1
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
2
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Quispe Haro JJ, Chen F, Los R, Shi S, Sun W, Chen Y, Idema T, Wegner SV. Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310079. [PMID: 38613837 PMCID: PMC11187914 DOI: 10.1002/advs.202310079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.
Collapse
Affiliation(s)
- Juan José Quispe Haro
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| | - Fei Chen
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Rachel Los
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Shuqi Shi
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Wenjun Sun
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Yong Chen
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Timon Idema
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
4
|
Rossy T, Distler T, Meirelles LA, Pezoldt J, Kim J, Talà L, Bouklas N, Deplancke B, Persat A. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol 2023; 21:e3002209. [PMID: 37527210 PMCID: PMC10393179 DOI: 10.1371/journal.pbio.3002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.
Collapse
Affiliation(s)
- Tamara Rossy
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Distler
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucas A Meirelles
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lorenzo Talà
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Hennes M, Bender N, Cronenberg T, Welker A, Maier B. Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLoS Biol 2023; 21:e3001960. [PMID: 36652440 PMCID: PMC9847958 DOI: 10.1371/journal.pbio.3001960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.
Collapse
Affiliation(s)
- Marc Hennes
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| | - Niklas Bender
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| |
Collapse
|
6
|
Bender N, Hennes M, Maier B. Mobility of extracellular DNA within gonococcal colonies. Biofilm 2022; 4:100078. [PMID: 35647521 PMCID: PMC9136125 DOI: 10.1016/j.bioflm.2022.100078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Transformation enables bacteria to acquire genetic information from extracellular DNA (eDNA). Close proximity between bacteria in colonies and biofilms may inhibit escape of eDNA from the colony but it also hinders its diffusion between donor and recipient. In this study, we investigate the mobility of DNA within colonies formed by Neisseria gonorrhoeae, and relate it to transformation efficiency. We characterize the penetration dynamics of fluorescent DNA into the colony at a time scale of hours and find that 300 bp fragments diffuse through the colony without hindrance. For DNA length exceeding 3 kbp, a concentration gradient between the edge and the center of the colony develops, indicating hindered diffusion. Accumulation of DNA within the colony increases with increasing DNA length. The presence of the gonococcal DNA uptake sequence (DUS), which mediates specific binding to type 4 pili (T4P) and uptake into the cell, steepens the radial concentration gradient within the colony, suggesting that the DUS reduces DNA mobility. In particular, DNA of N. gonorrhoeae containing multiple DUS is trapped at the periphery. Under conditions, where DUS containing DNA fragments readily enter the colony center, we investigate the efficiency of transformation. We show that despite rapid diffusion of DNA, the transformation is limited to the edge of young colonies. We conclude that DNA mobility depends on DNA length and specific binding mediated by the DUS, resulting in restricted mobility of gonococcal DNA. Yet gonococcal colonies accumulate DNA, and may therefore act as a reservoir for eDNA. DNA fragments encompassing the length of a typical operon efficiently penetrate bacterial colonies. Bacterial colonies accumulate eDNA with an efficiency that depends on the length and the DNA uptake sequence. Genomic DNA from a distinct species spreads efficiently through gonococcal colonies, while gonococcal DNA and DNA from a closely related species are trapped. Transformation is most efficient at the periphery of freshly assembled gonococcal colonies.
Collapse
|
7
|
Kraus-Römer S, Wielert I, Rathmann I, Grossbach J, Maier B. External Stresses Affect Gonococcal Type 4 Pilus Dynamics. Front Microbiol 2022; 13:839711. [PMID: 35283813 PMCID: PMC8914258 DOI: 10.3389/fmicb.2022.839711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that serve both as adhesins and molecular motors. Functionally, they are involved in adhesion, colony formation, twitching motility, and horizontal gene transfer. T4P of the human pathogen Neisseria gonorrhoeae have been shown to enhance survivability under treatment with antibiotics or hydrogen peroxide. However, little is known about the effect of external stresses on T4P production and motor properties. Here, we address this question by directly visualizing gonococcal T4P dynamics. We show that in the absence of stress gonococci produce T4P at a remarkably high rate of ∼200 T4P min–1. T4P retraction succeeds elongation without detectable time delay. Treatment with azithromycin or ceftriaxone reduces the T4P production rate. RNA sequencing results suggest that reduced piliation is caused by combined downregulation of the complexes required for T4P extrusion from the cell envelope and cellular energy depletion. Various other stresses including inhibitors of cell wall synthesis and DNA replication, as well as hydrogen peroxide and lactic acid, inhibit T4P production. Moreover, hydrogen peroxide and acidic pH strongly affect pilus length and motor function. In summary, we show that gonococcal T4P are highly dynamic and diverse external stresses reduce piliation despite the protective effect of T4P against some of these stresses.
Collapse
Affiliation(s)
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- Faculty of Mathematics and Natural Sciences, CECAD, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
- *Correspondence: Berenike Maier,
| |
Collapse
|
8
|
Type IV Pilus Shapes a 'Bubble-Burst' Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations. Microbiol Spectr 2022; 10:e0194421. [PMID: 35171019 PMCID: PMC8849093 DOI: 10.1128/spectrum.01944-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbes are social organisms that commonly live in sessile biofilms. Spatial patterns of populations within biofilms can be important determinants of community-level properties. Spatial intermixing emerging from microbial interaction is one of the best-studied characteristics of spatial patterns. The specific levels of spatial intermixing critically contribute to how the dynamics and functioning of such communities are governed. However, the precise factors that determine spatial patterns and intermixing remain unclear. Here, we investigated the spatial patterning and intermixing of an engineered synthetic consortium composed of two mutualistic Pseudomonas stutzeri strains that degrade salicylate via metabolic cross-feeding. We found that the consortium self-organizes across space to form a previously unreported spatial pattern (here referred to as a ‘bubble-burst’ pattern) that exhibits a low level of intermixing. Interestingly, when the genes encoding type IV pili were deleted from both strains, a highly intermixed spatial pattern developed and increased the productivity of the entire community. The intermixed pattern was maintained in a robust manner across a wide range of initial ratios between the two strains. Our findings show that the type IV pilus plays a role in mitigating spatial intermixing of different populations in surface-attached microbial communities, with consequences for governing community-level properties. These insights provide tangible clues for the engineering of synthetic microbial systems that perform highly in spatially structured environments. IMPORTANCE When growing on surfaces, multispecies microbial communities form biofilms that exhibit intriguing spatial patterns. These patterns can significantly affect the overall properties of the community, enabling otherwise impermissible metabolic functions to occur as well as driving the evolutionary and ecological processes acting on communities. The development of these patterns is affected by several drivers, including cell-cell interactions, nutrient levels, density of founding cells, and surface properties. The type IV pilus is commonly found to mediate surface-associated behaviors of microorganisms, but its role on pattern formation within microbial communities is unclear. Here, we report that in a cross-feeding consortium, the type IV pilus affects the spatial intermixing of interacting populations involved in pattern formation and ultimately influences overall community productivity and robustness. This novel insight assists our understanding of the ecological processes of surface-attached microbial communities and suggests a potential strategy for engineering high-performance synthetic microbial communities.
Collapse
|
9
|
Welker A, Hennes M, Bender N, Cronenberg T, Schneider G, Maier B. Spatiotemporal dynamics of growth and death within spherical bacterial colonies. Biophys J 2021; 120:3418-3428. [PMID: 34214531 PMCID: PMC8391034 DOI: 10.1016/j.bpj.2021.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial growth within colonies and biofilms is heterogeneous. Local reduction of growth rates has been associated with tolerance against various antibiotics. However, spatial gradients of growth rates are poorly characterized in three-dimensional bacterial colonies. Here, we report two spatially resolved methods for measuring growth rates in bacterial colonies. As bacteria grow and divide, they generate a velocity field that is directly related to the growth rates. We derive profiles of growth rates from the velocity field and show that they are consistent with the profiles obtained by single-cell-counting. Using these methods, we reveal that even small colonies initiated with a few thousand cells of the human pathogen Neisseria gonorrhoeae develop a steep gradient of growth rates within two generations. Furthermore, we show that stringent response decelerates growth inhibition at the colony center. Based on our results, we suggest that aggregation-related growth inhibition can protect gonococci from external stresses even at early biofilm stages.
Collapse
Affiliation(s)
- Anton Welker
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Marc Hennes
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Niklas Bender
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Tom Cronenberg
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Gabriele Schneider
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.
| |
Collapse
|
10
|
Dos Santos Souza I, Maïssa N, Ziveri J, Morand PC, Coureuil M, Nassif X, Bourdoulous S. Meningococcal disease: A paradigm of type-IV pilus dependent pathogenesis. Cell Microbiol 2021; 22:e13185. [PMID: 32185901 DOI: 10.1111/cmi.13185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus-dependent virulence mechanisms, up to the identification of promising anti-virulence compounds that target type IV pili.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Nawal Maïssa
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Philippe C Morand
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Mathieu Coureuil
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Xavier Nassif
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
11
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Abstract
Biofilms are structured communities formed by a single or multiple microbial species. Within biofilms, bacteria are embedded into extracellular matrix, allowing them to build macroscopic objects. Biofilm structure can respond to environmental changes such as the presence of antibiotics or predators. By adjusting expression levels of surface and extracellular matrix components, bacteria tune cell-to-cell interactions. One major challenge in the field is the fact that these components are very diverse among different species. Deciphering how physical interactions within biofilms are affected by changes in gene expression is a promising approach to obtaining a more unified picture of how bacteria modulate biofilms. This review focuses on recent advances in characterizing attractive and repulsive forces between bacteria in correlation with biofilm structure, dynamics, and spreading. How bacteria control physical interactions to maximize their fitness is an emerging theme.
Collapse
Affiliation(s)
- Berenike Maier
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
13
|
Barnier JP, Euphrasie D, Join-Lambert O, Audry M, Schonherr-Hellec S, Schmitt T, Bourdoulous S, Coureuil M, Nassif X, El Behi M. Type IV pilus retraction enables sustained bacteremia and plays a key role in the outcome of meningococcal sepsis in a humanized mouse model. PLoS Pathog 2021; 17:e1009299. [PMID: 33592056 PMCID: PMC7909687 DOI: 10.1371/journal.ppat.1009299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Olivier Join-Lambert
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathilde Audry
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Sophia Schonherr-Hellec
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Taliah Schmitt
- Service de chirurgie reconstructrice et plastique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mohamed El Behi
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
14
|
Cronenberg T, Hennes M, Wielert I, Maier B. Antibiotics modulate attractive interactions in bacterial colonies affecting survivability under combined treatment. PLoS Pathog 2021; 17:e1009251. [PMID: 33524048 PMCID: PMC7877761 DOI: 10.1371/journal.ppat.1009251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/11/2021] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.
Collapse
Affiliation(s)
- Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Marc Hennes
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany
| |
Collapse
|
15
|
Kuan HS, Pönisch W, Jülicher F, Zaburdaev V. Continuum Theory of Active Phase Separation in Cellular Aggregates. PHYSICAL REVIEW LETTERS 2021; 126:018102. [PMID: 33480767 DOI: 10.1103/physrevlett.126.018102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Dense cellular aggregates are common in biology, ranging from bacterial biofilms to organoids, cell spheroids, and tumors. Their dynamics, driven by intercellular forces, is intrinsically out of equilibrium. Motivated by bacterial colonies as a model system, we present a continuum theory to study dense, active, cellular aggregates. We describe the process of aggregate formation as an active phase separation phenomenon, while the merging of aggregates is rationalized as a coalescence of viscoelastic droplets where the key timescales are linked to the turnover of the active force. Our theory provides a general framework for studying the rheology and nonequilibrium dynamics of dense cellular aggregates.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Max Planck Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Wolfram Pönisch
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Max Planck Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm 2020; 2:100017. [PMID: 33447803 PMCID: PMC7798440 DOI: 10.1016/j.bioflm.2019.100017] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.
Collapse
Affiliation(s)
- Erin S. Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
17
|
Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2020; 17:429-440. [PMID: 30988511 DOI: 10.1038/s41579-019-0195-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
18
|
Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J. Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms. PHYSICAL REVIEW LETTERS 2019; 123:258101. [PMID: 31922766 DOI: 10.1103/physrevlett.123.258101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.
Collapse
Affiliation(s)
- Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Rachel Mok
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jeffrey S Oishi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Physics, Bates College, Lewiston, Maine 04240, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| |
Collapse
|
19
|
Zöllner R, Cronenberg T, Maier B. Motor Properties of PilT-Independent Type 4 Pilus Retraction in Gonococci. J Bacteriol 2019; 201:e00778-18. [PMID: 30692169 PMCID: PMC6707916 DOI: 10.1128/jb.00778-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial type 4 pili (T4P) belong to the strongest molecular machines. The gonococcal T4P retraction ATPase PilT supports forces exceeding 100 pN during T4P retraction. Here, we address the question of whether gonococcal T4P retract in the absence of PilT. We show that pilT deletion strains indeed retract their T4P, but the maximum force is reduced to 5 pN. Similarly, the speed of T4P retraction is lower by orders of magnitude compared to that of T4P retraction driven by PilT. Deleting the pilT paralogue pilT2 further reduces the speed of T4P retraction, yet T4P retraction is detectable in the absence of all three pilT paralogues. Furthermore, we show that depletion of proton motive force (PMF) slows but does not inhibit pilT-independent T4P retraction. We conclude that the retraction ATPase is not essential for gonococcal T4P retraction. However, the force generated in the absence of PilT is too low to support important functions of T4P, including twitching motility, fluidization of colonies, and induction of host cell response.IMPORTANCE Bacterial type 4 pili (T4P) have been termed the "Swiss Army knives" of bacteria because they perform numerous functions, including host cell interaction, twitching motility, colony formation, DNA uptake, protein secretion, and surface sensing. The pilus fiber continuously elongates or retracts, and these dynamics are functionally important. Curiously, only a subset of T4P systems employ T4P retraction ATPases to power T4P retraction. Here, we show that one of the strongest T4P machines, the gonococcal T4P, retracts without a retraction ATPase. Biophysical characterization reveals strongly reduced force and speed compared to retraction with ATPase. We propose that bacteria encode retraction ATPases when T4P have to generate high-force-supporting functions like twitching motility, triggering host cell response, or fluidizing colonies.
Collapse
Affiliation(s)
- Robert Zöllner
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Tom Cronenberg
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Berenike Maier
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| |
Collapse
|
20
|
Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface. J Bacteriol 2019; 201:JB.00064-19. [PMID: 31010900 DOI: 10.1128/jb.00064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023] Open
Abstract
In aquatic environments, Caulobacter spp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features of Caulobacter crescentus colonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface, C. crescentus initially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trap C. crescentus cells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required for C. crescentus to partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment.IMPORTANCE In aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enables Caulobacter crescentus to partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved in Caulobacter spp. and other members of the diverse class Alphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems.
Collapse
|
21
|
Zöllner R, Cronenberg T, Kouzel N, Welker A, Koomey M, Maier B. Type IV Pilin Post-Translational Modifications Modulate Material Properties of Bacterial Colonies. Biophys J 2019; 116:938-947. [PMID: 30739725 PMCID: PMC6400827 DOI: 10.1016/j.bpj.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that initiate the formation of microcolonies and biofilms. T4P continuously elongate and retract. These pilus dynamics crucially affect the local order, shape, and fluidity of microcolonies. The major pilin subunit of the T4P bears multiple post-translational modifications. By interfering with different steps of the pilin glycosylation and phosphoform modification pathways, we investigated the effect of pilin post-translational modification on the shape and dynamics of microcolonies formed by Neisseria gonorrhoeae. Deleting the phosphotransferase responsible for phosphoethanolamine modification at residue serine 68 inhibits shape relaxations of microcolonies after perturbation and causes bacteria carrying the phosphoform modification to segregate to the surface of mixed colonies. We relate these mesoscopic phenotypes to increased attractive forces generated by T4P between cells. Moreover, by deleting genes responsible for the pilin glycan structure, we show that the number of saccharides attached at residue serine 63 affects the ratio between surface tension and viscosity and cause sorting between bacteria carrying different pilin glycoforms. We conclude that different pilin post-translational modifications moderately affect the attractive forces between bacteria but have severe effects on the material properties of microcolonies.
Collapse
Affiliation(s)
- Robert Zöllner
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Nadzeya Kouzel
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Michael Koomey
- Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Fuqua C, Filloux A, Ghigo JM, Visick KL. Biofilms 2018: A diversity of microbes and mechanisms. J Bacteriol 2019; 201:JB.00118-19. [PMID: 30782638 PMCID: PMC6707918 DOI: 10.1128/jb.00118-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 8th ASM Conference on Biofilms was held in Washington D.C. on October 7-11, 2018. This very highly subscribed meeting represented a wide breadth of current research in biofilms, and included over 500 attendees, 12 sessions with 64 oral presentations, and four poster sessions with about 400 posters.
Collapse
Affiliation(s)
- Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, United Kingdom
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|