1
|
de Oliveira BCD, Shiburah ME, Assis LHC, Fontes VS, Bisetegn H, Passos ADO, de Oliveira LS, Alves CDS, Ernst E, Martienssen R, Gallo-Francisco PH, Giorgio S, Batista MM, Soeiro MDNC, Menna-Barreto RFS, Aoki JI, Coelho AC, Cano MIN. Leishmania major telomerase RNA knockout: From altered cell proliferation to decreased parasite infectivity. Int J Biol Macromol 2024; 279:135150. [PMID: 39218181 DOI: 10.1016/j.ijbiomac.2024.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the biological impacts of deleting the telomerase RNA from Leishmania major (LeishTER), a parasite responsible for causing leishmaniases, for which no effective treatment or prevention is available. TER is a critical player in the telomerase ribonucleoprotein complex, containing the template sequence copied by the reverse transcriptase component during telomere elongation. The success of knocking out both LeishTER alleles was confirmed, and no off-targets were detected. LmTER-/- cells share similar characteristics with other TER-depleted eukaryotes, such as altered growth patterns and partial G0/G1 cell cycle arrest in early passages, telomere shortening, and elevated TERRA expression. They also exhibit increased γH2A phosphorylation, suggesting that the loss of LeishTER induces DNA damage signaling. Moreover, pro-survival autophagic signals and mitochondrion alterations were shown without any detectable plasma membrane modifications. LmTER-/- retained the ability to transform into metacyclics, but their infectivity capacity was compromised. Furthermore, the overexpression of LeishTER was also deleterious, inducing a dominant negative effect that led to telomere shortening and growth impairments. These findings highlight TER's vital role in parasite homeostasis, opening discussions about its potential as a drug target candidate against Leishmania.
Collapse
Affiliation(s)
- Beatriz Cristina Dias de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Mark Ewusi Shiburah
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Animal Research Institute, Council for Scientific and Industrial Research (CSIR-ARI), Accra, Ghana
| | - Luiz Henrique Castro Assis
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Veronica Silva Fontes
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Habtye Bisetegn
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Arthur de Oliveira Passos
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leilane S de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | - Evan Ernst
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rob Martienssen
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Selma Giorgio
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Marcos Meuser Batista
- Cellular Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juliana Ide Aoki
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Lebo KJ, Zappulla DC. Inverse-Folding Design of Yeast Telomerase RNA Increases Activity In Vitro. Noncoding RNA 2023; 9:51. [PMID: 37736897 PMCID: PMC10514824 DOI: 10.3390/ncrna9050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo, but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro. In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro. To create a full-length yeast telomerase RNA, predicted to fold into its biologically relevant structure, we took an inverse RNA-folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G of this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild-type. We tested DA-TLC1 for reconstituted activity and found it to be ~5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo, discovering that it complements a tlc1∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo. In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that the inverse design of S. cerevisiae telomerase RNA increases activity in vitro, while reducing abundance in vivo. This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Lebo KJ, Zappulla DC. Inverse-folding design of yeast telomerase RNA increases activity in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527468. [PMID: 36798419 PMCID: PMC9934677 DOI: 10.1101/2023.02.08.527468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo , but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro . In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro . To create a full-length yeast telomerase RNA predicted to fold into its biological relevant structure, we took an inverse RNA folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G in this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild type. We tested DA-TLC1 for reconstituted activity and found it to be ∼5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo and found that it complements a tlc1 ∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo . In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that inverse design of S. cerevisiae telomerase RNA increases activity in vitro , while reducing abundance in vivo . This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - David C. Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Biswas S, Coyle A, Chen S, Gostimir M, Gonder J, Chakrabarti S. Expressions of Serum lncRNAs in Diabetic Retinopathy - A Potential Diagnostic Tool. Front Endocrinol (Lausanne) 2022; 13:851967. [PMID: 35464068 PMCID: PMC9022211 DOI: 10.3389/fendo.2022.851967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
With increasing incidence of diabetes worldwide, there is an ever-expanding number of patients with chronic diabetic complications such as diabetic retinopathy (DR), one of the leading causes of blindness in the working age population. Early screening for the onset and severity of DR is essential for timely intervention. With recent advancements in genomic technologies, epigenetic alterations in DR are beginning to unravel. Long non-coding RNAs (lncRNAs), which are key epigenetic mediators, have demonstrated implications in several (DR) related processes. Based on the previous research, we have developed a serum-based, multi-panel PCR test using 9 lncRNAs (ANRIL, MALAT1, WISPER, ZFAS1, H19, HOTAIR, HULC, MEG3, and MIAT) to identify and validate whether this panel could be used as a diagnostic and prognostic tool for DR. We initially used a cell culture model (human retinal endothelial cells) and confirmed that 25 mM glucose induces upregulations of ANRIL, HOTAIR, HULC, MALAT1, and ZFAS1, and downregulation of H19 compared to 5 mM glucose controls. Then as an initial proof-of-concept, we tested vitreous humor and serum samples from a small cohort of non-diabetic (N=10) and diabetic patients with proliferative retinopathy (PDR, N=11) and measured the levels of the 9 lncRNAs. Differential expressions of lncRNAs were found in the vitreous and serum of patients and showed significant correlations. We expanded our approach and assessed the same lncRNAs using samples from a larger cohort of diabetic (n= 59; M/F:44/15) and non-diabetic patients (n= 11; M/F:4/7). Significant increased lncRNA expressions of ANRIL, H19, HOTAIR, HULC, MIAT, WISPER and ZFAS1 were observed in the serum of diabetic patients (with varying stages of DR) compared to non-diabetics. No significant correlations were demonstrated between lncRNA expressions and creatinine or glycated hemoglobin (HbA1C) levels. Using ROC and further analyses, we identified distinct lncRNA phenotype combinations, which may be used to identify patients with DR. Data from this study indicate that a panel of serum lncRNAs may be used for a potential screening test for DR. Further large-scale studies are needed to validate this notion.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ali Coyle
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Miso Gostimir
- Department of Ophthalmology, Western University, London, ON, Canada
| | - John Gonder
- Department of Ophthalmology, Western University, London, ON, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- *Correspondence: Subrata Chakrabarti,
| |
Collapse
|
5
|
Nguyen THD. Structural biology of human telomerase: progress and prospects. Biochem Soc Trans 2021; 49:1927-1939. [PMID: 34623385 PMCID: PMC8589416 DOI: 10.1042/bst20200042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| |
Collapse
|
6
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
7
|
Song J, Castillo-González C, Ma Z, Shippen DE. Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. Nucleic Acids Res 2021; 49:9496-9507. [PMID: 34403479 PMCID: PMC8450087 DOI: 10.1093/nar/gkab699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Zeyang Ma
- National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Dorothy E Shippen
- To whom correspondence should be addressed. Tel: +1 979 862 2342; Fax: +1 979 862 7638;
| |
Collapse
|
8
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Palka C, Forino NM, Hentschel J, Das R, Stone MD. Folding heterogeneity in the essential human telomerase RNA three-way junction. RNA (NEW YORK, N.Y.) 2020; 26:1787-1800. [PMID: 32817241 PMCID: PMC7668248 DOI: 10.1261/rna.077255.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Telomeres safeguard the genome by suppressing illicit DNA damage responses at chromosome termini. To compensate for incomplete DNA replication at telomeres, most continually dividing cells, including many cancers, express the telomerase ribonucleoprotein (RNP) complex. Telomerase maintains telomere length by catalyzing de novo synthesis of short DNA repeats using an internal telomerase RNA (TR) template. TRs from diverse species harbor structurally conserved domains that contribute to RNP biogenesis and function. In vertebrate TRs, the conserved regions 4 and 5 (CR4/5) fold into a three-way junction (TWJ) that binds directly to the telomerase catalytic protein subunit and is required for telomerase function. We have analyzed the structural properties of the human TR (hTR) CR4/5 domain using a combination of in vitro chemical mapping, secondary structural modeling, and single-molecule structural analysis. Our data suggest the essential P6.1 stem-loop within CR4/5 is not stably folded in the absence of the telomerase reverse transcriptase in vitro. Rather, the hTR CR4/5 domain adopts a heterogeneous ensemble of conformations. Finally, single-molecule FRET measurements of CR4/5 and a mutant designed to stabilize the P6.1 stem demonstrate that TERT binding selects for a structural conformation of CR4/5 that is not the dominant state of the TERT-free in vitro RNA ensemble.
Collapse
Affiliation(s)
- Christina Palka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Jendrik Hentschel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
10
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
11
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
12
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
13
|
Hass EP, Zappulla DC. Repositioning the Sm-Binding Site in Saccharomyces cerevisiae Telomerase RNA Reveals RNP Organizational Flexibility and Sm-Directed 3'-End Formation. Noncoding RNA 2020; 6:ncrna6010009. [PMID: 32121425 PMCID: PMC7151599 DOI: 10.3390/ncrna6010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Telomerase RNA contains a template for synthesizing telomeric DNA and has been proposed to act as a flexible scaffold for holoenzyme protein subunits in the RNP. In Saccharomyces cerevisiae, the telomerase RNA, TLC1, is bound by the Sm7 protein complex, which is required for stabilization of the predominant, non-polyadenylated (poly(A)–) TLC1 isoform. However, it remains unclear (1) whether Sm7 retains this function when its binding site is repositioned within TLC1, as has been shown for other TLC1-binding telomerase subunits, and (2) how Sm7 stabilizes poly(A)– TLC1. Here, we first show that Sm7 can stabilize poly(A)– TLC1 even when its binding site is repositioned via circular permutation to several different positions within TLC1, further supporting the conclusion that the telomerase holoenzyme is organizationally flexible. Next, we show that when an Sm site is inserted 5′ of its native position and the native site is mutated, Sm7 stabilizes shorter forms of poly(A)– TLC1 in a manner corresponding to how far upstream the new site was inserted, providing strong evidence that Sm7 binding to TLC1 controls where the mature poly(A)– 3′ is formed by directing a 3′-to-5′ processing mechanism. In summary, our results show that Sm7 and the 3′ end of yeast telomerase RNA comprise an organizationally flexible module within the telomerase RNP and provide insights into the mechanistic role of Sm7 in telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Evan P. Hass
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Correspondence: ; Tel.:+1-(610)-758-5088
| |
Collapse
|
14
|
Yang E, Xue L, Li Z, Yi T. Lnc-AL445665.1-4 may be involved in the development of multiple uterine leiomyoma through interacting with miR-146b-5p. BMC Cancer 2019; 19:709. [PMID: 31319799 PMCID: PMC6639973 DOI: 10.1186/s12885-019-5775-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The clinical behaviors and cytogenetics of solitary uterine leiomyomas (SUL) and multiple uterine leiomyomas (MUL) vary, which greatly affects the choice of treatments for reproductive-aged patients with leiomyomas. Our previous study demonstrated that a series of microRNAs, including miR-146b-5p, are dysregulated and play important roles in the development of SUL and MUL. Long non-coding RNAs (lncRNAs) can participate in the pathogenesis of several diseases by regulating the expression of microRNAs; however, their roles in regulating miR-146b-5b and in the pathology of leiomyomas are unclear. METHODS Pair-matched uterine leiomyoma and adjacent normal myometrium tissue samples were collected from 37 patients with leiomyomas, including 15 with SUL and 22 with MUL. Six paired samples (three SUL and three MUL samples) were used for lncRNAs microarray analysis. Targeted lncRNAs were selected by bioinformatics analysis, and were verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and a dual-luciferase reporter assay. Growth curve analysis and qRT-PCR were used to evaluate the effect of silencing the lncRNA lnc-AL445665.1-4 on cell proliferation and miR-146b-5p expression, respectively. RESULTS There were 245 up-regulated and 243 down-regulated lncRNAs in SUL, and 119 up-regulated and 447 down-regulated lncRNAs in MUL. Fifty-five of the selected lncRNAs were predicted to target miR-146b-5p, which is up-regulated in SUL and down-regulated in MUL. Four lncRNAs were selected after Venn diagram analysis showing common dysregulation in the three groups. Lnc-AL445665.1-4 was selected for further exploration. qRT-PCR showed that lnc-AL445665.1-4 expression was significantly up-regulated in MUL compared with SUL in an additional 12 and 19 paired SUL-normal and MUL-normal samples, respectively. The dual-luciferase reporter assay demonstrated the presence of binding sites on lnc-AL445665.1 for miR-146b-5p. Silencing lnc-AL445665.1-4 not only inhibited cell proliferation but also negatively regulated the expression of miR-146b-5p. CONCLUSIONS Our results suggest that lnc-AL445665.1-4 may be involved in the development of MUL by interacting with miR-146b-5p. Further investigation of the roles of lncRNAs and miRNAs may help to optimize the clinical management of leiomyoma patients. Lnc-AL445665.1-4 could be a novel target for genetic therapy or serve as a biomarker for predicting the recurrence of MUL in patients that have undergone myomectomy.
Collapse
Affiliation(s)
- E Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luqi Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tao Yi
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Diabetic Retinopathy, lncRNAs, and Inflammation: A Dynamic, Interconnected Network. J Clin Med 2019; 8:jcm8071033. [PMID: 31337130 PMCID: PMC6678747 DOI: 10.3390/jcm8071033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is reaching epidemic levels globally due to the increase in prevalence of diabetes mellitus (DM). DR also has detrimental effects to quality of life, as it is the leading cause of blindness in the working-age population and the most common cause of vision loss in individuals with DM. Over several decades, many studies have recognized the role of inflammation in the development and progression of DR; however, in recent years, accumulating evidence has also suggested that non-coding RNAs, especially long non-coding (lncRNAs), are aberrantly expressed in diabetes and may play a putative role in the development and progression of DR through the modulation of gene expression at the transcriptional, post-transcriptional, or epigenetic level. In this review, we will first highlight some of the key inflammatory mediators and transcription factors involved in DR, and we will then introduce the critical roles of lncRNAs in DR and inflammation. Following this, we will discuss the implications of lncRNAs in other epigenetic mechanisms that may also contribute to the progression of inflammation in DR.
Collapse
|
16
|
Han Y, Branon TC, Martell JD, Boassa D, Shechner D, Ellisman MH, Ting A. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol 2019; 14:619-635. [PMID: 30848125 PMCID: PMC6548188 DOI: 10.1021/acschembio.8b00919] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
APEX is an engineered peroxidase that catalyzes the oxidation of a wide range of substrates, facilitating its use in a variety of applications from subcellular staining for electron microscopy to proximity biotinylation for spatial proteomics and transcriptomics. To further advance the capabilities of APEX, we used directed evolution to engineer a split APEX tool (sAPEX). A total of 20 rounds of fluorescence activated cell sorting (FACS)-based selections from yeast-displayed fragment libraries, using 3 different surface display configurations, produced a 200-amino-acid N-terminal fragment (with 9 mutations relative to APEX2) called "AP" and a 50-amino-acid C-terminal fragment called "EX". AP and EX fragments were each inactive on their own but were reconstituted to give peroxidase activity when driven together by a molecular interaction. We demonstrate sAPEX reconstitution in the mammalian cytosol, on engineered RNA motifs within a non-coding RNA scaffold, and at mitochondria-endoplasmic reticulum contact sites.
Collapse
Affiliation(s)
- Yisu Han
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Tess Caroline Branon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jeffrey D. Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Boassa
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - David Shechner
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Mark H. Ellisman
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - Alice Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
17
|
Maass PG, Barutcu AR, Rinn JL. Interchromosomal interactions: A genomic love story of kissing chromosomes. J Cell Biol 2019; 218:27-38. [PMID: 30181316 PMCID: PMC6314556 DOI: 10.1083/jcb.201806052] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 01/26/2023] Open
Abstract
Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, but also interchromosomal interactions, a less studied feature of chromosomes, are required for proper physiological gene-expression programs. Here, we review recent studies with emerging insights into where and why cross-chromosomal communication is relevant. Specifically, we discuss how long noncoding RNAs (lncRNAs) and three-dimensional gene positioning are involved in genome organization and how low-throughput (live-cell imaging) and high-throughput (Hi-C and SPRITE) techniques contribute to understand the fundamental properties of interchromosomal interactions.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
- University of Colorado, BioFrontiers, Department of Biochemistry, Boulder, CO
| |
Collapse
|
18
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
19
|
Lee YJ, Wang Q, Rio DC. Coordinate regulation of alternative pre-mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes Dev 2018; 32:1060-1074. [PMID: 30042133 PMCID: PMC6075143 DOI: 10.1101/gad.316034.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/12/2023]
Abstract
Alternative premessenger RNA (pre-mRNA) splicing is a post-transcriptional mechanism for controlling gene expression. Splicing patterns are determined by both RNA-binding proteins and nuclear pre-mRNA structure. Here, we analyzed pre-mRNA splicing patterns, RNA-binding sites, and RNA structures near these binding sites coordinately controlled by two splicing factors: the heterogeneous nuclear ribonucleoprotein hnRNPA1 and the RNA helicase DDX5. We identified thousands of alternative pre-mRNA splicing events controlled by these factors by RNA sequencing (RNA-seq) following RNAi. Enhanced cross-linking and immunoprecipitation (eCLIP) on nuclear extracts was used to identify protein-RNA-binding sites for both proteins in the nuclear transcriptome. We found a significant overlap between hnRNPA1 and DDX5 splicing targets and that they share many closely linked binding sites as determined by eCLIP analysis. In vivo SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical RNA structure probing data were used to model RNA structures near several exons controlled and bound by both proteins. Both sequence motifs and in vivo UV cross-linking sites for hnRNPA1 and DDX5 were used to map binding sites in their RNA targets, and often these sites flanked regions of higher chemical reactivity, suggesting an organized nature of nuclear pre-mRNPs. This work provides a first glimpse into the possible RNA structures surrounding pre-mRNA splicing factor-binding sites.
Collapse
Affiliation(s)
- Yeon J Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Qingqing Wang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Laterreur N, Lemieux B, Neumann H, Berger-Dancause JC, Lafontaine D, Wellinger RJ. The yeast telomerase module for telomere recruitment requires a specific RNA architecture. RNA (NEW YORK, N.Y.) 2018; 24:1067-1079. [PMID: 29777050 PMCID: PMC6049500 DOI: 10.1261/rna.066696.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Telomerases are ribonucleoprotein (RNP) reverse transcriptases. While telomerases maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large, and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features for binding Pop1/Pop6/Pop7 proteins, which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1, a telomerase protein required for telomerase recruitment to telomeres. Previous work found that changes in CS2a cause a loss of all stem IVc proteins, not just the Pop proteins. Here we show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the P3 domain with the associated Pop proteins. Separating the P3 domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop proteins remains intact. Moreover, the P3 domain ensures Est2 stability on the RNP independently of Est1 association. Therefore, the Tlc1 stem IVc recruitment module of the RNA requires a very tight architectural organization for telomerase function in vivo.
Collapse
Affiliation(s)
- Nancy Laterreur
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Bruno Lemieux
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Hannah Neumann
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | | | - Daniel Lafontaine
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
21
|
Abstract
Majority of the human genome is transcribed into RNAs with absent or limited protein-coding potential. microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two major families of the non-protein-coding transcripts. miRNAs and lncRNAs can regulate fundamental cellular processes via diverse mechanisms. The expression and function of miRNAs and lncRNAs are tightly regulated in development and physiological homeostasis. Dysregulation of miRNAs and lncRNAs is critical to pathogenesis of human disease. Moreover, recent evidence indicates a cross talk between miRNAs and lncRNAs. Herein we review recent advances in the biology of miRNAs and lncRNAs with respect to the above aspects. We focus on their roles in cancer, respiratory disease, and neurodegenerative disease. The complexity, flexibility, and versatility of the structures and functions of miRNAs and lncRNAs demand integration of experimental and bioinformatics tools to acquire sufficient knowledge for applications of these noncoding RNAs in clinical care.
Collapse
Affiliation(s)
- Min Xue
- Xuzhou College of Medicine, Xuzhou, Jiangsu, China
| | - Ying Zhuo
- Kadlec Regional Medical Center, 888 Swift Boulevard, Richland, WA, USA
| | - Bin Shan
- Elson S. Floyd College of Medicine, Washington State University Spokane, 1495, Spokane, WA, 99210-1495, USA.
| |
Collapse
|
22
|
Smith MA, Seemann SE, Quek XC, Mattick JS. DotAligner: identification and clustering of RNA structure motifs. Genome Biol 2017; 18:244. [PMID: 29284541 PMCID: PMC5747123 DOI: 10.1186/s13059-017-1371-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
The diversity of processed transcripts in eukaryotic genomes poses a challenge for the classification of their biological functions. Sparse sequence conservation in non-coding sequences and the unreliable nature of RNA structure predictions further exacerbate this conundrum. Here, we describe a computational method, DotAligner, for the unsupervised discovery and classification of homologous RNA structure motifs from a set of sequences of interest. Our approach outperforms comparable algorithms at clustering known RNA structure families, both in speed and accuracy. It identifies clusters of known and novel structure motifs from ENCODE immunoprecipitation data for 44 RNA-binding proteins.
Collapse
Affiliation(s)
- Martin A Smith
- RNA Biology and Plasticity Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW 2010, Australia.
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg, Denmark
| | - Xiu Cheng Quek
- RNA Biology and Plasticity Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW 2010, Australia
| | - John S Mattick
- RNA Biology and Plasticity Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW 2010, Australia
| |
Collapse
|
23
|
Laterreur N, Wellinger RJ. [A rejuvenation for yeast telomerase]. Med Sci (Paris) 2017; 33:1051-1054. [PMID: 29261492 DOI: 10.1051/medsci/20173312011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nancy Laterreur
- Département de microbiologie et infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Rue Jean Mignault Sherbrooke, Québec, J1E 4K8, Canada
| | - Raymund J Wellinger
- Département de microbiologie et infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Rue Jean Mignault Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
24
|
Mehra M, Chauhan R. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2017; 9:1179299X17737301. [PMID: 29147078 PMCID: PMC5673005 DOI: 10.1177/1179299x17737301] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non-protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far.
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ranjit Chauhan
- Department of Hepatology, Loyola University Chicago, Chicago, IL, USA
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
25
|
Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? SCIENCE ADVANCES 2017; 3:eaao2110. [PMID: 28959731 PMCID: PMC5617379 DOI: 10.1126/sciadv.aao2110] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 05/11/2023]
Abstract
It has recently become apparent that RNA, itself the product of transcription, is a major regulator of the transcriptional process. In particular, long noncoding RNAs (lncRNAs), which are so numerous in eukaryotes, function in many cases as transcriptional regulators. These RNAs function through binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II. In other cases, it is the act of lncRNA transcription rather than the lncRNA product that appears to be regulatory. We review recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression and future opportunities in this research field.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Daniel T. Youmans
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas R. Cech
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
- Corresponding author.
| |
Collapse
|
26
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
27
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
28
|
Vasianovich Y, Wellinger RJ. Life and Death of Yeast Telomerase RNA. J Mol Biol 2017; 429:3242-3254. [PMID: 28115201 DOI: 10.1016/j.jmb.2017.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Abstract
Telomerase reverse transcriptase elongates telomeres to overcome their natural attrition and allow unlimited cellular proliferation, a characteristic shared by stem cells and the majority of malignant cancerous cells. The telomerase holoenzyme comprises a core RNA molecule, a catalytic protein subunit, and other accessory proteins. Malfunction of certain telomerase components can cause serious genetic disorders including dyskeratosis congenita and aplastic anaemia. A hierarchy of tightly regulated steps constitutes the process of telomerase biogenesis, which, if interrupted or misregulated, can impede the production of a functional enzyme and severely affect telomere maintenance. Here, we take a closer look at the budding yeast telomerase RNA component, TLC1, in its long lifetime journey around the cell. We review the extensive knowledge on TLC1 transcription and processing. We focus on exciting recent studies on telomerase assembly, trafficking, and nuclear dynamics, which for the first time unveil striking similarities between the yeast and human telomerase ribonucleoproteins. Finally, we identify questions yet to be answered and new directions to be followed, which, in the future, might improve our knowledge of telomerase biology and trigger the development of new therapies against cancer and other telomerase-related diseases.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
29
|
Stokes III JA, Mishra MK. Role of Resveratrol (RES) in Regenerative Medicine. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the last quarter century, technology has been a major catalyst of the advancement in various fields of scientific knowledge, particularly medical research. This new enlightenment has spurred the exploration of alternative treatment methods to some of society's most problematic diseases. One such innovative treatment is the use of Resveratrol (RES) to treat a number of pathophysiological conditions. RES is a natural polyphenolic compound found in the skin(s) of blueberries, red grapes (a major constituent of red wine), some vegetables, and even peanuts. The compound has a number of potent regenerative properties, which include: anti-aging, anti-inflammatory, and antioxidative. Research has confirmed both in vivo and in vitro RES's beneficial applications to numerous diseases. This chapter centers on its unique healing powers and beneficial applications against myriad debilitating conditions.
Collapse
|
30
|
Long Noncoding RNAs in the Yeast S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:119-132. [PMID: 28815538 DOI: 10.1007/978-981-10-5203-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Long noncoding RNAs have recently been discovered to comprise a sizeable fraction of the RNA World. The scope of their functions, physical organization, and disease relevance remain in the early stages of characterization. Although many thousands of lncRNA transcripts recently have been found to emanate from the expansive DNA between protein-coding genes in animals, there are also hundreds that have been found in simple eukaryotes. Furthermore, lncRNAs have been found in the bacterial and archaeal branches of the tree of life, suggesting they are ubiquitous. In this chapter, we focus primarily on what has been learned so far about lncRNAs from the greatly studied single-celled eukaryote, the yeast Saccharomyces cerevisiae. Most lncRNAs examined in yeast have been implicated in transcriptional regulation of protein-coding genes-often in response to forms of stress-whereas a select few have been ascribed yet other functions. Of those known to be involved in transcriptional regulation of protein-coding genes, the vast majority function in cis. There are also some yeast lncRNAs identified that are not directly involved in regulation of transcription. Examples of these include the telomerase RNA and telomere-encoded transcripts. In addition to its role as a template-encoding telomeric DNA synthesis, telomerase RNA has been shown to function as a flexible scaffold for protein subunits of the RNP holoenzyme. The flexible scaffold model provides a specific mechanistic paradigm that is likely to apply to many other lncRNAs that assemble and orchestrate large RNP complexes, even in humans. Looking to the future, it is clear that considerable fundamental knowledge remains to be obtained about the architecture and functions of lncRNAs. Using genetically tractable unicellular model organisms should facilitate lncRNA characterization. The acquired basic knowledge will ultimately translate to better understanding of the growing list of lncRNAs linked to human maladies.
Collapse
|
31
|
Abstract
The regulatory potential of RNA has never ceased to amaze: from RNA catalysis, to RNA-mediated splicing, to RNA-based silencing of an entire chromosome during dosage compensation. More recently, thousands of long noncoding RNA (lncRNA) transcripts have been identified, the majority with unknown function. Thus, it is tempting to think that these lncRNAs represent a cadre of new factors that function through ribonucleic mechanisms. Some evidence points to several lncRNAs with tantalizing physiological contributions and thought-provoking molecular modalities. However, dissecting the RNA biology of lncRNAs has been difficult, and distinguishing the independent contributions of functional RNAs from underlying DNA elements, or the local act of transcription, is challenging. Here, we aim to survey the existing literature and highlight future approaches that will be needed to link the RNA-based biology and mechanisms of lncRNAs in vitro and in vivo.
Collapse
Affiliation(s)
- Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
32
|
Abstract
A hallmark of Alzheimer's, Huntington's and similar diseases is the assembly of proteins into amyloids rather than folding into their native state. There is an increasing appreciation that amyloids, under specific conditions, may be non-pathogenic. Here we show that amyloids form as a normal part of Xenopus oocyte development. Amyloids are detectable in the cytosol and the nucleus using an amyloid binding dye and antibodies that recognize amyloid structure. In the cytosol, yolk platelets are amyloid reactive, as are a number of yet to be characterized particles. In the nucleus, we find particles associated with transcription by RNA polymerase I, II and III and RNA processing contain amyloids. Nuclear amyloids remain intact for hours following isolation; however, RNase treatment rapidly disrupts nuclear amyloids. Summary: Non-membrane-bound nuclear particles in Xenopus oocytes responsible for RNA transcription, modification and processing contain proteins assembled into amyloids as part of normal development.
Collapse
Affiliation(s)
- Michael H Hayes
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel L Weeks
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Abstract
The addition of telomeric DNA to chromosome ends is an essential cellular activity that compensates for the loss of genomic DNA that is due to the inability of the conventional DNA replication apparatus to duplicate the entire chromosome. The telomerase reverse transcriptase and its associated RNA bind to the very end of the telomere via a sequence in the RNA and specific protein-protein interactions. Telomerase RNA also provides the template for addition of new telomeric repeats by the reverse-transcriptase protein subunit. In addition to the template, there are 3 other conserved regions in telomerase RNA that are essential for normal telomerase activity. Here we briefly review the conserved core regions of telomerase RNA and then focus on a recent study in fission yeast that determined the function of another conserved region in telomerase RNA called the Stem Terminus Element (STE). (1) The STE is distant from the templating core of telomerase in both the linear and RNA secondary structure, but, nonetheless, affects the fidelity of telomere sequence addition and, in turn, the ability of telomere binding proteins to bind and protect chromosome ends. We will discuss possible mechanisms of STE action and the suitability of the STE as an anti-cancer target.
Collapse
Affiliation(s)
- Christopher J Webb
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Virginia A Zakian
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| |
Collapse
|
34
|
The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 2016; 468:1029-40. [PMID: 27165283 PMCID: PMC4893068 DOI: 10.1007/s00424-016-1819-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.
Collapse
|
35
|
Lemieux B, Laterreur N, Perederina A, Noël JF, Dubois ML, Krasilnikov AS, Wellinger RJ. Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP. Cell 2016; 165:1171-1181. [PMID: 27156450 DOI: 10.1016/j.cell.2016.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/20/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.
Collapse
Affiliation(s)
- Bruno Lemieux
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Nancy Laterreur
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-François Noël
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Marie-Line Dubois
- Department of Anatomy and Cellular Biology,Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
36
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
37
|
Niederer RO, Papadopoulos N, Zappulla DC. Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq. Sci Rep 2016; 6:19376. [PMID: 26786024 PMCID: PMC4726298 DOI: 10.1038/srep19376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Telomerase is a ribonucleoprotein that maintains the ends of linear chromosomes in most eukaryotes. Loss of telomerase activity results in shortening of telomeric DNA and eventually a specific G2/M cell-cycle arrest known as senescence. In humans, telomere shortening occurs during aging, while inappropriate activation of telomerase is associated with approximately 90% of cancers. Previous studies have identified several classes of noncoding RNAs (ncRNA) also associated with aging-related senescence and cancer, but whether ncRNAs are also involved in short-telomere-induced senescence in yeast is unknown. Here, we report 112 putative novel lncRNAs in the yeast Saccharomyces cerevisiae, 41 of which are only expressed in telomerase-negative yeast. Expression of approximately half of the lncRNAs is strongly correlated with that of adjacent genes, suggesting this subset may influence transcription of neighboring genes. Our results reveal a new potential mechanism governing adaptive changes in senescing and post-senescent survivor yeast cells.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231 USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218 USA
| |
Collapse
|
38
|
Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet 2015; 11:e1005680. [PMID: 26633036 PMCID: PMC4669167 DOI: 10.1371/journal.pgen.1005680] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. A fundamental problem studied by skeletal biologists is the development of regenerative therapies to replace cartilage tissues impacted by injury or disease, which for individuals affected by osteoarthritis represents nearly half of all of all adults over the age of sixty five. To date, no therapies exist to promote sustained cartilage regeneration, as we have not been able to recapitulate the programming events necessary to instruct cells to form articular cartilage without these cells continuing to differentiate into bone. Our analysis of the early programming events occurring during cartilage formation led to the identification of LncRNA-HIT a long noncoding RNA that is essential for the differentiation of the embryonic limb mesenchyme into cartilage. A genome wide analysis of LncRNA-HIT’s distribution in the mesenchyme revealed strong association between LncRNA-HIT and numerous genes whose products facilitate cartilage formation. In the absence of LncRNA-HIT, the expression of these chondrogenic genes is severely reduced, impacting the differentiation of these cells into cartilage. Mechanistically, LncRNA-HIT regulates these pro-chondrogenic genes by recruiting p100 and CBP to these loci, facilitating H3K27ac and transcriptional activation. LncRNA-HIT also appears to be present in most vertebrate species, suggesting that the epigenetic program regulated by this lncRNA may represent a fundamental mechanism used by many species to promote cartilage formation.
Collapse
Affiliation(s)
- Hanqian L. Carlson
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - Jeffrey J. Quinn
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yul W. Yang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea K. Thornburg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Howard Y. Chang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - H. Scott Stadler
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
39
|
Yang Y, Wen L, Zhu H. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci 2015; 5:59. [PMID: 26500759 PMCID: PMC4618879 DOI: 10.1186/s13578-015-0050-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in eukarya, but their functions are largely unknown. Fortunately, lncRNA-protein interactions may offer details of how lncRNAs play important roles in various biological processes, thus identifying proteins associated with lncRNA is critical. Here we review progress of molecular archetypes that lncRNAs execute as guides, scaffolds, or decoys for protein, focusing on advantages, shortcomings and applications of various conventional and emerging technologies to probe lncRNAs and protein interactions, including protein-centric biochemistry approaches such as nRIP and CLIP, and RNA-centric biochemistry approaches such as ChIRP, CHART and RAP. Overall, this review provides strategies for probing interactions between lncRNAs and protein.
Collapse
Affiliation(s)
- Yongfang Yang
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Liwei Wen
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongliang Zhu
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
40
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Taneda A. Multi-objective optimization for RNA design with multiple target secondary structures. BMC Bioinformatics 2015; 16:280. [PMID: 26335276 PMCID: PMC4559319 DOI: 10.1186/s12859-015-0706-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
Background RNAs are attractive molecules as the biological parts for synthetic biology. In particular, the ability of conformational changes, which can be encoded in designer RNAs, enables us to create multistable molecular switches that function in biological circuits. Although various algorithms for designing such RNA switches have been proposed, the previous algorithms optimize the RNA sequences against the weighted sum of objective functions, where empirical weights among objective functions are used. In addition, an RNA design algorithm for multiple pseudoknot targets is currently not available. Results We developed a novel computational tool for automatically designing RNA sequences which fold into multiple target secondary structures. Our algorithm designs RNA sequences based on multi-objective genetic algorithm, by which we can explore the RNA sequences having good objective function values without empirical weight parameters among the objective functions. Our algorithm has great flexibility by virtue of this weight-free nature. We benchmarked our multi-target RNA design algorithm with the datasets of two, three, and four target structures and found that our algorithm shows better or comparable design performances compared with the previous algorithms, RNAdesign and Frnakenstein. In addition to the benchmarks with pseudoknot-free datasets, we benchmarked MODENA with two-target pseudoknot datasets and found that MODENA can design the RNAs which have the target pseudoknotted secondary structures whose free energies are close to the lowest free energy. Moreover, we applied our algorithm to a ribozyme-based ON-switch which takes a ribozyme-inactive secondary structure when the theophylline aptamer structure is assumed. Conclusions Currently, MODENA is the only RNA design software which can be applied to multiple pseudoknot targets. Successful design results for the multiple targets and an RNA device indicate usefulness of our multi-objective RNA design algorithm. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0706-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, Japan.
| |
Collapse
|
42
|
Lebo KJ, Niederer RO, Zappulla DC. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2015; 21:862-876. [PMID: 25737580 PMCID: PMC4408794 DOI: 10.1261/rna.049379.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.
Collapse
Affiliation(s)
- Kevin J Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| |
Collapse
|
43
|
Cao J, Luo Z, Cheng Q, Xu Q, Zhang Y, Wang F, Wu Y, Song X. Three-dimensional regulation of transcription. Protein Cell 2015; 6:241-53. [PMID: 25670626 PMCID: PMC4383755 DOI: 10.1007/s13238-015-0135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022] Open
Abstract
Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and non-coding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.
Collapse
Affiliation(s)
- Jun Cao
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Zhengyu Luo
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qingyu Cheng
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qianlan Xu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Fei Wang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Wu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Xiaoyuan Song
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
44
|
Li X, Wu Z, Fu X, Han W. lncRNAs: insights into their function and mechanics in underlying disorders. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:1-21. [PMID: 25485593 DOI: 10.1016/j.mrrev.2014.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Genomes of complex organisms are characterized by the pervasive expression of different types of noncoding RNAs (ncRNAs). lncRNAs constitute a large family of long—arbitrarily defined as being longer than 200 nucleotides—ncRNAs that are expressed throughout the cell and that include thousands of different species. While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown at present. Existing examples suggest that lncRNAs have fulfilled a wide variety of regulatory roles at almost every stage of gene expression. These roles, which encompass signal, decoy, scaffold and guide capacities, derive from folded modular domains in lncRNAs. Early discoveries support a paradigm in which lncRNAs regulate transcription networks via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including posttranscriptional processing. In addition, long intergenic ncRNAs (lincRNAs) are strongly enriched for trait-associated SNPs, which suggest a new mechanism by which intergenic trait-associated regions might function. Moreover, multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to diverse human diseases, especially disorders related to aging. In this article, we review the current state of the knowledge of the lncRNA field, discussing what is known about the genomic contexts, biological functions and mechanisms of action of these molecules. We highlight the growing evidence for the importance of lncRNAs in diverse human disorders and the indications that their dysregulations and mutations underlie some aging-related disorders. Finally, we consider the potential medical implications, and future potential in the application of lncRNAs as therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China; Key Laboratory of Wound Healing and Cell Biology, Institute of Burns, The First Affiliated Hospital to the Chinese PLA General Hospital, Trauma Center of Postgraduate Medical School, Beijing 100037, China.
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
45
|
Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1910-1922. [PMID: 24667321 DOI: 10.1016/j.bbadis.2014.03.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/05/2014] [Accepted: 03/16/2014] [Indexed: 12/31/2022]
Abstract
It has been found that the majority of disease-associated genetic variants identified by genome-wide association studies are located outside of protein-coding regions, where they seem to affect regions that control transcription (promoters, enhancers) and non-coding RNAs that also can influence gene expression. In this review, we focus on two classes of non-coding RNAs that are currently a major focus of interest: micro-RNAs and long non-coding RNAs. We describe their biogenesis, suggested mechanism of action, and discuss how these non-coding RNAs might be affected by disease-associated genetic alterations. The discovery of these alterations has already contributed to a better understanding of the etiopathology of human diseases and yielded insight into the function of these non-coding RNAs. We also provide an overview of available databases, bioinformatics tools, and high-throughput techniques that can be used to study the mechanism of action of individual non-coding RNAs. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Barbara Hrdlickova
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | - Zuzanna Borek
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
46
|
Long non-coding RNA in health and disease. J Mol Med (Berl) 2014; 92:337-46. [PMID: 24531795 DOI: 10.1007/s00109-014-1131-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-transcriptional gene regulation expands our knowledge of disease. Several associations between altered lncRNA function and gene expression have been linked to clinical disease phenotypes. Early advances have been made in developing lncRNAs as biomarkers. Several mouse models reveal that human lncRNAs have very diverse functions. Their involvement in gene and genome regulation as well as disease underscores the importance of lncRNA-mediated regulatory networks. Because of their tissue-specific expression potential, their function as activators or repressors, and their selective targeting of genes, lncRNAs are of potential therapeutic interest. We review the regulatory mechanisms of lncRNAs, their major functional principles, and discuss their role in Mendelian disorders, cancer, cardiovascular disease, and neurological disorders.
Collapse
|
47
|
Lammens T, D'hont I, D'Herde K, Benoit Y, Diez-Fraile A. Long non-coding RNAs in pluripotent stem cell biology. Vet Q 2013; 33:202-6. [PMID: 24256470 DOI: 10.1080/01652176.2013.866297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pluripotent stem cells are defined by their unlimited self-renewal capacities and potential to differentiate into any cell lineage. Many crucial determinants for the induction and maintenance of this pluripotent state have been identified. Long non-coding RNAs have recently emerged as key regulators of pluripotent stem cells and have enhanced our understanding of their potential functions in tissue regeneration. This review provides an overview of recent important insights into the roles of long non-coding RNAs as regulators and markers of pluripotency.
Collapse
Affiliation(s)
- Tim Lammens
- a Department of Pediatric Hematology-Oncology and Stem Cell Transplantation , Ghent University Hospital, 3K12D , De Pintelaan 185, 9000 Ghent , Belgium
| | | | | | | | | |
Collapse
|
48
|
Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 2013; 32:2980-93. [PMID: 24129512 DOI: 10.1038/emboj.2013.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism.
Collapse
Affiliation(s)
- Melissa A Mefford
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
49
|
Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 2013; 9:101-12. [PMID: 24247090 DOI: 10.4161/epi.26405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precisely regulated patterns of gene expression are dependent on the binding of transcription factors and chromatin-associated determinants referred to as co-activators and co-repressors. These regulatory components function with the core transcriptional machinery to serve in critical activities to alter chromatin modification and regulate gene expression. While we are beginning to understand that cell-type specific patterns of gene expression are necessary to achieve selective cardiovascular developmental programs, we still do not know the molecular machineries that localize these determinants in the heart. With clear implications for the epigenetic control of gene expression signatures, the ENCODE (Encyclopedia of DNA Elements) Project Consortium determined that about 90% of the human genome is transcribed while only 1-2% of transcripts encode proteins. Emerging evidence suggests that non-coding RNA (ncRNA) serves as a signal for decoding chromatin modifications and provides a potential molecular basis for cell type-specific and promoter-specific patterns of gene expression. The discovery of the histone methyltransferase enzyme EZH2 in the regulation of gene expression patterns implicated in cardiac hypertrophy suggests a novel role for chromatin-associated ncRNAs and is the focus of this article.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Epigenomics Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Department of Pathology; The University of Melbourne; Melbourne, VIC Australia; Faculty of Medicine; Monash University; Melbourne, VIC Australia
| |
Collapse
|
50
|
Kugel JF, Goodrich JA. The regulation of mammalian mRNA transcription by lncRNAs: recent discoveries and current concepts. Epigenomics 2013; 5:95-102. [PMID: 23414324 DOI: 10.2217/epi.12.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcription by RNA Pol II is a tightly controlled process that is critical to normal cellular metabolism. Understanding how transcriptional regulation is orchestrated has mainly involved identifying and characterizing proteins that function as transcription factors. During the past decade, however, an increasing number of lncRNAs have been identified as transcriptional regulators. This revelation has spurred new discoveries, novel techniques and paradigm shifts, which together are redefining our understanding of transcriptional control and broadening our view of RNA function. Here, we summarize recent discoveries concerning the role of lncRNAs as regulators of mammalian mRNA transcription, with a focus on key concepts that are guiding current research in the field.
Collapse
Affiliation(s)
- Jennifer F Kugel
- Department of Chemistry & Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | | |
Collapse
|