1
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
2
|
Guo YD, Meng RJ, Hu XQ, Lin LY, Yang YR, Yang MY, You Y, Zhang LQ, Xu YL, Yan XH. Strain-induced ferroelectric polarization reversal without undergoing geometric inversion in blue SiSe monolayer. Phys Chem Chem Phys 2024; 26:15629-15636. [PMID: 38764382 DOI: 10.1039/d4cp00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ferroelectricity in two-dimensional (2D) systems generally arises from phonons and has been widely investigated. On the contrary, electronic ferroelectricity in 2D systems has been rarely studied. Using first-principles calculations, the ferroelectric behavior of the buckled blue SiSe monolayer under strain are explored. It is found that the direction of the out-of-plane ferroelectric polarization can be reversed by applying an in-plane strain. And such polarization switching is realized without undergoing geometric inversion. Besides, the strain-triggered polarization reversal emerges in both biaxial and uniaxial strain cases, indicating it is an intrinsic feature of such a system. Further analysis shows that the polarization switching is the result of the reversal of the magnitudes of the positive and negative charge center vectors. And the variation of buckling is found to play an important role, which results in the switch. Moreover, a non-monotonic variation of band gap with strain is revealed. Our findings throws light on the investigation of novel electronic ferroelectric systems.
Collapse
Affiliation(s)
- Yan-Dong Guo
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Rui-Jie Meng
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Xue-Qin Hu
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Li-Yan Lin
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Yu-Rong Yang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ming-Yu Yang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Yun You
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Lan-Qi Zhang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Yi-Long Xu
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| | - Xiao-Hong Yan
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
3
|
Kanegawa S, Wu SQ, Zhou Z, Shiota Y, Nakanishi T, Yoshizawa K, Sato O. Polar Crystals Using Molecular Chirality: Pseudosymmetric Crystallization toward Polarization Switching Materials. J Am Chem Soc 2024. [PMID: 38604977 DOI: 10.1021/jacs.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.
Collapse
Affiliation(s)
- Shinji Kanegawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ziqi Zhou
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Gui Z, Li W, Huang L. Emergence of Improper Electronic Ferroelectricity and Flat Band in Twisted Bilayer Tl 2S. NANO LETTERS 2024; 24:3231-3236. [PMID: 38415606 DOI: 10.1021/acs.nanolett.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two-dimensional (2D) ferroelectrics possessing out-of-plane (OP) polarization are highly desirable for applications and fundamental physics. Here, by first-principles calculations, we reveal that large-angle interlayer twisting can efficiently stabilize an unexpected ordering of sizable electric dipoles, producing OP polarization out of the centrosymmetric ground-state structure of Tl2S, in great contrast to the recently proposed interlayer-sliding ferroelectricity. The ferroelectricity originates from a nonlinear coupling between a polar order dominantly contributed by electrons and an unstable phonon mode associated with a commensurate k point (1/3, 1/3, 0) in the two constituent monolayers, therefore indicating an improper and electronic ferroelectric nature. More interestingly, a flat band and a van Hove singularity occur in its electronic structures just below the Fermi level in the large-angle twisted bilayer Tl2S. The unusual coexistence of improper electronic ferroelectricity, a flat band, and a van Hove singularity in one 2D material offers exceptional opportunities for exploring novel physics and applications.
Collapse
Affiliation(s)
- Zhigang Gui
- Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
| | - Wei Li
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Li Huang
- Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| |
Collapse
|
5
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Miura R, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Ferroelectric Organic Semiconductor: [1]Benzothieno[3,2- b][1]benzothiophene-Bearing Hydrogen-Bonding -CONHC 14H 29 Chain. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58711-58722. [PMID: 38055344 DOI: 10.1021/acsami.3c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-CONHC14H29 (1) and C8H17-BTBT-CONHC14H29 (2) were prepared to design the multifunctional organic materials, which can show both ferroelectric and semiconducting properties. Single-crystal X-ray structural analyses of short-chain (-CONHC3H7) derivatives revealed the coexistence of two-dimensional (2D) electronic band structures brought from a herringbone arrangement of the BTBT π core and the one-dimensional (1D) hydrogen-bonding chains of -CONHC3H7 chains. The thin films of 1 and 2 fabricated on the Si/SiO2 substrate surface have monolayer and bilayer structures, respectively, resulting in conducting layers parallel to the substrate surface, which is suitable for a channel layer of organic field-effect transistors (OFETs). The thin film of 1 indicated a hole mobility μFET = 2.4 × 10-5 cm2 V-1 s-1 and threshold voltage VTh = - 29 V, whereas that of 2 showed a μFET = 2.1 × 10-2 cm2 V-1 s-1 and threshold voltage VTh = -9.7 V. Both 1 and 2 formed the smectic E (SmE) phase above 410 and 369 K, respectively, where the existence of a hole transport pathway was confirmed in the SmE phase. The ferroelectric hysteresis behavior was observed in bulk 1 and 2 in the polarization-electric field (P-E) curves at the SmE phase. 1 showed the remanent polarization Pr = 2.3 μC cm-2 and coercive electric field Ec = 5.2 V μm-1, whereas the Pr and Ec of 2 were 3.4 μC cm-2 and 7.0 V μm-1 at the conditions of 453 K and 1 Hz. Introduction of alkylamide units into the BTBT π core has the potential to develop the external stimulus-responsive organic semiconductors brought from both ferroelectricity and semiconducting properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Riku Miura
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Su SQ, Wu SQ, Kanegawa S, Yamamoto K, Sato O. Control of electronic polarization via charge ordering and electron transfer: electronic ferroelectrics and electronic pyroelectrics. Chem Sci 2023; 14:10631-10643. [PMID: 37829034 PMCID: PMC10566498 DOI: 10.1039/d3sc03432a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Ferroelectric, pyroelectric, and piezoelectric compounds whose electric polarization properties can be controlled by external stimuli such as electric field, temperature, and pressure have various applications, including ferroelectric memory materials, sensors, and thermal energy-conversion devices. Numerous polarization switching compounds, particularly molecular ferroelectrics and pyroelectrics, have been developed. In these materials, the polarization switching usually proceeds via ion displacement and reorientation of polar molecules, which are responsible for the change in ionic polarization and orientational polarization, respectively. Recently, the development of electronic ferroelectrics, in which the mechanism of polarization change is charge ordering and electron transfer, has attracted great attention. In this article, representative examples of electronic ferroelectrics are summarized, including (TMTTF)2X (TMTTF = tetramethyl-tetrathiafulvalene, X = anion), α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene), TTF-CA (TTF = tetrathiafulvalene, CA = p-chloranil), and [(n-C3H7)4N][FeIIIFeII(dto)3] (dto = 1,2-dithiooxalate = C2O2S2). Furthermore, polarization switching materials using directional electron transfer in nonferroelectrics, the so-called electronic pyroelectrics, such as [(Cr(SS-cth))(Co(RR-cth))(μ-dhbq)](PF6)3 (dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, cth = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane), are introduced. Future prospects are also discussed, particularly the development of new properties in polarization switching through the manipulation of electronic polarization in electronic ferroelectrics and electronic pyroelectrics by taking advantage of the inherent properties of electrons.
Collapse
Affiliation(s)
- Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kaoru Yamamoto
- Department of Applied Physics, Okayama University of Science Okayama 700-0005 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
7
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
8
|
Cheng F, Wu S, Zheng W, Su S, Nakanishi T, Xu W, Sadhukhan P, Sejima H, Ikenaga S, Yamamoto K, Gao K, Kanegawa S, Sato O. Macroscopic Polarization Change of Mononuclear Valence Tautomeric Cobalt Complexes Through the Use of Enantiopure Ligand. Chemistry 2022; 28:e202202161. [DOI: 10.1002/chem.202202161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Cheng
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shengqun Su
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Wenhuang Xu
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Pritam Sadhukhan
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hibiki Sejima
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shimon Ikenaga
- Department of Physics Okayama University of Science Okayama Japan
| | - Kaoru Yamamoto
- Department of Physics Okayama University of Science Okayama Japan
| | - Kaige Gao
- College of Physical Science and Technology Yangzhou University Yangzhou Jiangsu P. R. China
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
9
|
Akiyoshi R, Hayami S. Ferroelectric coordination metal complexes based on structural and electron dynamics. Chem Commun (Camb) 2022; 58:8309-8321. [PMID: 35838153 DOI: 10.1039/d2cc02484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroelectrics that display electrically invertible polarisation are attractive materials because of their potential for wide-ranging applications. To date, considerable effort has thus been devoted towards developing ferroelectric materials, particularly those comprising organic/inorganic compounds. In these systems, structural dynamics such as atomic displacement and reorientation of polar ions/molecules play a key role in the generation of reversible spontaneous polarisation. Although there are many reports concerned with organic/inorganic ferroelectrics, ferroelectrics based on coordination metal complexes have been largely unexplored despite their often unique electronic and spin state properties. In this feature article, we discuss recent progress involving coordination metal complex-based ferroelectrics where the reversible polarisation originates not only from structural dynamics (represented by proton transfer, molecular motion, and liquid crystalline behaviour) but also from electron dynamics (represented by electron transfer and spin crossover phenomena) occurring at the metal centre. Furthermore, unique synergy effects (i.e. magnetoelectric coupling) resulting from the structural and electron dynamics are described. We believe that this review pertaining to ferroelectric coordination metal complexes provides new insights for fabricating further advanced functional materials such as multiferroics and spintronics.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
10
|
Topological Excitations in Neutral–Ionic Transition Systems. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The existence and physical properties of topological excitations in ferroelectrics, especially mobile topological boundaries in one dimension, are of profound interest. Notably, topological excitations emerging in association with the neutral–ionic (NI) phase transition are theoretically suggested to carry fractional charges and cause anomalous charge transport. In recent years, we experimentally demonstrated mobile topological excitations in a quasi-one-dimensional (1D) ferroelectric, tetrathiafulvalene-p-chloranil [TTF-CA; TTF (C6H4S4) and CA (C6Cl4O2)], which shows the NI transition, using NMR, NQR, and electrical resistivity measurements. Thermally activated topological excitations carry charges and spins in the NI crossover region and in the ionic phase with a dimer liquid. Moreover, free solitons show a binding transition upon a space-inversion symmetry-breaking ferroelectric order. In this article, we review the recent progress in the study of mobile topological excitations emerging in TTF-CA, along with earlier reports that intensively studied these phenomena, aiming to provide the foundations of the physics of electrical conductivity and magnetism carried by topological excitations in the 1D ferroelectric.
Collapse
|
11
|
Sasaki SS, Udalov OG, Kurish JA, Ishii M, Beloborodov IS, Tolbert SH. Tuning Exchange Coupling in a New Family of Nanocrystal-Based Granular Multiferroics Using an Applied Electric Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16505-16514. [PMID: 35353487 DOI: 10.1021/acsami.1c20599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate an experimental realization of a granular multiferroic composite, where the magnetic state of a nanocrystal array is modified by tuning the interparticle exchange coupling using an applied electric field. Previous theoretical models of a granular multiferroic composite predicted a unique magnetoelectric coupling mechanism, in which the magnetic spins of the ensemble are governed by interparticle exchange. The extent of these exchange interactions can be controlled by varying the local dielectric environment between grains. We specifically utilize the strong dielectric dependence of ferroelectric materials to modify the interparticle coupling of closely spaced magnetic nanoparticles using either a change in temperature or an electric field. This coupling modifies the ensemble magnetic coercivity and thus the superparamagnetic-to-ferromagnetic phase transition temperature. Through the use of two different ferroelectrics, our results suggest that this magnetoelectric coupling mechanism could be generalized as a new class of multiferroic material, applicable to a broad range of ferroelectric/magnetic nanocrystal composites.
Collapse
Affiliation(s)
- Stephen S Sasaki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Oleg G Udalov
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
- Institute for Physics of Microstructures RAS, Nizhny Novgorod 603087, Russia
| | - Jeffrey A Kurish
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Momoko Ishii
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Igor S Beloborodov
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Sarah H Tolbert
- Departments of Chemistry and Biochemistry and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Mukherjee A, Barman S, Ghosh A, Chakraborty S, Datta A, Datta A, Ghosh S. Stable room temperature ferroelectricity in hydrogen-bonded supramolecular assemblies of ambipolar π-systems. Chem Sci 2022; 13:781-788. [PMID: 35173943 PMCID: PMC8768847 DOI: 10.1039/d1sc04617a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
This article reports H-bonding driven supramolecular polymerization of naphthalimide (A)-thiophene (D)-naphthalimide (A) (AD n A, n = 1-4) conjugated ambipolar π-systems and its remarkable impact on room temperature ferroelectricity. Electrochemical studies confirm the ambipolar nature of these AD n A molecules with the HOMO-LUMO gap varying between 2.05 and 2.29 eV. Electron density mapping from ESP calculations reveals intra-molecular charge separation as typically observed in ambipolar systems. In the aggregated state, AD1A and AD2A exhibit bathochromically shifted absorption bands while AD3A and AD4A show typical H-aggregation with a hypsochromic shift. Polarization vs. electric field (P-E) measurements reveal stable room temperature ferroelectricity for these supramolecular assemblies, most prominent for the AD2A system, with a Curie temperature (T c) ≈ 361 K and saturation polarization (P s) of ∼2 μC cm-2 at a rather low coercive field of ∼2 kV cm-1. Control molecules, lacking either the ambipolar chromophore or the amide functionality, do not show any ferroelectricity, vindicating the present molecular and supramolecular design. Computational studies enable structural optimization of the stacked oligomer(s) of AD2A molecules and reveal a significant increase in the macro-dipole moment (in the range of 10-12 Debye) going from the monomer to the oligomer(s), which provides the rationale for the origin of ferroelectricity in these supramolecular polymers.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Shubhankar Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
13
|
Abstract
Ferroic phase transition molecular crystals (FPTMCs), i.e., ferroelectrics and ferroelastics, are an important family of functional molecular materials, having merits of easy synthesis, structural tunability and flexibility, and biocompatibility. Both...
Collapse
|
14
|
Park C, Lee K, Koo M, Park C. Soft Ferroelectrics Enabling High-Performance Intelligent Photo Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004999. [PMID: 33338279 DOI: 10.1002/adma.202004999] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Soft ferroelectrics based on organic and organic-inorganic hybrid materials have gained much interest among researchers owing to their electrically programmable and remnant polarization. This allows for the development of numerous flexible, foldable, and stretchable nonvolatile memories, when combined with various crystal engineering approaches to optimize their performance. Soft ferroelectrics have been recently considered to have an important role in the emerging human-connected electronics that involve diverse photoelectronic elements, particularly those requiring precise programmable electric fields, such as tactile sensors, synaptic devices, displays, photodetectors, and solar cells for facile human-machine interaction, human safety, and sustainability. This paper provides a comprehensive review of the recent developments in soft ferroelectric materials with an emphasis on their ferroelectric switching principles and their potential application in human-connected intelligent electronics. Based on the origins of ferroelectric atomic and/or molecular switching, the soft ferroelectrics are categorized into seven subgroups. In this review, the efficiency of soft ferroelectrics with their distinct ferroelectric characteristics utilized in various human-connected electronic devices with programmable electric field is demonstrated. This review inspires further research to utilize the remarkable functionality of soft electronics.
Collapse
Affiliation(s)
- Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Manipulating electron redistribution to achieve electronic pyroelectricity in molecular [FeCo] crystals. Nat Commun 2021; 12:4836. [PMID: 34376674 PMCID: PMC8355315 DOI: 10.1038/s41467-021-25041-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Pyroelectricity plays a crucial role in modern sensors and energy conversion devices. However, obtaining materials with large and nearly constant pyroelectric coefficients over a wide temperature range for practical uses remains a formidable challenge. Attempting to discover a solution to this obstacle, we combined molecular design of labile electronic structure with the crystal engineering of the molecular orientation in lattice. This combination results in electronic pyroelectricity of purely molecular origin. Here, we report a polar crystal of an [FeCo] dinuclear complex exhibiting a peculiar pyroelectric behavior (a substantial sharp pyroelectric current peak and an unusual continuous pyroelectric current at higher temperatures) which is caused by a combination of Fe spin crossover (SCO) and electron transfer between the high-spin Fe ion and redox-active ligand, namely valence tautomerism (VT). As a result, temperature dependence of the pyroelectric behavior reported here is opposite from conventional ferroelectrics and originates from a transition between three distinct electronic structures. The obtained pyroelectric coefficient is comparable to that of polyvinylidene difluoride at room temperature. Pyroelectric materials exhibiting large and nearly constant pyroelectric coefficients over a wide temperature range are highly desirable. Here, the authors develop molecular [FeCo] crystals with continuous pyroelectricity, originating from a transition between three distinct electronic structures.
Collapse
|
16
|
Liang Y, Shen S, Huang B, Dai Y, Ma Y. Intercorrelated ferroelectrics in 2D van der Waals materials. MATERIALS HORIZONS 2021; 8:1683-1689. [PMID: 34846498 DOI: 10.1039/d1mh00446h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D intercorrelated ferroelectrics, exhibiting a coupled in-plane and out-of-plane ferroelectricity, is a fundamental phenomenon in the field of condensed-mater physics. The current research is based on the paradigm of bi-directional inversion asymmetry in single-layers, which restricts 2D intercorrelated ferroelectrics to extremely few systems. Herein, we propose a new scheme for achieving 2D intercorrelated ferroelectrics using van der Waals (vdW) interaction, and apply this scheme to a vast family of 2D vdW materials. Using first-principles, we demonstrate that 2D vdW multilayers, for example, BN, MoS2, InSe, CdS, PtSe2, TI2O, SnS2, Ti2CO2etc., can exhibit coupled in-plane and out-of-plane ferroelectricity, thus yielding 2D intercorrelated ferroelectric physics. We further predict that such intercorrelated ferroelectrics could demonstrate many distinct properties, for example, electrical full control of spin textures in trilayer PtSe2 and electrical permanent control of valley-contrasting physics in four-layer VS2. Our finding opens a new direction for 2D intercorrelated ferroelectric research.
Collapse
Affiliation(s)
- Yan Liang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Iguchi H, Furutani H, Kimizuka N. Ionic Charge-Transfer Liquid Crystals Formed by Alternating Supramolecular Copolymerization of Liquid π-Donors and TCNQ. Front Chem 2021; 9:657246. [PMID: 33855013 PMCID: PMC8039295 DOI: 10.3389/fchem.2021.657246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
A new family of liquid π-donors, lipophilic dihydrophenazine (DHP) derivatives, show remarkably high π-electron-donor property which exhibit supramolecular alternating copolymerization with 7,7,8,8-tetracyanoquinodimethane (TCNQ), giving ionic charge-transfer (ICT) complexes. The ICT complexes form distinct columnar liquid crystalline (LC) mesophases with well-defined alternating molecular alignment as demonstrated by UV-Vis-NIR spectra, IR spectra, and X-ray diffraction (XRD) patterns. These liquid crystalline ICT complexes display unique phase transitions in response to mechanical stress: the columnar ICT phase is converted to macroscopically oriented smectic-like mesophases upon applying shear force. Although there exist reports on the formation of ICT in the crystalline state, this study provides the first rational identification of ICT mesophases based on the spectroscopic and structural data. The liquid crystalline ICT phases are generated by strong electronic interactions between the liquid π-donors and solid acceptors. It clearly shows the significance of simultaneous fulfillment of strong π-donating ability and ordered self-assembly of the stable ICT pairs. The flexible, stimuli-responsive structural transformation of the ICT complexes offer a new perspective for designing processable CT systems with controlled hierarchical self-assembly and electronic structures.
Collapse
Affiliation(s)
- Hiroaki Iguchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Hidenori Furutani
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Liu X, Wang B, Huang X, Dong X, Ren Y, Zhao H, Long L, Zheng L. Room-Temperature Magnetoelectric Coupling in Electronic Ferroelectric Film based on [( n-C 3H 7) 4N][Fe IIIFe II(dto) 3] (dto = C 2O 2S 2). J Am Chem Soc 2021; 143:5779-5785. [PMID: 33847129 DOI: 10.1021/jacs.1c00601] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Great importance has been attached to magnetoelectric coupling in multiferroic thin films owing to their extremely practical use in a new generation of devices. Here, a film of [(n-C3H7)4N][FeIIIFeII(dto)3] (1; dto = C2O2S2) was fabricated using a simple stamping process. As was revealed by our experimental results, in-plane ferroelectricity over a wide temperature range from 50 to 300 K was induced by electron hopping between FeII and FeIII sites. This mechanism was further confirmed by the ferroelectric observation of the compound [(n-C3H7)4N][FeIIIZnII(dto)3] (2; dto = C2O2S2), in which FeII ions were replaced by nonmagnetic metal ZnII ions, resulting in no obvious ferroelectric polarization. However, both ferroelectricity and magnetism are related to the magnetic Fe ions, implying a strong magnetoelectric coupling in 1. Through piezoresponse force microscopy (PFM), the observation of magnetoelectric coupling was achieved by manipulating ferroelectric domains under an in-plane magnetic field. The present work not only provides new insight into the design of molecular-based electronic ferroelectric/magnetoelectric materials but also paves the way for practical applications in a new generation of electronic devices.
Collapse
Affiliation(s)
- Xiaolin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Bin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaofeng Huang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xinwei Dong
- Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yanping Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Haixia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lasheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
19
|
Ohmura H, Tabata Y, Kimura S, Uji H. Piezoelectric properties reflecting nanostructures of tetrathiafulvalene and chloranil complexes using cyclic peptide nanotube scaffolds. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroshi Ohmura
- Department of Material Chemistry, Graduate School of Engineering Kyoto University, Kyoto‐Daigaku‐Katsura Kyoto Japan
| | - Yuki Tabata
- Department of Material Chemistry, Graduate School of Engineering Kyoto University, Kyoto‐Daigaku‐Katsura Kyoto Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering Kyoto University, Kyoto‐Daigaku‐Katsura Kyoto Japan
| | - Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering Kyoto University, Kyoto‐Daigaku‐Katsura Kyoto Japan
| |
Collapse
|
20
|
Ding LJ, Zhong Y. A theoretical strategy for pressure-driven ferroelectric transition associated with critical behavior and magnetoelectric coupling in organic multiferroics. Phys Chem Chem Phys 2020; 22:19120-19130. [PMID: 32808963 DOI: 10.1039/d0cp03003a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In organic multiferroics, the charge or spin coupled to the lattice induces lattice symmetry breaking, which is responsible for the ferroelectric (FE) transition. We propose a quantum spin model to describe the ferroelectricity of organic multiferroics, in which the pressure-driven spin-lattice coupling is controlled both by a jump function and a pressure power function. The T-p phase diagram shows different scaling relationships at low and high pressure regions, respectively, which is in accordance with the experimental observation. It is found that the pressure can not only enhance the FE polarization, but also enhance the transition temperature Tc as well as the electrocaloric effect (ECE). The electrocaloric critical scaling laws are proposed to verify the order and universality of the FE transition based on the Banerjee and Franco's criteria. In addition, we propose a temperature mediated mechanism within an isentropic process based on the ECE combined with the pyromagnetic effect, together with multiple physically (magnetic field and pressure jointly) controlled means, to enhance the magnetoelectric coupling around room-temperature, which will provide thermodynamic and quantum controlled means for realizing multi-state logic memory.
Collapse
Affiliation(s)
- L J Ding
- Department of Physics, ChongQing Three Gorges University, Wanzhou 404100, China.
| | | |
Collapse
|
21
|
Shi C, Ma JJ, Jiang JY, Hua MM, Xu Q, Yu H, Zhang Y, Ye HY. Large Piezoelectric Response in Hybrid Rare-Earth Double Perovskite Relaxor Ferroelectrics. J Am Chem Soc 2020; 142:9634-9641. [PMID: 32319771 DOI: 10.1021/jacs.0c00480] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Piezoelectric materials are technologically important, and the most used are perovskite ferroelectrics. In recent years, more and more emerging areas have put forward new requirements for piezoelectric materials, such as light weight, low acoustic impedance, good flexibility, and biocompatibility. In this context, hybrid organic-inorganic perovskite ferroelectrics have emerged as promising supplements, because they combine attractive features of inorganic and organic materials. Among them, hybrid double-metal perovskites have recently been found to exhibit excellent ferroelectricity. However, their potential as piezoelectric materials has not been exploited. Here, we describe large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectrics (RM3HQ)2RbLa(NO3)6 and (RM3HQ)2NH4La(NO3)6 (RM3HQ = R-N-methyl-3-hydroxylquinuclidinium). They are simultaneously ferroelectric and ferroelastic crystals, with the R3 ferroelectric phase and P213 paraelectric phase. We found that ferroelectric polar microdomains and paraelectric nonpolar regions coexist in a wide temperature range through variable-temperature piezoresponse force microscopy images. The two-phase coexistence reveals low energy barriers of transitions between the two phases and between the polar microdomains with different polarization directions. These lead to the easy polarization rotation of the polar microdomains upon applying a stress and, accordingly, the large piezoelectric response up to 106 pC N-1 for (RM3HQ)2RbLa(NO3)6. This finding represents a significant step toward novel applications of piezoelectric materials based on lead-free hybrid perovskites.
Collapse
Affiliation(s)
- Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jia-Jun Ma
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jia-Ying Jiang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Miao-Miao Hua
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Qi Xu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Hui Yu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yi Zhang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
22
|
Macroscopic Polarization Change via Electron Transfer in a Valence Tautomeric Cobalt Complex. Nat Commun 2020; 11:1992. [PMID: 32332751 PMCID: PMC7181709 DOI: 10.1038/s41467-020-15988-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Polarization change induced by directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, we investigate electronic pyroelectricity in the crystal of a mononuclear complex, [Co(phendiox)(rac-cth)](ClO4)·0.5EtOH (1·0.5EtOH, H2phendiox = 9, 10-dihydroxyphenanthrene, rac-cth = racemic 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane), which undergoes a two-step valence tautomerism (VT). Correspondingly, pyroelectric current exhibits double peaks in the same temperature domain with the polarization change consistent with the change in dipole moments during the VT process. Time-resolved Infrared (IR) spectroscopy shows that the photo-induced metastable state can be generated within 150 ps at 190 K. Such state can be trapped for tens of minutes at 7 K, showing that photo-induced polarization change can be realized in this system. These results directly demonstrate that a change in the molecular dipole moments induced by intramolecular electron transfer can introduce a macroscopic polarization change in VT compounds. Polarization change from directional electron transfer attracts considerable attention owing to its fast switching rate and potential light control. Here, the authors provide a proof-of-concept of electronic pyroelectricity induced by intramolecular electron transfer in the single crystal of a valence tautomeric compound.
Collapse
|
23
|
Takahashi Y, Takehisa M, Tanaka E, Harada J, Kumai R, Inabe T. Incorporating Spacer Molecules into the Tetrathiafulvalene- p-Chloranil Charge-Transfer Framework: Modulating the Neutral-Ionic Phase Transition. J Phys Chem Lett 2020; 11:1336-1342. [PMID: 31977223 DOI: 10.1021/acs.jpclett.9b03847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The charge-transfer (CT) tetrathiafulvalene-p-chloranil (TTF-CA) crystal, a representative functional organic electronic material, has been the subject of both basic and applied research. This material shows a neutral-ionic phase transition (NIPT) that induces drastic changes in its physical properties. Here, we use this crystal as a framework and demonstrate a method for modulating physical properties of TTF-CA. A number of multicomponent (ternary) CT crystals were obtained by crystallizing TTF-CA with a third molecular species. These complexes all contain molecular sheets formed with TTF-CA; however, the third molecules were differently inserted between these sheets as spacers to induce a variety of physical properties in the CT crystals. Some showed spacer-modified NIPT, while the transition to the ionic state was suppressed in one complex despite the presence of TTF-CA sheets, which indicates that spacer molecules can modulate the physical properties or functions of CT crystals.
Collapse
Affiliation(s)
- Yukihiro Takahashi
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Mika Takehisa
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Eri Tanaka
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Jun Harada
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Reiji Kumai
- Condensed Matter Research Center (CMRC) and Photon Factory, High Energy Accelerator Research Organization (KEK) , Institute of Materials Structure Science , Tsukuba 305-0801 , Japan
| | - Tamotsu Inabe
- Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo 060-0810 , Japan
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| |
Collapse
|
24
|
Kinoshita Y, Kida N, Magasaki Y, Morimoto T, Terashige T, Miyamoto T, Okamoto H. Strong Terahertz Radiation via Rapid Polarization Reduction in Photoinduced Ionic-To-Neutral Transition in Tetrathiafulvalene-p-Chloranil. PHYSICAL REVIEW LETTERS 2020; 124:057402. [PMID: 32083935 DOI: 10.1103/physrevlett.124.057402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/06/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Terahertz lights are usually generated through the optical rectification process within a femtosecond laser pulse in noncentrosymmetric materials. Here, we report a new generation mechanism of terahertz lights based upon a photoinduced phase transition, in which an electronic structure is rapidly changed by a photoirradiation. When a ferroelectric organic molecular compound, tetrathiafulvalene-p-chloranil, is excited by a femtosecond laser pulse, the ionic-to-neutral transition is driven and simultaneously a strong terahertz radiation is produced. By analyzing the terahertz electric-field waveforms and their dependence on the polarization direction of the incident laser pulse, we demonstrate that the terahertz radiation originates from the ultrafast decrease of the spontaneous polarization in the photoinduced ionic-to-neutral transition. The efficiency of the observed terahertz radiation via the photoinduced phase transition mechanism is found to be much higher than that via the optical rectification in the same material and in a typical terahertz emitter, ZnTe.
Collapse
Affiliation(s)
- Yuto Kinoshita
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
| | - Noriaki Kida
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
| | - Yusuke Magasaki
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
| | - Takeshi Morimoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
| | - Tsubasa Terashige
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba 277-8568, Japan
| | - Tatsuya Miyamoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
| | - Hiroshi Okamoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba 277-8568, Japan
| |
Collapse
|
25
|
Park SY, Rabe KM, Neaton JB. Superlattice-induced ferroelectricity in charge-ordered La 1/3Sr 2/3FeO 3. Proc Natl Acad Sci U S A 2019; 116:23972-23976. [PMID: 31712434 PMCID: PMC6883826 DOI: 10.1073/pnas.1906513116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge-order-driven ferroelectrics are an emerging class of functional materials, distinct from conventional ferroelectrics, where electron-dominated switching can occur at high frequency. Despite their promise, only a few systems exhibiting this behavior have been experimentally realized thus far, motivating the need for new materials. Here, we use density-functional theory to study the effect of artificial structuring on mixed-valence solid-solution La1/3Sr2/3FeO3 (LSFO), a system well studied experimentally. Our calculations show that A-site cation (111)-layered LSFO exhibits a ferroelectric charge-ordered phase in which inversion symmetry is broken by changing the registry of the charge order with respect to the superlattice layering. The phase is energetically degenerate with a ground-state centrosymmetric phase, and the computed switching polarization is 39 μC/[Formula: see text], a significant value arising from electron transfer between [Formula: see text] octahedra. Our calculations reveal that artificial structuring of LSFO and other mixed valence oxides with robust charge ordering in the solid solution phase can lead to charge-order-induced ferroelectricity.
Collapse
Affiliation(s)
- Se Young Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Physics, University of California, Berkeley, CA 94720
| | - Karin M Rabe
- Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854;
| | - Jeffrey B Neaton
- Department of Physics, University of California, Berkeley, CA 94720
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
26
|
Takehara R, Sunami K, Miyagawa K, Miyamoto T, Okamoto H, Horiuchi S, Kato R, Kanoda K. Topological charge transport by mobile dielectric-ferroelectric domain walls. SCIENCE ADVANCES 2019; 5:eaax8720. [PMID: 31763453 PMCID: PMC6858255 DOI: 10.1126/sciadv.aax8720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The concept of topology has been widely applied in condensed matter physics, leading to the identification of peculiar electronic states on three-dimensional (3D) surfaces or 2D lines separating topologically distinctive regions. In the systems explored so far, the topological boundaries are built-in walls; thus, their motional degrees of freedom, which potentially bring about new paradigms, have been experimentally inaccessible. Here, working with a quasi-1D organic material with a charge-transfer instability, we show that mobile neutral-ionic (dielectric-ferroelectric) domain boundaries with topological charges carry strongly 1D-confined and anomalously large electrical conduction with an energy gap much smaller than the one-particle excitation gap. This consequence is further supported by nuclear magnetic resonance detection of spin solitons, which are required for steady current of topological charges. The present observation of topological charge transport may open a new channel for broad charge transport-related phenomena such as thermoelectric effects.
Collapse
Affiliation(s)
- R. Takehara
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - K. Sunami
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - K. Miyagawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - T. Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - H. Okamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando–Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba 277-8568, Japan
| | - S. Horiuchi
- Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - R. Kato
- Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - K. Kanoda
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Beldjoudi Y, Narayanan A, Roy I, Pearson TJ, Cetin MM, Nguyen MT, Krzyaniak MD, Alsubaie FM, Wasielewski MR, Stupp SI, Stoddart JF. Supramolecular Tessellations by a Rigid Naphthalene Diimide Triangle. J Am Chem Soc 2019; 141:17783-17795. [PMID: 31526001 DOI: 10.1021/jacs.9b08758] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ashwin Narayanan
- Department of Medicine and Simpson-Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | | | | | | | | | | | - Fehaid M. Alsubaie
- Joint Center of Excellence in Integrated Nanosystems, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
| | | | - Samuel I. Stupp
- Department of Medicine and Simpson-Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - J. Fraser Stoddart
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Anetai H, Sambe K, Takeda T, Hoshino N, Akutagawa T. Nanoscale Effects in One-Dimensional Columnar Supramolecular Ferroelectrics. Chemistry 2019; 25:11233-11239. [PMID: 31250470 DOI: 10.1002/chem.201902544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Organic ferroelectrics have been actively developed with the goal of fabricating environmentally friendly and low-cost memory devices. The remanent polarization of hydrogen-bonded organic ferroelectrics approaches that of the inorganic ones. Nanoscale fabrication of organic ferroelectrics is an essential aspect of high-density memory devices. A pyrene derivative with four tetradecylamide (-CONHC14 H29 ) chains (1) formed an amide-type N-H⋅⋅⋅O hydrogen-bonded one-dimensional (1D) column, which demonstrated ferroelectricity in the discotic hexagonal columnar (Colh ) liquid crystalline phase through the inversion of the orientation of the hydrogen-bonded chains. On the contrary, similar chiral pyrene derivatives bearing 3,7-dimethyl-1-octhylamide chains (S-2 and R-2) did not indicate the Colh phase and ferroelectricity. Homogeneous mixed liquid crystals (1)1-x (S-2)x (i.e., between the ferroelectric 1 and the non-ferroelectric S-2) enable the control of the nanoscale aggregation state of the organic ferroelectrics, resulting in a nanoscale effect of the 1D supramolecular ferroelectrics. Ferroelectric mixed liquid crystals (1)1-x (S-2)x were observed at x≦0.03, where one S-2 molecule was inserted after every thirty-three 1 molecule in the mixed liquid crystal (1)33 (S-2). An average (1)34 length of approximately 12 nm was required to maintain the 1D ferroelectricity, which was similar to the nanoscale limit of inorganic ferroelectrics, such as hafnium oxide thin film (≈15 nm).
Collapse
Affiliation(s)
- Hayato Anetai
- Graduate School of Engineering, Tohoku University, Sendai, 980-8577, Japan
| | - Kohei Sambe
- Graduate School of Engineering, Tohoku University, Sendai, 980-8577, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai, 980-8577, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Norihisa Hoshino
- Graduate School of Engineering, Tohoku University, Sendai, 980-8577, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8577, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
29
|
Chanana A, Waghmare UV. Prediction of Coupled Electronic and Phononic Ferroelectricity in Strained 2D h-NbN: First-Principles Theoretical Analysis. PHYSICAL REVIEW LETTERS 2019; 123:037601. [PMID: 31386436 DOI: 10.1103/physrevlett.123.037601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/13/2019] [Indexed: 06/10/2023]
Abstract
Using first-principles density functional theoretical analysis, we predict coexisting ferroelectric and semimetallic states in a two-dimensional monolayer of h-NbN subjected to an electric field and in-plane strain (ε). At strains close to ε=4.85%, where its out-of-plane spontaneous polarization changes sign without inverting the structure, we demonstrate a hysteretic response of its structure and polarization to an electric field, and uncover a three-state (P=±P_{o}, 0) switching during which h-NbN passes through Dirac semimetallic states. With first-principles evidence for a combination of electronic and phononic ferroelectricity, we present a simple model that captures the energetics of coupled electronic and structural polarization, and show that electronic ferroelectricity arises in a material which is highly polarizable (small band gap) and exhibits a large electron-phonon coupling leading to anomalous dynamical charges. These insights will guide the search for electronic ferroelectrics, and our results on 2D h-NbN will stimulate development of piezofield effect transistors and devices based on the multilevel logic.
Collapse
Affiliation(s)
- Anuja Chanana
- Theoretical Sciences Unit, School of Advanced Materials and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, School of Advanced Materials and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
30
|
Sunami K, Nishikawa T, Miyagawa K, Horiuchi S, Kato R, Miyamoto T, Okamoto H, Kanoda K. Evidence for solitonic spin excitations from a charge-lattice-coupled ferroelectric order. SCIENCE ADVANCES 2018; 4:eaau7725. [PMID: 30515457 PMCID: PMC6269158 DOI: 10.1126/sciadv.aau7725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Topological defects have been explored in different fields ranging from condensed matter physics and particle physics to cosmology. In condensed matter, strong coupling between charge, spin, and lattice degrees of freedom brings about emergent excitations with topological characteristics at low energies. One-dimensional (1D) systems with degenerate dimerization patterns are typical stages for the generation of topological defects, dubbed "solitons"; for instance, charged solitons are responsible for high electrical conductivity in doped trans-polyacetylene. Here, we provide evidence based on a nuclear magnetic resonance (NMR) study for mobile spin solitons deconfined from a strongly charge-lattice-coupled spin-singlet ferroelectric order in a quasi-1D organic charge-transfer complex. The NMR spectral shift and relaxation rate associated with static and dynamic spin susceptibilities indicate that the ferroelectric order is violated by dilute solitonic spin excitations, which were further demonstrated to move diffusively by the frequency dependence of the relaxation rate. The traveling solitons revealed here may promise the emergence of anomalous electrical and thermal transport.
Collapse
Affiliation(s)
- K. Sunami
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - T. Nishikawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - K. Miyagawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - S. Horiuchi
- Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - R. Kato
- Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - T. Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - H. Okamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of AIST, Chiba 277-8568, Japan
| | - K. Kanoda
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Takeda T, Wu J, Ikenaka N, Hoshino N, Hisaki I, Akutagawa T. C
3
Symmetric Hexaphenyltriphenylenehexamide: Molecular Design of Fluorescent Ferroelectrics. ChemistrySelect 2018. [DOI: 10.1002/slct.201802317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takashi Takeda
- Institute of Multidisciplinary Research for; Advanced Materials; Tohoku University; Sendai Miyagi 980-8577 Japan
- Department of Applied Chemistry; Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Jianyun Wu
- Department of Applied Chemistry; Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Nobuaki Ikenaka
- Department of Material and Life Science; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for; Advanced Materials; Tohoku University; Sendai Miyagi 980-8577 Japan
- Department of Applied Chemistry; Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Ichiro Hisaki
- Department of Material and Life Science; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for; Advanced Materials; Tohoku University; Sendai Miyagi 980-8577 Japan
- Department of Applied Chemistry; Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| |
Collapse
|
32
|
Dynamic molecular crystals with switchable physical properties. Nat Chem 2018; 8:644-56. [PMID: 27325090 DOI: 10.1038/nchem.2547] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials.
Collapse
|
33
|
Ding LJ, Zhong Y. A theoretical insight into an isentropic strategy for enhancing magnetoelectric coupling of organic multiferroics. Phys Chem Chem Phys 2018; 20:20228-20234. [PMID: 30028453 DOI: 10.1039/c8cp03534b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cross-coupling between magnetic and ferroelectric orders in spin-driven organic multiferroics provides great potential for realizing multi-state logic memory. Creating strong magnetoelectric coupling around room-temperature is the key to eliminate the main roadblock for practical application. Herein, quantum correlation controlled means are employed to tune the transition temperature TC = 300 K, as the optimal operating temperature. After that, based on the magnetocaloric or electrocaloric effect, a temperature mediated mechanism is proposed to enhance magnetoelectric coupling within an isentropic rather than an isothermal process. Furthermore, a moderate magnetic field combined with a relatively weak electric field can jointly control and dramatically enhance the isentropic magnetoelectric coupling around room-temperature.
Collapse
Affiliation(s)
- L J Ding
- Department of Physics, China Three Gorges University, YiChang 443002, China.
| | | |
Collapse
|
34
|
Affiliation(s)
- Timothy D Usher
- Department of Physics California State University San Bernardino San Bernardino CA USA
| | - Kimberley R Cousins
- Department of Chemistry and Biochemistry California State University San Bernardino San Bernardino CA USA
| | - Renwu Zhang
- Department of Chemistry and Biochemistry California State University San Bernardino San Bernardino CA USA
| | - Stephen Ducharme
- Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience, University of Nebraska Lincoln Lincoln NE USA
| |
Collapse
|
35
|
Chandra P, Lonzarich GG, Rowley SE, Scott JF. Prospects and applications near ferroelectric quantum phase transitions: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:112502. [PMID: 28752823 DOI: 10.1088/1361-6633/aa82d2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.
Collapse
Affiliation(s)
- P Chandra
- Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, United States of America
| | | | | | | |
Collapse
|
36
|
Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions. CRYSTALS 2017. [DOI: 10.3390/cryst7100285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Ai Q, Getmanenko YA, Jarolimek K, Castañeda R, Timofeeva TV, Risko C. Unusual Electronic Structure of the Donor-Acceptor Cocrystal Formed by Dithieno[3,2-a:2',3'-c]phenazine and 7,7,8,8-Tetracyanoquinodimethane. J Phys Chem Lett 2017; 8:4510-4515. [PMID: 28862454 DOI: 10.1021/acs.jpclett.7b01816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed cocrystals derived from electron-rich donor (D) and electron-deficient acceptor (A) molecules showcase electronic, optical, and magnetic properties of interest for a wide range of applications. We explore the structural and electronic properties of a cocrystal synthesized from dithieno[3,2-a:2',3'-c]phenazine (DTPhz) and 7,7,8,8-tetracyanoquinodimethane (TCNQ), which has a mixed-stack packing arrangement of the (π-electronic) face-to-face stacks in a 2:1 D:A stoichiometry. Density functional theory investigations reveal that the primary electronic characteristics of the cocrystal are not determined by electronic interactions along the face-to-face stacks, but rather they are characterized by stronger electronic interactions orthogonal to these stacks that follow the edge-to-edge donor-donor or acceptor-acceptor contacts. These distinctive electronic characteristics portend semiconducting properties that are unusual for semiconducting mixed cocrystals and suggest further potential to design organic semiconductors with orthogonal transport characteristics for different charge carriers.
Collapse
Affiliation(s)
- Qianxiang Ai
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40506-0055, United States
| | - Yulia A Getmanenko
- Department of Chemistry, New Mexico Highlands University , Las Vegas, New Mexico 87701, United States
| | - Karol Jarolimek
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40506-0055, United States
| | - Raúl Castañeda
- Department of Chemistry, New Mexico Highlands University , Las Vegas, New Mexico 87701, United States
| | - Tatiana V Timofeeva
- Department of Chemistry, New Mexico Highlands University , Las Vegas, New Mexico 87701, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
38
|
Matsuda M, Iwamura S, Hamada Y, Ohishi H, Nishi M, Nogami Y, Ikeda M, Kanda A, Funasako Y, Mochida T, Nakao A, Hanasaki N. A new strategy for inducing dipole moments in charge-transfer complexes: introduction of asymmetry into axially ligated iron phthalocyanines. Dalton Trans 2017; 46:11800-11805. [PMID: 28831481 DOI: 10.1039/c7dt02605f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of asymmetry into charge-transfer complexes composed of axially ligated iron phthalocyanines was achieved. In the obtained crystals of TPP[FeIII(Pc)(CN)Cl]2, TPP[FeIII(Pc)(CN)Br]2, and TPP[FeIII(Pc)BrCl]2 (TPP = tetraphenylphosphonium and Pc = phthalocyanine), the axial positions of the iron atoms were occupied by 50/50 ratios of the ligands CN/Cl, CN/Br, and Br/Cl, respectively. The crystal structures of the obtained CT complexes were isostructural to those composed of the symmetric analogues of the type [FeIII(Pc)L2] (L = CN, Cl or Br); the [FeIII(Pc)LL'] units formed regular one-dimensional chains along the c-axis following the symmetry of the P42/n space group. Despite forming similar regular chains to the symmetric systems, the electrical resistivities and activation energies were enhanced in the obtained CT complexes compared to those in symmetric systems, indicating that the charge-ordered states were stabilised by the introduction of asymmetry. More specifically, the dielectric relaxation behaviour of the inhomogeneous disordered TPP[FeIII(Pc)(CN)Cl]2 probably suggests that a dipole moment was induced in this material.
Collapse
Affiliation(s)
- Masaki Matsuda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shivakumar KI, Swathi K, Goudappagouda, Das TC, Kumar A, Makde RD, Vanka K, Narayan KS, Babu SS, Sanjayan GJ. Mixed-Stack Charge Transfer Crystals of Pillar[5]quinone and Tetrathiafulvalene Exhibiting Ferroelectric Features. Chemistry 2017; 23:12630-12635. [PMID: 28661012 DOI: 10.1002/chem.201702577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/11/2022]
Abstract
Ferroelectric materials find extensive applications in the fabrication of compact memory devices and ultra-sensitive multifunctional detectors. Face-to-face alternate stacking of electron donors and acceptors effectuate long-range unidirectional ordering of charge-transfer (CT) dipoles, promising tunable ferroelectricity. Herein we report a new TTF-quinone system-an emerald green CT complex consisting pillar[5]quinone (P5Q) and tetrathiafulvalene (TTF). The CT crystals, as determined by single crystal synchrotron X-ray diffraction, adopt a 1:1 mixed-stack arrangement of donor and acceptor with alternating dimers of TTF and 1,4-dioxane encapsulated P5Q. The TTF-P5Q.dioxane crystal possesses a macroscopic polarization axis giving rise to ferroelectricity at room temperature. The CT complex manifests ferroelectric features such as optical polarization rotation, temperature-dependent phase transition and piezoelectric response in single crystals. Ferroelectric behavior observed in P5Q-based CT complex widens the scope for further work on this structurally intriguing and readily accessible cyclic pentaquinone.
Collapse
Affiliation(s)
- Kilingaru I Shivakumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Kadaba Swathi
- Molecular Electronics Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, India
| | - Goudappagouda
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tamal C Das
- Inorganic and Computational Group, Division of Physical Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Kumar Vanka
- Inorganic and Computational Group, Division of Physical Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Kavassery S Narayan
- Molecular Electronics Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, India
| | - Sukumaran Santhosh Babu
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Gangadhar J Sanjayan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovation Research, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
40
|
Nakamura M, Horiuchi S, Kagawa F, Ogawa N, Kurumaji T, Tokura Y, Kawasaki M. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat Commun 2017; 8:281. [PMID: 28819286 PMCID: PMC5561111 DOI: 10.1038/s41467-017-00250-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022] Open
Abstract
Shift current is a steady-state photocurrent generated in non-centrosymmetric single crystals and has been considered to be one of the major origins of the bulk photovoltaic effect. The mechanism of this effect is the transfer of photogenerated charges by the shift of the wave functions, and its amplitude is closely related to the polarization of the electronic origin. Here, we report the photovoltaic effect in an organic molecular crystal tetrathiafulvalene-p-chloranil with a large ferroelectric polarization mostly induced by the intermolecular charge transfer. We observe a fairly large zero-bias photocurrent with visible-light irradiation and switching of the current direction by the reversal of the polarization. Furthermore, we reveal that the travel distance of photocarriers exceeds 200 μm. These results unveil distinct features of the shift current and the potential application of ferroelectric organic molecular compounds for novel optoelectric devices.The bulk photovoltaics refers to an effect whereby electrons move directionally in non-centrosymmetric crystals upon light radiation. Here, Nakamura et al. observe this effect in a ferroelectric organic charge-transfer complex, which shows large diffusion distance of photogenerated electrons over 200 µm.
Collapse
Affiliation(s)
- M Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan.
| | - S Horiuchi
- Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - F Kagawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - N Ogawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - T Kurumaji
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Y Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - M Kawasaki
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
41
|
Conflicting evidence for ferroelectricity. Nature 2017; 547:E9-E10. [DOI: 10.1038/nature22801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022]
|
42
|
Modeling the Neutral-Ionic Transition with Correlated Electrons Coupled to Soft Lattices and Molecules. CRYSTALS 2017. [DOI: 10.3390/cryst7050144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Ultrafast Electron and Molecular Dynamics in Photoinduced and Electric-Field-Induced Neutral–Ionic Transitions. CRYSTALS 2017. [DOI: 10.3390/cryst7050132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Udalov OG, Beloborodov IS. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:175804. [PMID: 28349898 DOI: 10.1088/1361-648x/aa6647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Collapse
Affiliation(s)
- O G Udalov
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, United States of America. Institute for Physics of Microstructures, Russian Academy of Science, Nizhny Novgorod, 603950, Russia
| | | |
Collapse
|
45
|
Xu WJ, Li PF, Tang YY, Zhang WX, Xiong RG, Chen XM. A Molecular Perovskite with Switchable Coordination Bonds for High-Temperature Multiaxial Ferroelectrics. J Am Chem Soc 2017; 139:6369-6375. [DOI: 10.1021/jacs.7b01334] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei-Jian Xu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng-Fei Li
- Ordered
Matter Science Research Center, Southeast University, Nanjing 211189, China
| | - Yuan-Yuan Tang
- Ordered
Matter Science Research Center, Southeast University, Nanjing 211189, China
| | - Wei-Xiong Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ren-Gen Xiong
- Ordered
Matter Science Research Center, Southeast University, Nanjing 211189, China
| | - Xiao-Ming Chen
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Phenomenology of the Neutral-Ionic Valence Instability in Mixed Stack Charge-Transfer Crystals. CRYSTALS 2017. [DOI: 10.3390/cryst7040108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Quantum Phenomena Emerging Near a Ferroelectric Critical Point in a Donor–Acceptor Organic Charge-Transfer Complex. CRYSTALS 2017. [DOI: 10.3390/cryst7040106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Li S, Cooke RA, Wang L, Ma F, Bhattarai R. Characterization of fly ash ceramic pellet for phosphorus removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 189:67-74. [PMID: 28011428 DOI: 10.1016/j.jenvman.2016.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Phosphorus has been recognized as a leading pollutant for surface water quality deterioration. In the Midwestern USA, subsurface drainage not only provides a pathway for excess water to leave the field but it also drains out nutrients like nitrogen (N) and phosphorus (P). Fly ash has been identified as one of the viable materials for phosphorus removal from contaminated waters. In this study, a ceramic pellet was manufactured using fly ash for P absorption. Three types of pellet with varying lime and clay proportions by weight (type 1: 10% lime + 30% clay, type 2: 20% lime + 20% clay, and type 3: 30% lime + 10% clay) were characterized and evaluated for absorption efficiency. The result showed that type 3 pellet (60% fly ash with 30% lime and 10% clay) had the highest porosity (14%) and absorption efficiency and saturated absorption capacity (1.98 mg P/g pellet) compared to type 1 and 2 pellets. The heavy metal leaching was the least (30 μg/L of chromium after 5 h) for type 3 pellet compared to other two. The microcosmic structure of pellet from scanning electron microscope showed the type 3 pellet had the better distribution of aluminum and iron oxide on the surface compared other two pellets. This result indicates that addition of lime and clay can improve P absorption capacity of fly ash while reducing the potential to reduce chromium leaching.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W Pennsylvania Ave, Urbana IL, 61801, USA; State Key Lab Urban Water Resource & Environment, Harbin Institute of Technology, No.73 HuangHe Road, Harbin, 150090, PR China
| | - Richard A Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W Pennsylvania Ave, Urbana IL, 61801, USA
| | - Li Wang
- State Key Lab Urban Water Resource & Environment, Harbin Institute of Technology, No.73 HuangHe Road, Harbin, 150090, PR China
| | - Fang Ma
- State Key Lab Urban Water Resource & Environment, Harbin Institute of Technology, No.73 HuangHe Road, Harbin, 150090, PR China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W Pennsylvania Ave, Urbana IL, 61801, USA.
| |
Collapse
|
49
|
Morimoto T, Miyamoto T, Yamakawa H, Terashige T, Ono T, Kida N, Okamoto H. Terahertz-Field-Induced Large Macroscopic Polarization and Domain-Wall Dynamics in an Organic Molecular Dielectric. PHYSICAL REVIEW LETTERS 2017; 118:107602. [PMID: 28339244 DOI: 10.1103/physrevlett.118.107602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 05/24/2023]
Abstract
A rapid polarization control in paraelectric materials is important for an ultrafast optical switching useful in the future optical communication. In this study, we applied terahertz-pump second-harmonic-generation-probe and optical-reflectivity-probe spectroscopies to the paraelectric neutral phase of an organic molecular dielectric, tetrathiafulvalene-p-chloranil and revealed that a terahertz pulse with the electric-field amplitude of ∼400 kV/cm produces in the subpicosecond time scale a large macroscopic polarization whose magnitude reaches ∼20% of that in the ferroelectric ionic phase. Such a large polarization generation is attributed to the intermolecular charge transfers and breathing motions of domain walls between microscopic neutral and ionic domains induced by the terahertz electric field.
Collapse
Affiliation(s)
- T Morimoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - T Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - H Yamakawa
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - T Terashige
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - T Ono
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - N Kida
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| | - H Okamoto
- Department of Advanced Materials Science, University of Tokyo, Kashiwa 5-1-5, Chiba 277-8561, Japan
| |
Collapse
|
50
|
Park SY, Kumar A, Rabe KM. Charge-Order-Induced Ferroelectricity in LaVO_{3}/SrVO_{3} Superlattices. PHYSICAL REVIEW LETTERS 2017; 118:087602. [PMID: 28282196 DOI: 10.1103/physrevlett.118.087602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The structure and properties of the 1∶1 superlattice of LaVO_{3} and SrVO_{3} are investigated with a first-principles density-functional-theory-plus-U (DFT+U) method. The lowest energy states are antiferromagnetic charge-ordered Mott-insulating phases. In one of these insulating phases, layered charge ordering combines with the layered La/Sr cation ordering to produce a polar structure with a large nonzero spontaneous polarization normal to the interfaces. This polarization, comparable to that of conventional ferroelectrics, is produced by electron transfer between the V^{3+} and V^{4+} layers. The energy of this normal-polarization state relative to the ground state is only 3 meV per vanadium. Under tensile strain, this energy difference can be further reduced, suggesting that the normal-polarization state can be induced by an electric field applied normal to the superlattice layers, yielding an antiferroelectric double-hysteresis loop. If the system does not switch back to the ground state on removal of the field, a ferroelectric-type hysteresis loop could be observed.
Collapse
Affiliation(s)
- Se Young Park
- Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Anil Kumar
- Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Karin M Rabe
- Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|