-wide cell-free DNA methylation analysis identifies an episignature associated with metastatic luminal B breast cancer. Front Cell Dev Biol 2022; 10:1016955. [PMID: 36393855 PMCID: PMC9641197 DOI: 10.3389/fcell.2022.1016955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/12/2022] [Indexed: 08/27/2023] Open
Abstract
Breast cancers of the luminal B subtype are frequent tumors with high proliferation and poor prognosis. Epigenetic alterations have been found in breast tumors and in biological fluids. We aimed to profile the cell-free DNA (cfDNA) methylome of metastatic luminal B breast cancer (LBBC) patients using an epigenomic approach to discover potential noninvasive biomarkers. Plasma cfDNA was analyzed using the Infinium MethylationEpic array in a cohort of 14 women, including metastatic LBBC patients and nontumor controls. The methylation levels of cfDNA and tissue samples were validated with droplet digital PCR. The methylation and gene expression data of 582 primary luminal breast tumors and 79 nontumor tissues were obtained from The Cancer Genome Atlas (TCGA). We found an episignature of 1,467 differentially methylated CpGs that clearly identified patients with LBBC. Among the genes identified, the promoter hypermethylation of WNT1 was validated in cfDNA, showing an area under the ROC curve (AUC) of 0.86 for the noninvasive detection of metastatic LBBC. Both paired cfDNA and primary/metastatic breast tumor samples showed hypermethylation of WNT1. TCGA analysis revealed significant WNT1 hypermethylation in the primary tumors of luminal breast cancer patients, with a negative association between WNT1 methylation and gene expression. In this proof-of-principle study, we discovered an episignature associated with metastatic LBBC using a genome-wide cfDNA methylation approach. We also identified the promoter hypermethylation of WNT1 in cfDNA as a potential noninvasive biomarker for luminal breast cancer. Our results support the use of EPIC arrays to identify new epigenetic noninvasive biomarkers in breast cancer.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolas Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | | | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Carmen Abuin
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Elena Brozos-Vazquez
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Carmela Rodriguez-López
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Victor Cebey
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Juan F. Cueva
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Yin L, Zhang N, Yang Q. DNA methylation subtypes for ovarian cancer prognosis. FEBS Open Bio 2021; 11:851-865. [PMID: 33278864 PMCID: PMC7931230 DOI: 10.1002/2211-5463.13056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is one of three major malignancies of the female reproductive system. DNA methylation (MET) is closely related to ovarian cancer occurrence and development, and as such, elucidation of effective MET subtype markers may guide individualized treatment and improve ovarian cancer prognosis. To identify potential markers, we downloaded a total of 571 ovarian cancer MET samples from The Cancer Genome Atlas (TCGA), and established a Cox proportional hazards model using the MET spectrum and clinical pathological parameters. A total of 250 prognosis-related MET loci were obtained by Cox regression, and six molecular subtypes were screened by consensus clustering of CpG loci with a significant difference in both univariate and multivariate analyses. There was a remarkable MET difference between most subtypes. Cluster 2 had the highest MET level and demonstrated the best prognosis, while Clusters 4 and 5 had MET levels significantly lower than those of the other subtypes and demonstrated very poor prognosis. All Cluster 5 samples were at a high grade, while the percentage of stage IV samples in Cluster 4 was greater than in the other subtypes. We obtained five CpG loci using a coexpression network: cg27625732, cg00431050, cg22197830, cg03152385, and cg22809047. Our cluster analysis showed that prognosis in patients with hypomethylation was significantly worse than in patients with hypermethylation. These MET molecular subtypes can be used not only to evaluate ovarian cancer prognosis, but also to fully distinguish the tumor stage and histological grade in patients with ovarian cancer.
Collapse
Affiliation(s)
- Lili Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ningning Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
6
|
Li J, Chen N, Gong X. Prognostic implications of aberrantly expressed methylation‑driven genes in hepatocellular carcinoma: A study based on The Cancer Genome Atlas. Mol Med Rep 2019; 20:5304-5314. [PMID: 31661127 DOI: 10.3892/mmr.2019.10771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
RNA‑Sequencing and methylation data for hepatocellular carcinoma (HCC) were downloaded from The Cancer Genome Atlas (TCGA). The aberrantly expressed methylation‑driven genes in HCC and normal tissues were identified using the Limma package and the MethylMix algorithm. The Database for Annotation, Visualization and Integrated Discovery and ConsensusPathDB were used for Gene Ontology (GO) enrichment and pathway analysis. Univariate and multivariate Cox regression analyses were used to construct a prognostic risk model of HCC. Survival curve and receiver operating characteristic (ROC) curves were applied to evaluate the clinical utility of the risk model. A total of 238 methylation‑driven genes were successfully identified from cancer and normal tissues. GO enrichment analysis indicated that these genes functioned in the extracellular space, interfering with lipid metabolism in hepatocytes and regulating adaptive immune responses. In total, 14 relevant pathways were identified. The following prognostic risk model was generated: Risk score=CALML3 (degree of methylation) x (‑4.860) + CCNI2 x (2.071) + TNFRSF12A x (‑3.369) + IFITM1 x (1.203) + ENPP7P13 x (‑1.366) + DDT x (2.139) + RASAL2‑AS1 x (‑1.384) + ANKRD22 x (‑3.215). The median risk score (0.970) derived from this model was set as cutoff value for assigning patients to high‑ or low‑risk group. The 5‑year survival rate was 35.8% [95% confidence interval (CI)=27.1‑47.4%] in the high‑risk group and 61.7% (95% CI=51.4‑74.2%) in the low‑risk group (P<0.0001). The ROC curve showed an area under the curve of 0.742, indicating that this model is appropriate for predicting the survival rate of patients. Furthermore, the methylation and expression levels of two key genes, tumor necrosis factor superfamily member 12A and D‑dopachrome decarboxylase, were significantly associated with prognosis and were correlated with cg00510447, cg26808293, cg11060661 and cg16132339 methylation. In conclusion, a prognostic risk model for HCC is proposed based on the bioinformatic analysis of methylation‑driven genes. The findings of the present study may improve understanding of the pathogenesis and prognosis of HCC.
Collapse
Affiliation(s)
- Jinzhong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| | - Ning Chen
- Department of General Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
7
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
8
|
Guarnieri V, Muscarella LA, Verdelli C, Corbetta S. Alterations of DNA methylation in parathyroid tumors. Mol Cell Endocrinol 2018; 469:60-69. [PMID: 28501573 DOI: 10.1016/j.mce.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism, a metabolic disorder characterized by parathormone hypersecretion. Parathyroid neoplasia are frequently benign adenomas or multiple glands hyperplasia, while malignancies are rare. The epigenetic scenario in parathyroid tumors has just begun to be decoded: DNA methylation, histones and chromatin modifiers expression have been investigated so far. The main findings suggest that DNA methylation and chromatin remodeling are active and deregulated in parathyroid tumors, cooperating with genetic alterations to drive the tumor phenotype: the tumor suppressors menin and parafibromin, involved in parathyroid tumorigenesis, interact with chromatin modifiers, defining distinct epigenetic derangements. Many epigenetic alterations identified in parathyroid tumors are common to those in human cancers; moreover, some aspects of the epigenetic profile resemble epigenetic features of embryonic stem cells. Epigenetic profile may contribute to define the heterogeneity of parathyroid tumors and to provide targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Vito Guarnieri
- Genetic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
9
|
Lin H, Fan X, He L, Zhou D. Methylation patterns of RASA3 associated with clinicopathological factors in hepatocellular carcinoma. J Cancer 2018; 9:2116-2122. [PMID: 29937930 PMCID: PMC6010675 DOI: 10.7150/jca.24567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/31/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide. The relationship between the gene methylation accumulation and HCC has been widely studied. In our study, we used the Sequenom EpiTYPER assay to investigate the methylation levels of the RASA3 in 164 HCC samples and paired adjacent non-cancerous tissues, and the association between methylation level and clinicopathological features. The methylation level of the RASA3 in HCC samples was found significantly lower than that in the adjacent non-cancerous tissues (P<0.0001). Moreover, the hypomethylation of RASA3 in HCC samples was connected with the presence of tumornecrosis (P=0.029) and alcohol intake (P=0.002). Furthermore, it was found that the expression of RASA3 was significantly decreased in tumor tissues (P=0.0053), which was also correlated with the methylation levels of RASA3 gene. Thus, RASA3 hypomethylation is a common feature in HCC, and may be a potential mechanism for HCC development, and serves as a useful biomarker for the early detection, especially in alcohol-associated HCCs.
Collapse
Affiliation(s)
- Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - LiFeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Present address: Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine; Institute of Medical Genetics, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Epigenetics and testicular germ cell tumors. Gene 2018; 661:22-33. [PMID: 29605605 DOI: 10.1016/j.gene.2018.03.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
|
11
|
Zeng R, Liu Y, Jiang ZJ, Huang JP, Wang Y, Li XF, Xiong WB, Wu XC, Zhang JR, Wang QE, Zheng YF. EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell carcinoma. Int J Oncol 2018; 52:1443-1454. [PMID: 29568917 PMCID: PMC5873871 DOI: 10.3892/ijo.2018.4316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Although there have been reports about the role of erythrocyte membrane protein band 4.1 like 3 (EPB41L3) in several types of cancer, primarily in non-small-cell lung carcinoma, the molecular function and modulatory mechanisms of EPB41L3 remain unclear. In specific, the functional and clinical significance of EPB41L3 in esophageal squamous cell carcinoma (ESCC) has not been explored to date. In the present study, reduced EPB41L3 expression was demonstrated in ESCC cell lines and tissues, which was due to its high methylation rate. Ectopic expression of EPB41L3 in ESCC cells inhibited cell proliferation in vivo and in vitro. In addition, EPB41L3 overexpression induced apoptosis and G2/M cell cycle arrest by activating Caspase-3/8/9 and Cyclin-dependent kinase 1/Cyclin B1 signaling, respectively. Notably, patients with higher EPB41L3 expression had markedly higher overall survival rates compared with patients with lower EPB41L3 expression. In summary, the present results suggest that EPB41L3 may be a tumor suppressor gene in ESCC development, representing a potential therapeutic target and a prognostic indicator for ESCC.
Collapse
Affiliation(s)
- Rong Zeng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhao-Jing Jiang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jun-Peng Huang
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xu-Feng Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Bin Xiong
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao-Cong Wu
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ji-Ren Zhang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
12
|
Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression. Oncotarget 2018; 7:83627-83640. [PMID: 27845898 PMCID: PMC5347793 DOI: 10.18632/oncotarget.13271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression.
Collapse
|
13
|
Xing C, Zheng M. Response to Comments on Zheng et al. "Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity" Int. J. Environ. Res. Public Health 2017, 14, 1393. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121529. [PMID: 29215583 PMCID: PMC5750947 DOI: 10.3390/ijerph14121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
We would like to thank Moshammer and Poteser for their comments [...].
Collapse
Affiliation(s)
- Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Min Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
14
|
Zhou J, Huang Z, Wang Z, Liu S, Grandien A, Ernberg I, He Z, Zhang X. Tumor suppressor BLU promotes TRAIL-induced apoptosis by downregulating NF-κB signaling in nasopharyngeal carcinoma. Oncotarget 2017; 8:43853-43865. [PMID: 28029652 PMCID: PMC5546445 DOI: 10.18632/oncotarget.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/19/2016] [Indexed: 12/17/2022] Open
Abstract
A putative tumor suppressor BLU mapped on the chromosomal 3p21 region, is frequently lost in human tumors including nasopharyngeal carcinoma (NPC). To explore the underlying mechanism of tumor suppression by BLU, its potential to promote apoptosis induced by TRAIL, an effector molecule elaborated by natural killer-T (NKT) cells was investigated. BLU was re-expressed in NPC-derived HNE1 cells by recombinant adenoviral infection and the cells were challenged with recombinant TRAIL. The growth inhibition of BLU was assayed and apoptosis was examined by flow cytometry-based tetramethylrhodamine ethyl ester (TMRE) and annexin V staining, cleavage of pro-caspase-8 and poly ADP ribose polymerase (PARP). The modulation of NF-κB pathway by BLU was evaluated by the reporter activity and estimation of the level of the molecules involved such as IKKalpha, p65 NF-κB, as well as NF-κB induced anti-apoptotic factors cFLIPL and cIAP2. The expression of BLU exerted in vitro and in vivo growth inhibitory effect and promoted TRAIL-induced apoptosis. This phenomenon was validated by FACS-based assays of mitochondrial membrane potential (BLU vs. Vector 87.8% ± 7.7% and 72.1%±6.7% at 6h exposure to TRAIL) and phosphatidylserine turnover (BLU vs. vector: 28.7%±2.9% and 22.6%±2.5%), as well as, enhanced caspapse-8 cleavage. Similar with the findings that BLU promotes chemotherapeutic agent-induced apoptosis, it also augmented death receptor-induced pathway through NF-κB pathway inhibition. In conclusion, BLU suppressed tumor formation by strengthening the antitumor immunity.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziyou Wang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shumin Liu
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Alf Grandien
- Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zhiwei He
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiangning Zhang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Meta-analysis demonstrates no association between p16 ink4a promoter methylation and epithelial ovarian cancer. Arch Gynecol Obstet 2016; 295:697-704. [PMID: 28000027 DOI: 10.1007/s00404-016-4264-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND p16 INK4A (p16) functions as a tumor suppressor gene in various malignancies. Aberrant p16 methylation has been proposed to be essential in ovarian carcinogenesis. However, it is unclear whether p16 can be used as a diagnostic marker owing to the small sample sizes in previous studies. METHODS To determine whether p16 promoter methylation is associated with epithelial ovarian cancer and can thus be used as a diagnostic marker, we performed a meta-analysis of published studies. The following databases were searched using a systematic search method: PubMed, Web of Science, EMBASE, and Chinese National Knowledge Infrastructure. We used a random-effects model to analyze the relative risk (RR); we also evaluated between-study heterogeneity, subgroup heterogeneity, and publication bias. RESULTS Our meta-analysis included eight eligible studies, with 428 ovarian cancers and 278 normal tissue samples and benign neoplasms. p16 promoter methylation was identified in 5.4 to 43.2% (median 27.86%) of ovarian cancers and 0 to 37.5% (median 15.8%) of normal tissue and benign neoplasms indicating that no significant association exists between p16 promoter methylation and epithelial ovarian cancer. However, the pooled results also showed that the RR was 1.52 (95% CI 0.80-2.87) in the ovarian cancer cases versus the corresponding normal and benign cases under the random-effects model. Between-study heterogeneity was determined through a sensitivity analysis; the I 2 value did not change when one study was excluded. CONCLUSIONS Our study showed that p16 promoter methylation cannot be used to differentiate benign from malignant epithelial ovarian tumors. Therefore, p16 promoter methylation cannot be used as a marker for diagnosing the early stage of ovarian cancer.
Collapse
|
16
|
Singhal SK, Usmani N, Michiels S, Metzger-Filho O, Saini KS, Kovalchuk O, Parliament M. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data. Oncotarget 2016; 7:3002-17. [PMID: 26657508 PMCID: PMC4823086 DOI: 10.18632/oncotarget.6503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.
Collapse
Affiliation(s)
- Sandeep K Singhal
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France.,INSERM U1018, CESP, Université Paris-Sud, Villejuif, France
| | - Otto Metzger-Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Canada Cancer and Aging Research Laboratories Ltd., Lethbridge, Canada
| | - Matthew Parliament
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Liu H, Gong M, French BA, Li J, Tillman B, French SW. Mallory-Denk Body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). Exp Mol Pathol 2014; 97:477-83. [PMID: 25290169 DOI: 10.1016/j.yexmp.2014.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022]
Abstract
Promoter CpG island hypermethylation is an important mechanism for inactivating key cellular enzymes that mediate epigenetic processes in hepatitis-related hepatocellular carcinoma (HCC). The ubiquitin-fold modifier 1 (Ufm1) conjugation pathway (Ufmylation) plays an essential role in protein degradation, protein quality control and signal transduction. Previous studies showed that the Ufmylation pathway was downregulated in alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and in mice fed DDC, resulting in the formation of Mallory-Denk Bodies (MDBs). In this study, we further discovered that betaine, a methyl donor, fed together with DDC significantly prevents the increased expression of Ufmylation in drug-primed mice fed DDC. Betaine significantly prevented transcript silencing of Ufm1, Uba5 and UfSP1 where MDBs developed and also prevented the increased expression of FAT10 and LMP7 caused by DDC re-fed mice. Similar downregulation of Ufmylation was observed in multiple AH and NASH biopsies which had formed MDBs. The DNA methylation levels of Ufm1, Ufc1 and UfSP1 in the promoter CpG region were significantly increased both in AH and NASH patients compared to normal subjects. DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) mRNA levels were markedly upregulated in AH and NASH patients, implying that the maintenance of Ufmylation methylation might be mediated by DNMT1 and DNMT3B together. These data show that MDB formation results from Ufmylation expression epigenetically in AH and NASH patients. Promoter CpG methylation may be a major mechanism silencing Ufmylation expression.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Ming Gong
- Department of Pediatrics, LABioMed at Harbor UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
18
|
Dong Y, Wang A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (Review). Oncol Lett 2014; 8:963-968. [PMID: 25120642 PMCID: PMC4114628 DOI: 10.3892/ol.2014.2301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation leads to altered gene expression, resulting in cancerous features. Numerous tumor suppressor genes are silenced by DNA methylation during hepatocarcinogenesis. Promoter CpG island hypermethylation is an important mechanism for inactivating tumor suppressor genes in hepatocellular carcinoma (HCC). Hypermethylation of CpG islands in the p16 (INK4a) and p15 (INK4b) promoters may increase the risk of developing HCC, particularly hepatitis B virus-related HCC. Environmental factors can lead to geographic variations in the methylation status of CpG islands. Aberrant DNA methylation of CpG islands is catalyzed by DNA methyltransferases (DNMTs). Thus, abnormal variations of DNMTs can contribute to hepatocarcinogenesis. In hepatitis-related HCC, microRNAs participate in hepatocarcinogenesis by directly targeting DNMTs, during which hepatitis B virus X acts as a regulator. DNA methylation may also contribute to HCC tumorigenesis by regulating the cell cycle. Based on the importance of DNA methylation in tumor suppression of HCC, certain DNA methylations may predict the risk of tumor development, tumor staging, patient survival and HCC recurrence.
Collapse
Affiliation(s)
- Youhong Dong
- Oncology Department, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Anping Wang
- Oncology Department, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
19
|
Koukoura O, Spandidos DA, Daponte A, Sifakis S. DNA methylation profiles in ovarian cancer: implication in diagnosis and therapy (Review). Mol Med Rep 2014; 10:3-9. [PMID: 24821107 PMCID: PMC4068729 DOI: 10.3892/mmr.2014.2221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
Genetic alterations alone cannot account for the complexity of ovarian cancer. The potential reversibility of epigenetic mechanisms makes them attractive candidates for the prevention and/or treatment of ovarian carcinoma. Detection of the epigenetic signature of each cancer cell may be useful in the identification of candidate biomarkers for disease detection, classification and monitoring and may also facilitate personalized cancer treatment. In ovarian cancer, in addition to other non-gynaecological cancers, two opposite epigenetic phenomena occur. The first involves an overall global decrease in DNA methylation of heterochromatin leading to demethylation of several oncogenes, while the second involves specific CpG island hypermethylation associated with the promoters of tumor suppressor genes. Early studies focused on the methylation patterns of single genes associated with tumorigenesis. However, newer genome-wide methods have identified a group of genes whose regulation is altered by DNA methylation during ovarian cancer progression.
Collapse
Affiliation(s)
- Ourania Koukoura
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa, Thessaly, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete Medical School, Heraklion, Crete, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa, Thessaly, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
20
|
Méndez-Lucio O, Tran J, Medina-Franco JL, Meurice N, Muller M. Toward Drug Repurposing in Epigenetics: Olsalazine as a Hypomethylating Compound Active in a Cellular Context. ChemMedChem 2014; 9:560-5. [DOI: 10.1002/cmdc.201300555] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 11/09/2022]
|
21
|
Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, Kohlschmidt J, Mrózek K, Wu YZ, Bucci D, Curfman JP, Whitman SP, Eisfeld AK, Mendler JH, Schwind S, Becker H, Bär C, Carroll AJ, Baer MR, Wetzler M, Carter TH, Powell BL, Kolitz JE, Byrd JC, Plass C, Garzon R, Caligiuri MA, Stone RM, Volinia S, Bundschuh R, Bloomfield CD. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 2013; 32:548-56. [PMID: 24378410 DOI: 10.1200/jco.2013.50.6337] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Molecular risk stratification of acute myeloid leukemia (AML) is largely based on genetic markers. However, epigenetic changes, including DNA methylation, deregulate gene expression and may also have prognostic impact. We evaluated the clinical relevance of integrating DNA methylation and genetic information in AML. METHODS Next-generation sequencing analysis of methylated DNA identified differentially methylated regions (DMRs) associated with prognostic mutations in older (≥ 60 years) cytogenetically normal (CN) patients with AML (n = 134). Genes with promoter DMRs and expression levels significantly associated with outcome were used to compute a prognostic gene expression weighted summary score that was tested and validated in four independent patient sets (n = 355). RESULTS In the training set, we identified seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) with promoter DMRs and expression associated with overall survival (OS; P ≤ .001). Each gene had high DMR methylation and lower expression, which were associated with better outcome. A weighted summary expression score of the seven gene expression levels was computed. A low score was associated with a higher complete remission (CR) rate and longer disease-free survival and OS (P < .001 for all end points). This was validated in multivariable models and in two younger (< 60 years) and two older independent sets of patients with CN-AML. Considering the seven genes individually, the fewer the genes with high expression, the better the outcome. Younger and older patients with no genes or one gene with high expression had the best outcomes (CR rate, 94% and 87%, respectively; 3-year OS, 80% and 42%, respectively). CONCLUSION A seven-gene score encompassing epigenetic and genetic prognostic information identifies novel AML subsets that are meaningful for treatment guidance.
Collapse
Affiliation(s)
- Guido Marcucci
- Guido Marcucci, Pearlly Yan, Kati Maharry, David Frankhouser, Deedra Nicolet, Klaus H. Metzeler, Jessica Kohlschmidt, Krzysztof Mrózek, Yue-Zhong Wu, Donna Bucci, John P. Curfman, Susan P. Whitman, Ann-Kathrin Eisfeld, Jason H. Mendler, Sebastian Schwind, Heiko Becker, John C. Byrd, Ramiro Garzon, Michael A. Caligiuri, Stefano Volinia, and Clara D. Bloomfield, The Ohio State University Comprehensive Cancer Center; Ralf Bundschuh, The Ohio State University, Columbus, OH; Kati Maharry, Deedra Nicolet, and Jessica Kohlschmidt, Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN; Andrew J. Carroll, University of Alabama at Birmingham, Birmingham, AL; Maria R. Baer, Greenebaum Cancer Center, University of Maryland, Baltimore, MD; Meir Wetzler, Roswell Park Cancer Institute, Buffalo; Jonathan E. Kolitz, Monter Cancer Center, Lake Success, NY; Thomas H. Carter, University of Iowa, Iowa City, IA; Bayard L. Powell, The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC; Richard M. Stone, Dana-Farber Cancer Institute, Boston, MA; Constance Bär and Christoph Plass, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raggi C, Invernizzi P. Methylation and liver cancer. Clin Res Hepatol Gastroenterol 2013; 37:564-71. [PMID: 23806627 DOI: 10.1016/j.clinre.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 02/04/2023]
Abstract
Cancer evolution at all stages (including initiation, progression and invasion) is driven by both epigenetic abnormalities and genetic alterations. Epigenetics refer to any structural modification of genomic regions, which lead to modification in gene expression without alterations in DNA sequence. Progressive deregulation of epigenetic process is being increasingly recognized in liver carcinogenesis. This review will provide an overview of DNA methylation, one of the most commonly epigenetic events, which profoundly contributes to liver cancer initiation and progression. Furthermore, the recent advancements in the knowledge of epigenetic reprogramming underlying hepatic cancer stem cells will be highlighted.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, via Manzoni 56, Rozzano, MI, Italy.
| | | |
Collapse
|
23
|
Knox SS, Ochs MF. Implications of systemic dysfunction for the etiology of malignancy. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:11-22. [PMID: 23440603 PMCID: PMC3572920 DOI: 10.4137/grsb.s10943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The current approach to treatment in oncology is to replace the generally cytotoxic chemotherapies with pharmaceutical treatment which inactivates specific molecular targets associated with cancer development and progression. The goal is to limit cellular damage to pathways perceived to be directly responsible for the malignancy. Its underlying assumptions are twofold: (1) that individual pathways are the cause of malignancy; and (2) that the treatment objective should be destruction-either of the tumor or the dysfunctional pathway. However, the extent to which data actually support these assumptions has not been directly addressed. Accumulating evidence suggests that systemic dysfunction precedes the disruption of specific genetic/molecular pathways in most adult cancers and that targeted treatments such as kinase inhibitors may successfully treat one pathway while generating unintended changes to other, non-targeted pathways. This article discusses (1) the systemic basis of malignancy; (2) better profiling of pre-cancerous biomarkers associated with elevated risk so that preventive lifestyle modifications can be instituted early to revert high-risk epigenetic changes before tumors develop; (3) a treatment emphasis in early stage tumors that would target the restoration of systemic balance by strengthening the body's innate defense mechanisms; and (4) establishing better quantitative models of systems to capture adequate complexity for predictability at all stages of tumor progression.
Collapse
Affiliation(s)
- Sarah S. Knox
- West Virginia University School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University School of Medicine
| | - Michael F. Ochs
- Division of Oncology Biostatistics and Bioinformatics, Departments of Oncology and Health Science Informatics, Johns Hopkins University
| |
Collapse
|
24
|
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One 2012; 7:e53003. [PMID: 23300844 PMCID: PMC3531428 DOI: 10.1371/journal.pone.0053003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/26/2012] [Indexed: 12/28/2022] Open
Abstract
Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.GEO NUMBER FOR THE MICROARRAY DATA: GSE42647.
Collapse
|
25
|
Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 2012; 17:273-84. [PMID: 23137527 DOI: 10.1016/j.smrv.2012.08.003] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
Abstract
Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.
Collapse
|
26
|
Chen B, Chen J, House MG, Cullen KJ, Nephew KP, Guo Z. Role of neurofilament light polypeptide in head and neck cancer chemoresistance. Mol Cancer Res 2012; 10:305-15. [PMID: 22246235 DOI: 10.1158/1541-7786.mcr-11-0300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to cisplatin-based chemotherapy is responsible for therapeutic failure of many common human cancers including cancer of head and neck (HNC). Mechanisms underlying cisplatin resistance remain unclear. In this study, we identified neurofilament light polypeptide (NEFL) as a novel hypermethylated gene associated with resistance to cisplatin-based chemotherapy in HNC. Analysis of 14 HNC cell lines revealed that downregulation of NEFL expression significantly correlated with increased resistance to cisplatin. Hypermethylation of NEFL promoter CpG islands was observed in cell lines as examined by bisulfite DNA sequencing and methylation-specific PCR (MSP) and tightly correlated with reduced NEFL mRNA and protein expression. Furthermore, in patient samples with HNC (n = 51) analyzed by quantitative MSP, NEFL promoter hypermethylation was associated with resistance to cisplatin-based chemotherapy [relative risk (RR), 3.045; 95% confidence interval (CI), 1.459-6.355; P = 0.007] and predicted diminished overall and disease-free survival for patients treated with cisplatin-based chemotherapy. Knockdown of NEFL by siRNA in the highly cisplatin-sensitive cell line PCI13 increased (P < 0.01) resistance to cisplatin. In cisplatin-resistant O11 and SCC25cp cells, restored expression of NEFL significantly increased sensitivity to the drug. Furthermore, NEFL physically associated with tuberous sclerosis complex 1 (TSC1), a known inhibitor of the mTOR pathway, and NEFL downregulation led to functional activation of mTOR pathway and consequentially conferred cisplatin resistance. This is the first study to show a role for NEFL in HNC chemoresistance. Our findings suggest that NEFL methylation is a novel mechanism for HNC chemoresistance and may represent a candidate biomarker predictive of chemotherapeutic response and survival in patients with HNC.
Collapse
Affiliation(s)
- Baishen Chen
- Medical Sciences Program, Indiana University School of Medicine, Jordan Hall 104, 1001 E. Third St., Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
27
|
Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. Virchows Arch 2011; 459:383-90. [DOI: 10.1007/s00428-011-1143-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/09/2011] [Accepted: 08/21/2011] [Indexed: 12/22/2022]
|
28
|
Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res 2011; 727:55-61. [PMID: 21514401 DOI: 10.1016/j.mrrev.2011.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
Epigenetic mechanisms maintain heritable changes in gene expression and chromatin organization over many cell generations. Importantly, deregulated epigenetic mechanisms play a key role in a wide range of human malignancies, including liver cancer. Hepatocellular carcinoma (HCC), which originates from the hepatocytes, is by far the most common liver cancer, with rates and aetiology that show considerable geographic variation. Various environmental agents and lifestyles known to be risk factors for HCC (such as infection by hepatitis B virus (HBV) and hepatitis C virus (HCV), chronic alcohol intake, and aflatoxins) are suspected to promote its development by eliciting epigenetic changes, however the precise gene targets and underlying mechanisms have not been elucidated. Many recent studies have exploited conceptual and technological advances in epigenetics and epigenomics to investigate the role of epigenetic events induced by environmental factors in HCC tumors and non-tumor precancerous (cirrhotic) lesions. These studies have identified a large number of genes and pathways that are targeted by epigenetic deregulation (changes in DNA methylation, histone modifications and RNA-mediated gene silencing) during the development and progression of HCC. Frequent identification of aberrant epigenetic changes in specific genes in cirrhotic tissue is consistent with the notion that epigenetic deregulation of selected genes in pre-malignant lesions precedes and promotes the development of HCC. In addition, several lines of evidence argue that some environmental factors (such as HBV virus) may abrogate cellular defense systems, induce silencing of host genes and promote HCC development via an "epigenetic strategy". Finally, profiling studies reveal that HCC tumors and pre-cancerous lesions may exhibit epigenetic signatures associated with specific risk factors and tumor progression stage. Together, recent evidence underscores the importance of aberrant epigenetic events induced by environmental factors in liver cancer and highlights potential targets for biomarker discovery and future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
29
|
Shin SH, Kim BH, Jang JJ, Suh KS, Kang GH. Identification of novel methylation markers in hepatocellular carcinoma using a methylation array. J Korean Med Sci 2010; 25:1152-9. [PMID: 20676325 PMCID: PMC2908783 DOI: 10.3346/jkms.2010.25.8.1152] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/19/2010] [Indexed: 12/17/2022] Open
Abstract
Promoter CpG island hypermethylation has become recognized as an important mechanism for inactivating tumor suppressor genes or tumor-related genes in human cancers of various tissues. Gene inactivation in association with promoter CpG island hypermethylation has been reported to be four times more frequent than genetic changes in human colorectal cancers. Hepatocellular carcinoma is also one of the human cancer types in which aberrant promoter CpG island hypermethylation is frequently found. However, the number of genes identified to date as hypermethylated for hepatocellular carcinoma (HCC) is fewer than that for colorectal cancer or gastric cancer, which can be attributed to fewer attempts to perform genome-wide methylation profiling for HCC. In the present study, we used bead-array technology and coupled methylation-specific PCR to identify new genes showing cancer-specific methylation in HCC. Twenty-four new genes have been identified as hypermethylated at their promoter CpG island loci in a cancer-specific manner. Of these, TNFRSF10C, HOXA9, NPY, and IRF5 were frequently hypermethylated in hepatocellular carcinoma tissue samples and their methylation was found to be closely associated with inactivation of gene expression. Further study will be required to elucidate the clinicopathological implications of these newly found DNA methylation markers in hepatocellular carcinoma.
Collapse
Affiliation(s)
- So Hyun Shin
- Laboratory of Epigenetics, Cancer Research Institute and Brain Korea 2nd Stage, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Lee JS, Fackler MJ, Lee JH, Choi C, Park MH, Yoon JH, Zhang Z, Sukumar S. Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biol Ther 2010; 9:1017-24. [PMID: 20505321 DOI: 10.4161/cbt.9.12.11804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent microarray profiling studies on breast cancer have identified distinct subtypes that are associated with different clinical outcomes. Promoter hypermethylation of several known or putative tumor suppressor genes occurs frequently during the pathogenesis of breast cancer. We proposed that immunohistopathologic subtypes of breast cancer are likely to contain distinct promoter methylation patterns. A panel of 10 gene promoters was assessed by quantitative multiplex methylation-specific PCR in 114 invasive ductal carcinomas from Korea representing the three major subtypes [57 luminal, 24 human epidermal growth factor 2 (HER2), and 33 basal-like] based on immunohistochemical findings of estrogen receptor, progesterone receptor, HER2, cytokeratin 5/6 and epidermal growth factor receptor. The median methylation levels of HIN1, RASSF1A and TWIST, and the average methylation ratio were significantly lower in basal-like subtype compared to luminal or HER2 subtypes. In contrast, BRCA1 methylation level was significantly higher in basal-like subtype than in luminal subtype. The methylation status of a panel of four genes (APC1, CDH, BRCA1 and RAR-β) in luminal and HER2 subtypes were dissimilar, where HER2 tumors showed a significantly higher level of methylation compared to luminal tumors. These results suggest that gene methylation in breast cancer can potentially serve as epigenetic biomarkers and may contribute further to current breast cancer classification.
Collapse
Affiliation(s)
- Ji Shin Lee
- Department of Pathology, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Knox SS. From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer Cell Int 2010; 10:11. [PMID: 20420667 PMCID: PMC2876152 DOI: 10.1186/1475-2867-10-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/26/2010] [Indexed: 12/24/2022] Open
Abstract
Background Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development. Hypothesis The hypothesis put forth in this paper addresses the limited success of treatment outcomes in clinical oncology. It states that improvement in treatment efficacy requires a new paradigm that focuses on reversing systemic dysfunction and tailoring treatments to specific stages in the process. It requires moving from a reductionist framework of seeking to destroy aberrant cells and pathways to a transdisciplinary systems biology approach aimed at reversing multiple levels of dysfunction. Conclusion Because there are many biological pathways and multiple epigenetic influences working simultaneously in the expression of cancer phenotypes, studying individual components in isolation does not allow an adequate understanding of phenotypic expression. A systems biology approach using new modeling techniques and nonlinear mathematics is needed to investigate gene-environment interactions and improve treatment efficacy. A broader array of study designs will also be required, including prospective molecular epidemiology, immune competent animal models and in vitro/in vivo translational research that more accurately reflects the complex process of tumor initiation and progression.
Collapse
Affiliation(s)
- Sarah S Knox
- Program in Clinical and Population Epigenetics, Dept, of Community Medicine West Virginia University School of Medicine, PO Box 9190, Health Science South Morgantown, WV 26506, USA.
| |
Collapse
|
32
|
Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009; 9:293-301. [PMID: 19407485 PMCID: PMC2835374 DOI: 10.1159/000186051] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/04/2008] [Indexed: 12/11/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) has emerged as an important hallmark of cancer. However, the putative mechanisms regulating miRNAs per se are only partially known. It is well established that many tumor suppressor genes in human cancers are silenced by chromatin alterations, including promoter methylation and histone deacetylation. We postulated that miRNAs undergo similar epigenetic inactivation in pancreatic cancer. Two human pancreatic cancer cell lines - MiaPACA-2 and PANC-1 - were treated with the demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC) or the histone deacetylase inhibitor, trichostatin A, as well as the combination of the two. Expression of miRNAs in control and treated cell lines was assessed using a custom microarray platform. Fourteen miRNAs were upregulated two-fold or greater in each of the cell lines following exposure to both chromatin-modifying agents, including 5 that were in common (miR-107, miR-103, miR-29a, miR-29b, and miR-320) to both MiaPACA-2 and PANC-1. The differential overexpression of miR-107 in the treated cancer cell lines was confirmed by Northern blot assays. Methylation-specific PCR assays for assessment of CpG island methylation status in the 5' promoter region of the miR-107 primary transcript demonstrated complete loss of methylation upon exposure to 5-Aza-dC. Enforced expression of miR-107 in MiaPACA-2 and PANC-1 cells downregulated in vitro growth, and this was associated with repression of the putative miR-107 target, cyclin-dependent kinase 6, thereby providing a functional basis for the epigenetic inactivation of this miRNA in pancreatic cancer.
Collapse
Affiliation(s)
- Kwang-Hyuck Lee
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Gastroenterology, Sung Kyun Kwan University School of Medicine, Seoul, South Korea
| | - Craig Lotterman
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Pediatrics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Collins Karikari
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Noriyuki Omura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Georg Feldmann
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Nils Habbe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Michael G. Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Joshua T. Mendell
- Department of Molecular Biology and Genetics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Anirban Maitra
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA;,*Anirban Maitra, CRB II, Room 345, Johns Hopkins University School of Medicine, 1550 Orleans St, Baltimore, MD 21231 (USA), Tel. +1 410 955 3511, Fax +1 410 614 0671, E-Mail
| |
Collapse
|
33
|
Liu ZJ, Wang G, Cai Y, Gu SZ, Zhang XB, Liu L, Gao X. Androgen receptor CpG island methylation status in human leukemia cancer cells. Cancer Invest 2009; 27:156-62. [PMID: 19235587 DOI: 10.1080/07357900802208590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The methylation status of the androgen receptor gene (AR) in leukemia cell lines was investigated. Results showed the presence of both methylated and unmethylated CpG islands of the AR promotor in leukemia cell lines. In the normal blood samples, only unmethylated bands were observed. In 15 bone marrow samples from patients with leukemia, 12 cases (80%) showed both methylated and unmethylated alleles and 3 cases (20%) showed only methylated alleles. To understand whether AR mRNA and protein expression are reduced by methylation, we treated leukemia cells with 5-Aza-Dc and detected the expression of mRNA and protein by RT-PCR and immunohistochemistry. The treatment of 5-Aza-Dc increased AR expression in all cell lines researched. This study indicates that reduced AR mRNA expression in leukemia cell lines was in part related to DNA methylation. The aberrant methylation of AR gene could be one molecular and genetic alteration in leukemia.
Collapse
Affiliation(s)
- Ze-Jun Liu
- Laboratory of International cooperation, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hattis D, Chu M, Rahmioglu N, Goble R, Verma P, Hartman K, Kozlak M. A preliminary operational classification system for nonmutagenic modes of action for carcinogenesis. Crit Rev Toxicol 2009; 39:97-138. [PMID: 19009457 DOI: 10.1080/10408440802307467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article proposes a system of categories for nonmutagenic modes of action for carcinogenesis. The classification is of modes of action rather than individual carcinogens, because the same compound can affect carcinogenesis in more than one way. Basically, we categorize modes of action as: (1) co-initiation (facilitating the original mutagenic changes in stem and progenitor cells that start the cancer process) (e.g. induction of activating enzymes for other carcinogens); (2) promotion (enhancing the relative growth vs differentiation/death of initiated clones (e.g. inhibition of growth-suppressing cell-cell communication); (3) progression (enhancing the growth, malignancy, or spread of already developed tumors) (e.g. suppression of immune surveillance, hormonally mediated growth stimulation for tumors with appropriate receptors by estrogens); and (4) multiphase (e.g., "epigenetic" silencing of tumor suppressor genes). A priori, agents that act at relatively early stages in the process are expected to manifest greater relative susceptibility in early life, whereas agents that act via later stage modes will tend to show greater susceptibility for exposures later in life.
Collapse
Affiliation(s)
- D Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hassig CA, Symons KT, Guo X, Nguyen PM, Annable T, Wash PL, Payne JE, Jenkins DA, Bonnefous C, Trotter C, Wang Y, Anzola JV, Milkova EL, Hoffman TZ, Dozier SJ, Wiley BM, Saven A, Malecha JW, Davis RL, Muhammad J, Shiau AK, Noble SA, Rao TS, Smith ND, Hager JH. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther 2008; 7:1054-65. [PMID: 18483295 DOI: 10.1158/1535-7163.mct-07-2347] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An alpha-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC50 of 0.045 micromol/L in the screening biochemical assay and an EC50 of 0.025 micromol/L in HeLa cell-based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classes I and II HDAC inhibition in assays using purified recombinant human isoforms. KD5170 shows significant antiproliferative activity against a variety of human tumor cell lines, including the NCI-60 panel. Significant tumor growth inhibition was observed after p.o. dosing in human HCT-116 (colorectal cancer), NCI-H460 (non-small cell lung carcinoma), and PC-3 (prostate cancer) s.c. xenografts in nude mice. In addition, a significant increase in antitumor activity and time to end-point occurred when KD5170 was combined with docetaxel in xenografts of the PC-3 prostate cancer cell line. The biological and pharmaceutical profile of KD5170 supports its continued preclinical and clinical development as a broad spectrum anticancer agent.
Collapse
|
36
|
Kontorovich T, Cohen Y, Nir U, Friedman E. Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Res Treat 2008; 116:195-200. [PMID: 18642075 DOI: 10.1007/s10549-008-0121-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/01/2008] [Indexed: 11/26/2022]
Abstract
BRCA1/BRCA2 germline mutations substantially increase breast and ovarian cancer risk, yet penetrance is incomplete. We hypothesized that germline epigenetic gene silencing may affect mutant BRCA1/2 penetrance. To test this notion, we determined the methylation status, using methylation-specific quantitative PCR of the promoter in putative modifier genes: BRCA1, BRCA2, ATM, ATR and P53 in Jewish BRCA1/BRCA2 mutation carriers with (n = 41) or without (n = 48) breast cancer, in sporadic breast cancer (n = 52), and healthy controls (n = 89). Promoter hypermethylation was detected only in the BRCA1 promotor in 5.6-7.3% in each of the four subsets of participants, regardless of health and BRCA1/2 status.Germline promoter hypermethylation in the BRCA1 gene can be detected in about 5% of the female Israeli Jewish population, regardless of the BRCA1/2 status. The significance of this observation is yet to be determined.
Collapse
Affiliation(s)
- Tair Kontorovich
- The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, The Chaim Sheba medical Center, Tel-Hashomer, Israel
| | | | | | | |
Collapse
|
37
|
Wendt MK, Cooper AN, Dwinell MB. Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 2007; 27:1461-71. [PMID: 17724466 DOI: 10.1038/sj.onc.1210751] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Expression of the chemokine receptor CXCR4 has been linked with increased metastasis and decreased clinical prognosis in breast cancer. The current paradigm dictates that CXCR4 fosters carcinoma cell metastasis along a chemotactic gradient to organs expressing the ligand CXCL12. The present study asked if alterations in autocrine CXCR4 signaling via dysregulation of CXCL12 in mammary carcinoma cells modulated their metastatic potential. While CXCR4 was consistently detected, expression of CXCL12 characteristic of human mammary epithelium was silenced by promoter hypermethylation in breast cancer cell lines and primary mammary tumors. Stable re-expression of functional CXCL12 in ligand null cells increased orthotopic primary tumor growth in the mammary fat-pad model of tumorigenesis. Those data parallel increased carcinoma cell proliferation measured in vitro with little-to-no-impact on apoptosis. Moreover, re-expression of autocrine CXCL12 markedly reduced metastatic lung invasion assessed using in vivo bioluminescence imaging following tail vein injection. Consistent with those data, decreased metastasis reflected diminished intracellular calcium signaling and chemotactic migration in response to exogenous CXCL12 independent of changes in CXCR4 expression. Together these data suggest that an elevated migratory signaling response to ectopic CXCL12 contributes to the metastatic potential of CXCR4-expressing mammary carcinoma cells, subsequent to epigenetic silencing of autocrine CXCL12.
Collapse
Affiliation(s)
- M K Wendt
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | | | | |
Collapse
|
38
|
Reynolds MA, Kastury K, Groskopf J, Schalken JA, Rittenhouse H. Molecular markers for prostate cancer. Cancer Lett 2007; 249:5-13. [PMID: 17303324 DOI: 10.1016/j.canlet.2006.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Serum PSA testing has been used for over 20 years as an aid in the diagnosis and management of prostate cancer. Although highly sensitive, it suffers from a lack of specificity, showing elevated serum levels in a variety of other conditions including prostatitis, benign prostate hyperplasia, and non-cancerous neoplasia. During this period, numerous serum protein analytes have been investigated as alternative and/or supplemental tests for PSA, however in general these analytes have likewise suffered from a lack of specificity, often showing serum elevations in other clinical presentations. More recently, molecular assays targeting prostate disease at the DNA or RNA level have been investigated for potential diagnostic and prognostic utility. With the aid of modern genomics technologies, a variety of molecular biomarkers have been discovered that show potential for specific correlation with prostate cancer. Much of this discovery has been retrospective, using microdissected tissue from prostatectomy. The goal of current research is to apply genomic assays to noninvasive specimens such as blood and urine. Progress in this area is the subject of this review.
Collapse
Affiliation(s)
- Mark A Reynolds
- Gen-Probe Incorporated, 10210 Genetic Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
39
|
Semenza GL. Baffled by Bafilomycin: An Anticancer Agent That Induces Hypoxia-Inducible Factor-1α Expression:
Fig. 1. Mol Pharmacol 2006; 70:1841-3. [PMID: 17000862 DOI: 10.1124/mol.106.031062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In an article presented in this issue of Molecular Pharmacology, Lim et al. (p. 1856) investigate the anticancer effect of bafilomycin, an inhibitor of the vacuolar ATPase. The authors report that bafilomycin inhibits cell cycle progression and tumor growth by inducing the expression of hypoxia-inducible factor (HIF) 1alpha and the cyclin-dependent kinase inhibitor p21(CIP1), a surprising result because HIF-1alpha overexpression is associated with tumor growth and angiogenesis in preclinical models and with increased patient mortality in clinical studies. However, the authors demonstrate that bafilomycin-induced HIF-1alpha expression leads to increased CIP1 gene expression but does not lead to increased expression of other HIF-1-regulated genes that promote tumor progression.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program, Institute for Cell Engineering, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|