1
|
Torsi R, Munson KT, Pendurthi R, Marques E, Van Troeye B, Huberich L, Schuler B, Feidler M, Wang K, Pourtois G, Das S, Asbury JB, Lin YC, Robinson JA. Dilute Rhenium Doping and its Impact on Defects in MoS 2. ACS NANO 2023; 17:15629-15640. [PMID: 37534591 DOI: 10.1021/acsnano.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS2 monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. Ab initio models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS2 growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS2 is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS2 transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS2, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS2. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.
Collapse
Affiliation(s)
- Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyle T Munson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rahul Pendurthi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Esteban Marques
- Imec, Leuven 3001, Belgium
- Department of Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200f - Postbox 2404, 3001 Leuven, Belgium
| | | | - Lysander Huberich
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Bruno Schuler
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Maxwell Feidler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Saptarshi Das
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 300093, Taiwan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Zou J, Zhu R, Wang J, Meng H, Wang Z, Chen H, Weng YX. Coherent Phonon-Mediated Many-Body Interaction in Monolayer WSe 2. J Phys Chem Lett 2023; 14:4657-4665. [PMID: 37167104 DOI: 10.1021/acs.jpclett.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.
Collapse
Affiliation(s)
- Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanting Meng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Jo K, Marino E, Lynch J, Jiang Z, Gogotsi N, Darlington TP, Soroush M, Schuck PJ, Borys NJ, Murray CB, Jariwala D. Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters. Nat Commun 2023; 14:2649. [PMID: 37156799 PMCID: PMC10167231 DOI: 10.1038/s41467-023-38189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.
Collapse
Affiliation(s)
- Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123, Palermo, Italy
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiao Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mohammad Soroush
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicholas J Borys
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Shabani S, Darlington TP, Gordon C, Wu W, Yanev E, Hone J, Zhu X, Dreyer CE, Schuck PJ, Pasupathy AN. Ultralocalized Optoelectronic Properties of Nanobubbles in 2D Semiconductors. NANO LETTERS 2022; 22:7401-7407. [PMID: 36122409 DOI: 10.1021/acs.nanolett.2c02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The optical properties of transition-metal dichalcogenides have previously been modified at the nanoscale by using mechanical and electrical nanostructuring. However, a clear experimental picture relating the local electronic structure with emission properties in such structures has so far been lacking. Here, we use a combination of scanning tunneling microscopy (STM) and near-field photoluminescence (nano-PL) to probe the electronic and optical properties of single nanobubbles in bilayer heterostructures of WSe2 on MoSe2. We show from tunneling spectroscopy that there are electronic states deeply localized in the gap at the edge of such bubbles, which are independent of the presence of chemical defects in the layers. We also show a significant change in the local band gap on the bubble, with a continuous evolution to the edge of the bubble over a length scale of ∼20 nm. Nano-PL measurements observe a continuous redshift of the interlayer exciton on entering the bubble, in agreement with the band-to-band transitions measured by STM. We use self-consistent Schrödinger-Poisson simulations to capture the essence of the experimental results and find that strong doping in the bubble region is a key ingredient to achieving the observed localized states, together with mechanical strain.
Collapse
Affiliation(s)
- Sara Shabani
- Department of Physics, Columbia University, New York 10027, New York, United States
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York 10027, New York, United States
| | - Colin Gordon
- Department of Physics and Astronomy, Stony Brook University, Stony Brook 11790, New York, United States
| | - Wenjing Wu
- Department of Chemistry, Columbia University, New York 10027, New York, United States
| | - Emanuil Yanev
- Department of Mechanical Engineering, Columbia University, New York 10027, New York, United States
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York 10027, New York, United States
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York 10027, New York, United States
| | - Cyrus E Dreyer
- Center for Computational Quantum Physics, Flatiron Institute, New York 10010, New York, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York 10027, New York, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York 10027, New York, United States
| |
Collapse
|
5
|
Wang CF, El-Khoury PZ. Resonant Coherent Raman Scattering from WSe 2. J Phys Chem A 2022; 126:5832-5836. [PMID: 35976736 DOI: 10.1021/acs.jpca.2c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-dimensional transition-metal dichalcogenides (TMDs) continue to comprise a subject of intense research because of their unique optical and electronic properties that may be harnessed in modern devices. Intense photoluminescence (PL) from few-/monolayer TMDs rendered PL-based micro- and nanospectroscopic characterization ideal in the quest to understand the correlation between structure and function in these materials. Nonlinear optical methods are by comparison far less utilized for this purpose. In this work, we describe an approach based on electronically resonant four-wave-mixing that allows spatio-spectral characterization of excitons in monolayer WSe2. Due to the coherent nature of the response that we exploit to trace exciton resonances, and recent demonstrations of electronic four-wave-mixing-based nanoimaging and nanospectroscopy, our present work is an important step toward characterizing TMDs on the nano-femto scale using light.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
7
|
Liao CK, Wu G, Mahmoud MA. Tuning the Optical Band Gap of Two-Dimensional WS 2 Integrated with Gold Nanocubes by Introducing Palladium Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10720-10731. [PMID: 34473512 DOI: 10.1021/acs.langmuir.1c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The two characteristic absorption peaks of semiconducting two-dimensional tungsten disulfide (WS2) are red-shifted after integrating with gold nanocube (AuNC) arrays. The amount of the red shift is reduced when the AuNCs are coated with a high concentration of Pd. A negligible shift was observed in the absorption peaks of WS2 when smaller amounts of Pd are introduced to the surface of AuNCs. Conversely, the photoluminescence (PL) of WS2 is blue-shifted when measured on top of AuNCs and AuNCs coated with different amounts of Pd. AuNC-Pd Janus nanoparticles are prepared by depositing Pd atoms asymmetrically on AuNCs assembled into 2-D arrays on the surface of a glass substrate by the chemical reduction of Pd ions. Due to the large AuNC or AuNC-Pd/WS2 Schottky barrier, the plasmon-induced hot electron transfer (PHET) from AuNCs and AuNCs coated with a high concentration of Pd is responsible for the red shift of the absorption spectrum of WS2. Introducing a lower concentration of Pd to AuNCs increases the Schottky barrier further due to the formation of the Au-Pd equilibrium Fermi level of lower energy, reducing the efficiency of PHET. The effect of Pd on the Fermi level of AuNCs vanishes at high Pd deposition. Pauli blocking and phase-space filling are responsible for the blue shift of PL of WS2 on top of AuNCs and AuNCs coated with Pd. The Pauli blocking effect is directly proportional to the PHET efficiency. This explains the significant blue shift of PL of WS2 after integrating with AuNCs and AuNCs coated with a high concentration of Pd. Additionally, depositing Pd onto AuNCs elongates the lifetime of the hot electrons and enhances the PHET efficiency.
Collapse
Affiliation(s)
- Chih-Kai Liao
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Guanhua Wu
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Mahmoud A Mahmoud
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Lee W, Lin Y, Lu LS, Chueh WC, Liu M, Li X, Chang WH, Kaindl RA, Shih CK. Time-resolved ARPES Determination of a Quasi-Particle Band Gap and Hot Electron Dynamics in Monolayer MoS 2. NANO LETTERS 2021; 21:7363-7370. [PMID: 34424691 DOI: 10.1021/acs.nanolett.1c02674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electronic structure and dynamics of 2D transition metal dichalcogenide (TMD) monolayers provide important underpinnings both for understanding the many-body physics of electronic quasi-particles and for applications in advanced optoelectronic devices. However, extensive experimental investigations of semiconducting monolayer TMDs have yielded inconsistent results for a key parameter, the quasi-particle band gap (QBG), even for measurements carried out on the same layer and substrate combination. Here, we employ sensitive time- and angle-resolved photoelectron spectroscopy (trARPES) for a high-quality large-area MoS2 monolayer to capture its momentum-resolved equilibrium and excited-state electronic structure in the weak-excitation limit. For monolayer MoS2 on graphite, we obtain QBG values of ≈2.10 eV at 80 K and of ≈2.03 eV at 300 K, results well-corroborated by the scanning tunneling spectroscopy (STS) measurements on the same material.
Collapse
Affiliation(s)
- Woojoo Lee
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yi Lin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Li-Syuan Lu
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wei-Chen Chueh
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mengke Liu
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wen-Hao Chang
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science (CEFMS), National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Robert A Kaindl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics and CXFEL Laboratory, Arizona State University, Tempe, Arizona 85287, United States
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Weiss EA. Influence of Shape Anisotropy on the Emission of Low-Dimensional Semiconductors. ACS NANO 2021; 15:3568-3577. [PMID: 33691063 DOI: 10.1021/acsnano.1c01337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of precise and scalable synthetic methods for producing anisotropic semiconductor nanostructures provides opportunities to tune the photophysical properties of these particles beyond their band gaps, and to incorporate them into higher-order structures with macroscopic anisotropic responses to electric and optical fields. This perspective article discusses some of these opportunities in the context of colloidal semiconductor nanoplatelets, with a focus on the influence of confinement anisotropy on processes that dictate the emission.
Collapse
Affiliation(s)
- Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Yao K, Collins MS, Nell KM, Barnard ES, Borys NJ, Kuykendall T, Hohman JN, Schuck PJ. Strongly Quantum-Confined Blue-Emitting Excitons in Chemically Configurable Multiquantum Wells. ACS NANO 2021; 15:4085-4092. [PMID: 33166467 DOI: 10.1021/acsnano.0c08096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light matter interactions are greatly enhanced in two-dimensional (2D) semiconductors because of strong excitonic effects. Many optoelectronic applications would benefit from creating stacks of atomically thin 2D semiconductors separated by insulating barrier layers, forming multiquantum-well structures. However, most 2D transition metal chalcogenide systems require serial stacking to create van der Waals multilayers. Hybrid metal organic chalcogenolates (MOChas) are self-assembling hybrid materials that combine multiquantum-well properties with scalable chemical synthesis and air stability. In this work, we use spatially resolved linear and nonlinear optical spectroscopies over a range of temperatures to study the strongly excitonic optical properties of mithrene, that is, silver benzeneselenolate, and its synthetic isostructures. We experimentally probe s-type bright excitons and p-type excitonic dark states formed in the quantum confined 2D inorganic monolayers of silver selenide with exciton binding energy up to ∼0.4 eV, matching recent theoretical predictions of the material class. We further show that mithrene's highly efficient blue photoluminescence, ultrafast exciton radiative dynamics, as well as flexible tunability of molecular structure and optical properties demonstrate great potential of MOChas for constructing optoelectronic and quantum excitonic devices.
Collapse
Affiliation(s)
- Kaiyuan Yao
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720 United States
| | - Mary S Collins
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kara M Nell
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Edward S Barnard
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas J Borys
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Tevye Kuykendall
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - J Nathan Hohman
- Institute of Materials Science and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06268, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Yao K, Finney NR, Zhang J, Moore SL, Xian L, Tancogne-Dejean N, Liu F, Ardelean J, Xu X, Halbertal D, Watanabe K, Taniguchi T, Ochoa H, Asenjo-Garcia A, Zhu X, Basov DN, Rubio A, Dean CR, Hone J, Schuck PJ. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. SCIENCE ADVANCES 2021; 7:7/10/eabe8691. [PMID: 33658203 PMCID: PMC7929500 DOI: 10.1126/sciadv.abe8691] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Broken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems. By suppressing residual bulk effects, we observe SHG intensity modulated by a factor of more than 50, and polarization patterns determined by moiré interface symmetry. Last, we demonstrate greatly enhanced conversion efficiency in vdW vertical superlattice structures with multiple symmetry-broken interfaces. Our study paves the way for compact twistoptics architectures aimed at efficient tunable frequency conversion and demonstrates SHG as a robust probe of buried vdW interfaces.
Collapse
Affiliation(s)
- Kaiyuan Yao
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Nathan R Finney
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Jin Zhang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Samuel L Moore
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Lede Xian
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicolas Tancogne-Dejean
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Fang Liu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jenny Ardelean
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Xinyi Xu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Dorri Halbertal
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hector Ochoa
- Department of Physics, Columbia University, New York, NY 10027, USA
| | | | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, NY 10010 USA
| | - Cory R Dean
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
12
|
Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H. Two‐Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000053] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jianghong Wu
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Hui Ma
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| | - Peng Yin
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yanqi Ge
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Han Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Hongtao Lin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
13
|
Soubelet P, Klein J, Wierzbowski J, Silvioli R, Sigger F, Stier AV, Gallo K, Finley JJ. Charged Exciton Kinetics in Monolayer MoSe 2 near Ferroelectric Domain Walls in Periodically Poled LiNbO 3. NANO LETTERS 2021; 21:959-966. [PMID: 33428406 DOI: 10.1021/acs.nanolett.0c03810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer semiconducting transition metal dichalcogenides are a strongly emergent platform for exploring quantum phenomena in condensed matter, building novel optoelectronic devices with enhanced functionalities. Because of their atomic thickness, their excitonic optical response is highly sensitive to their dielectric environment. In this work, we explore the optical properties of monolayer thick MoSe2 straddling domain wall boundaries in periodically poled LiNbO3. Spatially resolved photoluminescence experiments reveal spatial sorting of charge and photogenerated neutral and charged excitons across the boundary. Our results reveal evidence for extremely large in-plane electric fields of ≃4000 kV/cm at the domain wall whose effect is manifested in exciton dissociation and routing of free charges and trions toward oppositely poled domains and a nonintuitive spatial intensity dependence. By modeling our result using drift-diffusion and continuity equations, we obtain excellent qualitative agreement with our observations and have explained the observed spatial luminescence modulation using realistic material parameters.
Collapse
Affiliation(s)
- Pedro Soubelet
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Julian Klein
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob Wierzbowski
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Riccardo Silvioli
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Florian Sigger
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Andreas V Stier
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Katia Gallo
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jonathan J Finley
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| |
Collapse
|
14
|
Smejkal V, Libisch F, Molina-Sanchez A, Trovatello C, Wirtz L, Marini A. Time-Dependent Screening Explains the Ultrafast Excitonic Signal Rise in 2D Semiconductors. ACS NANO 2021; 15:1179-1185. [PMID: 33382589 DOI: 10.1021/acsnano.0c08173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We calculate the time evolution of the transient reflection signal in an MoS2 monolayer on a SiO2/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers toward small Active Excitonic Regions around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening.
Collapse
Affiliation(s)
- Valerie Smejkal
- Vienna University of Technology, Institute for Theoretical Physics, 1040 Vienna, Austria
| | - Florian Libisch
- Vienna University of Technology, Institute for Theoretical Physics, 1040 Vienna, Austria
| | | | - Chiara Trovatello
- Department of Physics, Politecnico di Milano, P. Leonardo da Vinci 32, 20133 Milan, Italy
| | - Ludger Wirtz
- Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Andrea Marini
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo, Scalo, Italy
| |
Collapse
|
15
|
Wang Y, Nie Z, Wang F. Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. LIGHT, SCIENCE & APPLICATIONS 2020; 9:192. [PMID: 33298847 PMCID: PMC7680791 DOI: 10.1038/s41377-020-00430-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/09/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, China
| | - Zhonghui Nie
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Fengqiu Wang
- School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
16
|
Neuhaus J, Liebscher SC, Meckbach L, Stroucken T, Koch SW. Microscopic Coulomb interaction in transition-metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:035301. [PMID: 32906108 DOI: 10.1088/1361-648x/abb681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The quasi-two dimensional Coulomb interaction potential in transition metal dichalcogenides is determined using the Kohn-Sham wave functions obtained fromab initiocalculations. An effective form factor is derived that accounts for the finite extension of the wave functions in the direction perpendicular to the material layer. The resulting Coulomb matrix elements are used in microscopic calculations based on the Dirac Bloch equations yielding an efficient method to calculate the band gap and the opto-electronic material properties in different environments and under various excitation conditions.
Collapse
Affiliation(s)
- J Neuhaus
- Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - S C Liebscher
- Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - L Meckbach
- Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - T Stroucken
- Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - S W Koch
- Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany
| |
Collapse
|
17
|
The ultrafast onset of exciton formation in 2D semiconductors. Nat Commun 2020; 11:5277. [PMID: 33077721 PMCID: PMC7572483 DOI: 10.1038/s41467-020-18835-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
The equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales. Here, we use extremely short optical pulses to non-resonantly excite an electron-hole plasma and show the formation of two-dimensional excitons in single-layer MoS2 on the timescale of 30 fs via the induced changes to photo-absorption. These formation dynamics are significantly faster than in conventional 2D quantum wells and are attributed to the intense Coulombic interactions present in 2D TMDs. A theoretical model of a coherent polarization that dephases and relaxes to an incoherent exciton population reproduces the experimental dynamics on the sub-100-fs timescale and sheds light into the underlying mechanism of how the lowest-energy excitons, which are the most important for optoelectronic applications, form from higher-energy excitations. Importantly, a phonon-mediated exciton cascade from higher energy states to the ground excitonic state is found to be the rate-limiting process. These results set an ultimate timescale of the exciton formation in TMDs and elucidate the exceptionally fast physical mechanism behind this process. The formation dynamics of excitons in 2D transition metal dichalcogenides are challenging to probe directly because of their inherently fast timescales. Here, the authors use extremely short optical pulses to excite an electron-hole plasma, and show the formation of 2D excitons in MoS2 on the timescale of 30 fs.
Collapse
|
18
|
Darlington TP, Carmesin C, Florian M, Yanev E, Ajayi O, Ardelean J, Rhodes DA, Ghiotto A, Krayev A, Watanabe K, Taniguchi T, Kysar JW, Pasupathy AN, Hone JC, Jahnke F, Borys NJ, Schuck PJ. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe 2 at room temperature. NATURE NANOTECHNOLOGY 2020; 15:854-860. [PMID: 32661371 DOI: 10.1038/s41565-020-0730-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 05/23/2023]
Abstract
In monolayer transition-metal dichalcogenides, localized strain can be used to design nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale interplay between excitons and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopic analysis of excitons in nanobubbles of monolayer WSe2 with atomistic models to study how strain induces nanoscale confinement potentials and localized exciton states. The imaging of nanobubbles in monolayers with low defect concentrations reveals localized excitons on length scales of around 10 nm at multiple sites around the periphery of individual nanobubbles, in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials atomistically derived from the measured topographies of nanobubbles. Our results provide experimental and theoretical insights into strain-induced exciton localization on length scales commensurate with exciton size, realizing key nanoscale structure-property information on quantum emitters in monolayer WSe2.
Collapse
Affiliation(s)
| | - Christian Carmesin
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Matthias Florian
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Emanuil Yanev
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Obafunso Ajayi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jenny Ardelean
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Augusto Ghiotto
- Department of Physics, Columbia University, New York, NY, USA
| | | | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Frank Jahnke
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany.
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, MT, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Choi BK, Ulstrup S, Gunasekera SM, Kim J, Lim SY, Moreschini L, Oh JS, Chun SH, Jozwiak C, Bostwick A, Rotenberg E, Cheong H, Lyo IW, Mucha-Kruczynski M, Chang YJ. Visualizing Orbital Content of Electronic Bands in Anisotropic 2D Semiconducting ReSe 2. ACS NANO 2020; 14:7880-7891. [PMID: 32463224 DOI: 10.1021/acsnano.0c01054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many properties of layered materials change as they are thinned from their bulk forms down to single layers, with examples including indirect-to-direct band gap transition in 2H semiconducting transition metal dichalcogenides as well as thickness-dependent changes in the valence band structure in post-transition-metal monochalcogenides and black phosphorus. Here, we use angle-resolved photoemission spectroscopy to study the electronic band structure of monolayer ReSe2, a semiconductor with a distorted 1T structure and in-plane anisotropy. By changing the polarization of incoming photons, we demonstrate that for ReSe2, in contrast to the 2H materials, the out-of-plane transition metal dz2 and chalcogen pz orbitals do not contribute significantly to the top of the valence band, which explains the reported weak changes in the electronic structure of this compound as a function of layer number. We estimate a band gap of 1.7 eV in pristine ReSe2 using scanning tunneling spectroscopy and explore the implications on the gap following surface doping with potassium. A lower bound of 1.4 eV is estimated for the gap in the fully doped case, suggesting that doping-dependent many-body effects significantly affect the electronic properties of ReSe2. Our results, supported by density functional theory calculations, provide insight into the mechanisms behind polarization-dependent optical properties of rhenium dichalcogenides and highlight their place among two-dimensional crystals.
Collapse
Affiliation(s)
- Byoung Ki Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Søren Ulstrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Surani M Gunasekera
- Centre for Nanoscience and Nanotechnology and Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jiho Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo Yeon Lim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Luca Moreschini
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ji Seop Oh
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Hyun Chun
- Department of Physics, Sejong University, Seoul 05006, Republic of Korea
| | - Chris Jozwiak
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eli Rotenberg
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - In-Whan Lyo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Marcin Mucha-Kruczynski
- Centre for Nanoscience and Nanotechnology and Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
20
|
Wang H, Liu W, Jin S, Zhang X, Xie Y. Low-Dimensional Semiconductors in Artificial Photosynthesis: An Outlook for the Interactions between Particles/Quasiparticles. ACS CENTRAL SCIENCE 2020; 6:1058-1069. [PMID: 32724841 PMCID: PMC7379106 DOI: 10.1021/acscentsci.0c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 06/11/2023]
Abstract
By virtue of their intriguing electronic structures and excellent surface properties, low-dimensional semiconductors hold great promise in the field of solar-driven artificial photosynthesis. However, owing to promoted structural confinement and reduced Coulomb screening, remarkable interactions between particles/quasiparticles, including electrons, holes, phonons, and excitons, can be expected in low-dimensional semiconductors, which endow the systems with distinctive excited-state properties that are distinctly different from those in the bulk counterparts. Consequently, these interactions determine not only the mechanisms but also quantum yields of photosynthetic energy utilization. In this Outlook, we review recent advances in studying the unique interactions in low-dimensional semiconductor-based photocatalysts. By highlighting the relevance of different interactions to excited-state properties, we describe the impacts of the interactions on photosynthetic energy conversion. Furthermore, we summarize the regulation of these interactions for gaining optimized photosynthetic behaviors, where the relationships between these interactions and structural factors/external fields are elaborated. Additionally, the challenges and opportunities in studying the interaction-related photosynthesis are discussed.
Collapse
Affiliation(s)
- Hui Wang
- Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Centre
for Excellence in Nanoscience, University
of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Energy, Hefei Comprehensive National
Science Center, Hefei, Anhui 230031, P.
R. China
| | - Wenxiu Liu
- Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Centre
for Excellence in Nanoscience, University
of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sen Jin
- Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Centre
for Excellence in Nanoscience, University
of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Zhang
- Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Centre
for Excellence in Nanoscience, University
of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Energy, Hefei Comprehensive National
Science Center, Hefei, Anhui 230031, P.
R. China
| | - Yi Xie
- Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Centre
for Excellence in Nanoscience, University
of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Energy, Hefei Comprehensive National
Science Center, Hefei, Anhui 230031, P.
R. China
| |
Collapse
|
21
|
Su WYS, Santiago SRMS, Chiang Hsieh CC, Wu CB, Wang JS, Chiu KC, Shen JL, Huang CY, Chen CY. Enhanced photoluminescence of InGaAs/AlGaAs quantum well with tungsten disulfide quantum dots. NANOTECHNOLOGY 2020; 31:225703. [PMID: 32050176 DOI: 10.1088/1361-6528/ab758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pristine and diethylenetriamine (DETA)-doped tungsten disulfide quantum dots (WS2 QDs) with an average lateral size of about 5 nm have been synthesized using pulsed laser ablation (PLA). Introduction of the synthesized WS2 QDs on the InGaAs/AlGaAs quantum wells (QWs) can improve the photoluminescence (PL) of the InGaAs/AlGaAs QW as high as 6 fold. On the basis of the time-resolved PL and Kelvin probe measurements, the PL enhancement is attributed to the carrier transfer from the pristine or DETA-doped WS2 QDs to the InGaAs/AlGaAs QW. A heterostructure band diagram is proposed for explaining the carrier transfer, which increases the hole densities in the QW and enhances its PL intensity. This study is expected to be beneficial for the development of the InGaAs-based optoelectronic devices.
Collapse
Affiliation(s)
- Wilson Yeung-Sy Su
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yao K, Yanev E, Chuang HJ, Rosenberger MR, Xu X, Darlington T, McCreary KM, Hanbicki AT, Watanabe K, Taniguchi T, Jonker BT, Zhu X, Basov DN, Hone JC, Schuck PJ. Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS NANO 2020; 14:708-714. [PMID: 31891477 DOI: 10.1021/acsnano.9b07555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish one- and two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.
Collapse
Affiliation(s)
- Kaiyuan Yao
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Mechanical Engineering , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Emanuil Yanev
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hsun-Jen Chuang
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Matthew R Rosenberger
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xinyi Xu
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Thomas Darlington
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Physics , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Kathleen M McCreary
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Aubrey T Hanbicki
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
- Laboratory for Physical Sciences , College Park , Maryland 20740 , United States
| | - Kenji Watanabe
- National Institute for Materials Science , Tsukuba 305-0047 , Japan
| | | | - Berend T Jonker
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xiaoyang Zhu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - D N Basov
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - James C Hone
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - P James Schuck
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
23
|
Sinha SS, Zak A, Rosentsveig R, Pinkas I, Tenne R, Yadgarov L. Size-Dependent Control of Exciton-Polariton Interactions in WS 2 Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904390. [PMID: 31833214 DOI: 10.1002/smll.201904390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Multiwall WS2 nanotubes (and fullerene-like nanoparticles thereof) are currently synthesized in large amounts, reproducibly. Other than showing interesting mechanical and tribological properties, which offer them a myriad of applications, they are recently shown to exhibit remarkable optical and electrical properties, including quasi-1D superconductivity, electroluminescence, and a strong bulk photovoltaic effect. Here, it is shown that, using a simple dispersion-fractionation technique, one can control the diameter of the nanotubes and move from pure excitonic to polaritonic features. While nanotubes of an average diameter >80 nm can support cavity modes and scatter light effectively via a strong coupling mechanism, the extinction of nanotubes with smaller diameter consists of pure absorption. The experimental work is complemented by finite-difference time-domain simulations, which shed new light on the cavity mode-exciton interaction in 2D materials. Furthermore, transient absorption experiments of the size-fractionated nanotubes fully confirm the steady-state observations. Moreover, it is shown that the tools developed here are useful for size control of the nanotubes, e.g., in manufacturing environment. The tunability of the light-matter interaction of such nanotubes offers them intriguing applications such as polaritonic devices, in photocatalysis, and for multispectral sensors.
Collapse
Affiliation(s)
- Sudarson S Sinha
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alla Zak
- Faculty of Sciences, Holon Institute of Technology, Holon, 5810201, Israel
| | - Rita Rosentsveig
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Reshef Tenne
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lena Yadgarov
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
24
|
Schuler B, Lee JH, Kastl C, Cochrane KA, Chen CT, Refaely-Abramson S, Yuan S, van Veen E, Roldán R, Borys NJ, Koch RJ, Aloni S, Schwartzberg AM, Ogletree DF, Neaton JB, Weber-Bargioni A. How Substitutional Point Defects in Two-Dimensional WS 2 Induce Charge Localization, Spin-Orbit Splitting, and Strain. ACS NANO 2019; 13:10520-10534. [PMID: 31393700 DOI: 10.1021/acsnano.9b04611] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms. The first step toward impurity control is the identification of defects and assessment of their electronic properties. Here, we present a comprehensive study of point defects in monolayer tungsten disulfide (WS2) grown by chemical vapor deposition using scanning tunneling microscopy/spectroscopy, CO-tip noncontact atomic force microscopy, Kelvin probe force spectroscopy, density functional theory, and tight-binding calculations. We observe four different substitutional defects: chromium (CrW) and molybdenum (MoW) at a tungsten site, oxygen at sulfur sites in both top and bottom layers (OS top/bottom), and two negatively charged defects (CD type I and CD type II). Their electronic fingerprints unambiguously corroborate the defect assignment and reveal the presence or absence of in-gap defect states. CrW forms three deep unoccupied defect states, two of which arise from spin-orbit splitting. The formation of such localized trap states for CrW differs from the MoW case and can be explained by their different d shell energetics and local strain, which we directly measured. Utilizing a tight-binding model the electronic spectra of the isolectronic substitutions OS and CrW are mimicked in the limit of a zero hopping term and infinite on-site energy at a S and W site, respectively. The abundant CDs are negatively charged, which leads to a significant band bending around the defect and a local increase of the contact potential difference. In addition, CD-rich domains larger than 100 nm are observed, causing a work function increase of 1.1 V. While most defects are electronically isolated, we also observed hybrid states formed between CrW dimers. The important role of charge localization, spin-orbit coupling, and strain for the formation of deep defect states observed at substitutional defects in WS2 as reported here will guide future efforts of targeted defect engineering and doping of TMDs.
Collapse
Affiliation(s)
- Bruno Schuler
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jun-Ho Lee
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Christoph Kastl
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Walter-Schottky-Institut and Physik-Department , Technical University of Munich , Garching 85748 , Germany
| | - Katherine A Cochrane
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Christopher T Chen
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Sivan Refaely-Abramson
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Edo van Veen
- Radboud University of Nijmegen , Institute for Molecules and Materials , Heijendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | - Rafael Roldán
- Instituto de Ciencia de Materiales de Madrid , ICMM-CSIC, Cantoblanco, E-28049 , Madrid , Spain
| | - Nicholas J Borys
- Department of Physics , Montana State University , Bozeman , Montana 59717 , United States
| | - Roland J Koch
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Shaul Aloni
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Adam M Schwartzberg
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - D Frank Ogletree
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jeffrey B Neaton
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | - Alexander Weber-Bargioni
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
25
|
Liu F, Ziffer ME, Hansen KR, Wang J, Zhu X. Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS_{2}. PHYSICAL REVIEW LETTERS 2019; 122:246803. [PMID: 31322407 DOI: 10.1103/physrevlett.122.246803] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 06/10/2023]
Abstract
A key feature of monolayer semiconductors, such as transition-metal dichalcogenides, is the poorly screened Coulomb potential, which leads to a large exciton binding energy (E_{b}) and strong renormalization of the quasiparticle band gap (E_{g}) by carriers. The latter has been difficult to determine due to a cancellation in changes of E_{b} and E_{g}, resulting in little change in optical transition energy at different carrier densities. Here, we quantify band-gap renormalization in macroscopic single crystal MoS_{2} monolayers on SiO_{2} using time and angle-resolved photoemission spectroscopy. At an excitation density above the Mott threshold, E_{g} decreases by as much as 360 meV. We compare the carrier density-dependent E_{g} with previous theoretical calculations and show the necessity of knowing both doping and excitation densities in quantifying the band gap.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Mark E Ziffer
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Kameron R Hansen
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Jue Wang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
26
|
In-plane Aligned Colloidal 2D WS 2 Nanoflakes for Solution-Processable Thin Films with High Planar Conductivity. Sci Rep 2019; 9:9002. [PMID: 31227748 PMCID: PMC6588575 DOI: 10.1038/s41598-019-45192-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 11/23/2022] Open
Abstract
Two-dimensional transition-metal dichalcolgenides (2D-TMDs) are among the most intriguing materials for next-generation electronic and optoelectronic devices. Albeit still at the embryonic stage, building thin films by manipulating and stacking preformed 2D nanosheets is now emerging as a practical and cost-effective bottom-up paradigm to obtain excellent electrical properties over large areas. Herein, we exploit the ultrathin morphology and outstanding solution stability of 2D WS2 colloidal nanocrystals to make thin films of TMDs assembled on a millimetre scale by a layer-by-layer deposition approach. We found that a room-temperature surface treatment with a superacid, performed with the precise scope of removing the native insulating surfactants, promotes in-plane assembly of the colloidal WS2 nanoflakes into stacks parallel to the substrate, along with healing of sulphur vacancies in the lattice that are detrimental to electrical conductivity. The as-obtained 2D WS2 thin films, characterized by a smooth and compact morphology, feature a high planar conductivity of up to 1 μS, comparable to the values reported for epitaxially grown WS2 monolayers, and enable photocurrent generation upon light irradiation over a wide range of visible to near-infrared frequencies.
Collapse
|
27
|
Kastl C, Koch RJ, Chen CT, Eichhorn J, Ulstrup S, Bostwick A, Jozwiak C, Kuykendall TR, Borys NJ, Toma FM, Aloni S, Weber-Bargioni A, Rotenberg E, Schwartzberg AM. Effects of Defects on Band Structure and Excitons in WS 2 Revealed by Nanoscale Photoemission Spectroscopy. ACS NANO 2019; 13:1284-1291. [PMID: 30645100 DOI: 10.1021/acsnano.8b06574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional materials with engineered composition and structure will provide designer materials beyond conventional semiconductors. However, the potentials of defect engineering remain largely untapped, because it hinges on a precise understanding of electronic structure and excitonic properties, which are not yet predictable by theory alone. Here, we utilize correlative, nanoscale photoemission spectroscopy to visualize how local introduction of defects modifies electronic and excitonic properties of two-dimensional materials at the nanoscale. As a model system, we study chemical vapor deposition grown monolayer WS2, a prototypical, direct gap, two-dimensional semiconductor. By cross-correlating nanoscale angle-resolved photoemission spectroscopy, core level spectroscopy, and photoluminescence, we unravel how local variations in defect density influence electronic structure, lateral band alignment, and excitonic phenomena in synthetic WS2 monolayers.
Collapse
Affiliation(s)
- Christoph Kastl
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Roland J Koch
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Christopher T Chen
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Johanna Eichhorn
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Søren Ulstrup
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , 8000 Aarhus C, Denmark
| | - Aaron Bostwick
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Chris Jozwiak
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tevye R Kuykendall
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Nicholas J Borys
- Department of Physics , Montana State University , Bozeman , Montana 59717 , United States
| | - Francesca M Toma
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Shaul Aloni
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Alexander Weber-Bargioni
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Eli Rotenberg
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Adam M Schwartzberg
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
28
|
Trovatello C, Dal Conte S, Boris N, Yao K, Scotognella F, Kriegel I, Borrego Varillas R, Ganzer L, Schuck PJ, Cerullo G. Temporal dynamics of the coulomb screening in single layer MoS 2. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920505013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We measure exciton dynamics in single-layer MoS2 with unprecedented temporal resolution and we directly extract the characteristic time-scale for the Coulomb screening dynamics, which ranges between 15 and 35 fs.
Collapse
|
29
|
Kim HJ, Song YW, Namgung SD, Song MK, Yang S, Kwon JY. Optical properties of the crumpled pattern of selectively layered MoS 2. OPTICS LETTERS 2018; 43:4590-4593. [PMID: 30272690 DOI: 10.1364/ol.43.004590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Crumple-structured two-dimensional MoS2 was evaluated as an essential element for future optoelectronic and stretchable devices owing to its interesting optical properties. This Letter reports the characteristics of the crumpled structure of MoS2 directly layered on a MoS2 sheet by chemical vapor deposition. The crumpling structure is presented as a method for selectively layering MoS2 with crumpled layered patterning and tunable optical properties as a crumpled structure on a single substrate. Optical analysis by the fast Fourier transform revealed the distribution characteristics of the crumple structure, and a Raman, photoluminescence, and optical absorption analysis confirmed the change in peak shift and intensity according to the degree of the crumpled structure. This material has potential future optoelectronic applications.
Collapse
|
30
|
Cunningham PD, Hanbicki AT, McCreary KM, Jonker BT. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS 2. ACS NANO 2017; 11:12601-12608. [PMID: 29227085 DOI: 10.1021/acsnano.7b06885] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 1011 to 1.2 × 1012 photons/cm2. This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Paul D Cunningham
- U.S. Naval Research Laboratory , Washington, DC 20375, United States
| | - Aubrey T Hanbicki
- U.S. Naval Research Laboratory , Washington, DC 20375, United States
| | | | - Berend T Jonker
- U.S. Naval Research Laboratory , Washington, DC 20375, United States
| |
Collapse
|