1
|
Pelech P, Navarro PP, Vettiger A, Chao LH, Allolio C. Stress-mediated growth determines E. coli division site morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612282. [PMID: 39314472 PMCID: PMC11419054 DOI: 10.1101/2024.09.11.612282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan (PG) synthases and hydrolases around the constricting Z-ring. PG remodelling is reg-ulated by de-and re-crosslinking enzymes, and the directing constrictive force of the Z-ring. We introduce a model that is able to reproduce correctly the shape of the division site during the constriction and septation phase of E. coli . The model represents mechanochemical coupling within the mathematical framework of morphoelasticity. It contains only two parameters, associated with volumet-ric growth and PG remodelling, that are coupled to the mechanical stress in the bacterial wall. Different morphologies, corresponding either to mutant or wild type cells were recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell lysis data.
Collapse
|
2
|
Middelkoop TC, Neipel J, Cornell CE, Naumann R, Pimpale LG, Jülicher F, Grill SW. A cytokinetic ring-driven cell rotation achieves Hertwig's rule in early development. Proc Natl Acad Sci U S A 2024; 121:e2318838121. [PMID: 38870057 PMCID: PMC11194556 DOI: 10.1073/pnas.2318838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.
Collapse
Affiliation(s)
- Teije C. Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Laboratory of Developmental Mechanobiology, Division Biocev, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220Prague, Czech Republic
| | - Jonas Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
| | - Caitlin E. Cornell
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Lokesh G. Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| |
Collapse
|
3
|
Yu P, Li Y, Fang W, Feng XQ, Li B. Mechanochemical dynamics of collective cells and hierarchical topological defects in multicellular lumens. SCIENCE ADVANCES 2024; 10:eadn0172. [PMID: 38691595 PMCID: PMC11062584 DOI: 10.1126/sciadv.adn0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Collective cell dynamics is essential for tissue morphogenesis and various biological functions. However, it remains incompletely understood how mechanical forces and chemical signaling are integrated to direct collective cell behaviors underlying tissue morphogenesis. Here, we propose a three-dimensional (3D) mechanochemical theory accounting for biochemical reaction-diffusion and cellular mechanotransduction to investigate the dynamics of multicellular lumens. We show that the interplay between biochemical signaling and mechanics can trigger either pitchfork or Hopf bifurcation to induce diverse static mechanochemical patterns or generate oscillations with multiple modes both involving marked mechanical deformations in lumens. We uncover the crucial role of mechanochemical feedback in emerging morphodynamics and identify the evolution and morphogenetic functions of hierarchical topological defects including cell-level hexatic defects and tissue-level orientational defects. Our theory captures the common mechanochemical traits of collective dynamics observed in experiments and could provide a mechanistic context for understanding morphological symmetry breaking in 3D lumen-like tissues.
Collapse
Affiliation(s)
- Pengyu Yu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Wei Fang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Bovyn MJ, Haas PA. Shaping epithelial lumina under pressure. Biochem Soc Trans 2024; 52:BST20230632C. [PMID: 38415294 PMCID: PMC10903447 DOI: 10.1042/bst20230632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The formation of fluid- or gas-filled lumina surrounded by epithelial cells pervades development and disease. We review the balance between lumen pressure and mechanical forces from the surrounding cells that governs lumen formation. We illustrate the mechanical side of this balance in several examples of increasing complexity, and discuss how recent work is beginning to elucidate how nonlinear and active mechanics and anisotropic biomechanical structures must conspire to overcome the isotropy of pressure to form complex, non-spherical lumina.
Collapse
Affiliation(s)
- Matthew J. Bovyn
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Pierre A. Haas
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Fossati M, Scheibner C, Fruchart M, Vitelli V. Odd elasticity and topological waves in active surfaces. Phys Rev E 2024; 109:024608. [PMID: 38491602 DOI: 10.1103/physreve.109.024608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
Odd elasticity describes active elastic systems whose stress-strain relationship is not compatible with a potential energy. As the requirement of energy conservation is lifted from linear elasticity, new antisymmetric (odd) components appear in the elastic tensor. In this work we study the odd elasticity and non-Hermitian wave dynamics of active surfaces, specifically plates of moderate thickness. These odd moduli can endow the vibrational modes of the plate with a nonzero topological invariant known as the first Chern number. Within continuum elastic theory, we show that the Chern number is related to the presence of unidirectional shearing waves that are hosted at the plate's boundary. We show that the existence of these chiral edge waves hinges on a distinctive two-step mechanism. Unlike electronic Chern insulators where the magnetic field at the same time gaps the spectrum and imparts chirality, here the finite thickness of the sample gaps the shear modes, and the odd elasticity makes them chiral.
Collapse
Affiliation(s)
- Michele Fossati
- SISSA, Trieste 34136, Italy
- INFN Sezione di Trieste, Trieste 34127, Italy
| | - Colin Scheibner
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Michel Fruchart
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Vincenzo Vitelli
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Rombouts J, Elliott J, Erzberger A. Forceful patterning: theoretical principles of mechanochemical pattern formation. EMBO Rep 2023; 24:e57739. [PMID: 37916772 PMCID: PMC10792592 DOI: 10.15252/embr.202357739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Biological pattern formation is essential for generating and maintaining spatial structures from the scale of a single cell to tissues and even collections of organisms. Besides biochemical interactions, there is an important role for mechanical and geometrical features in the generation of patterns. We review the theoretical principles underlying different types of mechanochemical pattern formation across spatial scales and levels of biological organization.
Collapse
Affiliation(s)
- Jan Rombouts
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Developmental Biology Unit, European Molecular Biology Laboratory
(EMBL)HeidelbergGermany
| | - Jenna Elliott
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| | - Anna Erzberger
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
7
|
Würthner L, Goychuk A, Frey E. Geometry-induced patterns through mechanochemical coupling. Phys Rev E 2023; 108:014404. [PMID: 37583206 DOI: 10.1103/physreve.108.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/15/2023] [Indexed: 08/17/2023]
Abstract
Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic cell-shape changes. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the rich resulting dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves, even if these patterns do not occur in systems with a fixed membrane shape. Our paper reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.
Collapse
Affiliation(s)
- Laeschkir Würthner
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
8
|
Khoromskaia D, Salbreux G. Active morphogenesis of patterned epithelial shells. eLife 2023; 12:75878. [PMID: 36649186 PMCID: PMC9844985 DOI: 10.7554/elife.75878] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Shape transformations of epithelial tissues in three dimensions, which are crucial for embryonic development or in vitro organoid growth, can result from active forces generated within the cytoskeleton of the epithelial cells. How the interplay of local differential tensions with tissue geometry and with external forces results in tissue-scale morphogenesis remains an open question. Here, we describe epithelial sheets as active viscoelastic surfaces and study their deformation under patterned internal tensions and bending moments. In addition to isotropic effects, we take into account nematic alignment in the plane of the tissue, which gives rise to shape-dependent, anisotropic active tensions and bending moments. We present phase diagrams of the mechanical equilibrium shapes of pre-patterned closed shells and explore their dynamical deformations. Our results show that a combination of nematic alignment and gradients in internal tensions and bending moments is sufficient to reproduce basic building blocks of epithelial morphogenesis, including fold formation, budding, neck formation, flattening, and tubulation.
Collapse
Affiliation(s)
| | - Guillaume Salbreux
- The Francis Crick InstituteLondonUnited Kingdom
- University of GenevaGenevaSwitzerland
| |
Collapse
|
9
|
Torres-Sánchez A, Kerr Winter M, Salbreux G. Interacting active surfaces: A model for three-dimensional cell aggregates. PLoS Comput Biol 2022; 18:e1010762. [PMID: 36525467 PMCID: PMC9803321 DOI: 10.1371/journal.pcbi.1010762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/30/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
We introduce a modelling and simulation framework for cell aggregates in three dimensions based on interacting active surfaces. Cell mechanics is captured by a physical description of the acto-myosin cortex that includes cortical flows, viscous forces, active tensions, and bending moments. Cells interact with each other via short-range forces capturing the effect of adhesion molecules. We discretise the model equations using a finite element method, and provide a parallel implementation in C++. We discuss examples of application of this framework to small and medium-sized aggregates: we consider the shape and dynamics of a cell doublet, a planar cell sheet, and a growing cell aggregate. This framework opens the door to the systematic exploration of the cell to tissue-scale mechanics of cell aggregates, which plays a key role in the morphogenesis of embryos and organoids.
Collapse
Affiliation(s)
| | - Max Kerr Winter
- Theoretical Physics of Biology laboratory, The Francis Crick Institute, London, United Kingdom
| | - Guillaume Salbreux
- Theoretical Physics of Biology laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Genetics and Evolution, University of Geneva, Genève, Switzerland
| |
Collapse
|
10
|
Callan-Jones A. Self-organization in amoeboid motility. Front Cell Dev Biol 2022; 10:1000071. [PMID: 36313569 PMCID: PMC9614430 DOI: 10.3389/fcell.2022.1000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells—and some single-celled-organisms—have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.
Collapse
|
11
|
Miller PW, Fortunato D, Muratov C, Greengard L, Shvartsman S. Forced and spontaneous symmetry breaking in cell polarization. NATURE COMPUTATIONAL SCIENCE 2022; 2:504-511. [PMID: 37309402 PMCID: PMC10260237 DOI: 10.1038/s43588-022-00295-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 06/14/2023]
Abstract
How does breaking the symmetry of an equation alter the symmetry of its solutions? Here, we systematically examine how reducing underlying symmetries from spherical to axisymmetric influences the dynamics of an archetypal model of cell polarization, a key process of biological spatial self-organization. Cell polarization is characterized by nonlinear and non-local dynamics, but we overcome the theory challenges these traits pose by introducing a broadly applicable numerical scheme allowing us to efficiently study continuum models in a wide range of geometries. Guided by numerical results, we discover a dynamical hierarchy of timescales that allows us to reduce relaxation to a purely geometric problem of area-preserving geodesic curvature flow. Through application of variational results, we analytically construct steady states on a number of biologically relevant shapes. In doing so, we reveal non-trivial solutions for symmetry breaking.
Collapse
Affiliation(s)
- Pearson W. Miller
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- These authors contributed equally: Pearson W. Miller, Daniel Fortunato
| | - Daniel Fortunato
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
- These authors contributed equally: Pearson W. Miller, Daniel Fortunato
| | - Cyrill Muratov
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA
- Dipartimento di Matematica, Università di Pisa, Pisa, Italy
| | - Leslie Greengard
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
- Courant Institute, New York University, New York, NY, USA
| | - Stanislav Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Courant Institute, New York University, New York, NY, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
12
|
Maddu S, Cheeseman BL, Sbalzarini IF, Müller CL. Stability selection enables robust learning of differential equations from limited noisy data. Proc Math Phys Eng Sci 2022; 478:20210916. [PMID: 35756878 PMCID: PMC9199075 DOI: 10.1098/rspa.2021.0916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposing stability-based model selection to determine the level of regularization required for reproducible inference. This avoids manual parameter tuning and improves robustness against noise in the data. Our stability selection approach, termed PDE-STRIDE, can be combined with any sparsity-promoting regression method and provides an interpretable criterion for model component importance. We show that the particular combination of stability selection with the iterative hard-thresholding algorithm from compressed sensing provides a fast and robust framework for equation inference that outperforms previous approaches with respect to accuracy, amount of data required, and robustness. We illustrate the performance of PDE-STRIDE on a range of simulated benchmark problems, and we demonstrate the applicability of PDE-STRIDE on real-world data by considering purely data-driven inference of the protein interaction network for embryonic polarization in Caenorhabditis elegans. Using fluorescence microscopy images of C. elegans zygotes as input data, PDE-STRIDE is able to learn the molecular interactions of the proteins.
Collapse
Affiliation(s)
- Suryanarayana Maddu
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Bevan L. Cheeseman
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Ivo F. Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | | |
Collapse
|
13
|
Ding M, Hou L, Duan X, Shi T, Li W, Shi AC. Translocation of Micelles through a Nanochannel. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Hou
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
14
|
Hoffmann LA, Carenza LN, Eckert J, Giomi L. Theory of defect-mediated morphogenesis. SCIENCE ADVANCES 2022; 8:eabk2712. [PMID: 35427161 PMCID: PMC9012457 DOI: 10.1126/sciadv.abk2712] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Growing experimental evidence indicates that topological defects could serve as organizing centers in the morphogenesis of tissues. Here, we provide a quantitative explanation for this phenomenon, rooted in the buckling theory of deformable active polar liquid crystals. Using a combination of linear stability analysis and computational fluid dynamics, we demonstrate that active layers, such as confined cell monolayers, are unstable to the formation of protrusions in the presence of disclinations. The instability originates from an interplay between the focusing of the elastic forces, mediated by defects, and the renormalization of the system's surface tension by the active flow. The posttransitional regime is also characterized by several complex morphodynamical processes, such as oscillatory deformations, droplet nucleation, and active turbulence. Our findings offer an explanation of recent observations on tissue morphogenesis and shed light on the dynamics of active surfaces in general.
Collapse
Affiliation(s)
- Ludwig A. Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
- Corresponding author.
| |
Collapse
|
15
|
Binysh J, Wilks TR, Souslov A. Active elastocapillarity in soft solids with negative surface tension. SCIENCE ADVANCES 2022; 8:eabk3079. [PMID: 35275714 PMCID: PMC8916726 DOI: 10.1126/sciadv.abk3079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Active solids consume energy to allow for actuation, shape change, and wave propagation not possible in equilibrium. Whereas active interfaces have been realized across many experimental systems, control of three-dimensional (3D) bulk materials remains a challenge. Here, we develop continuum theory and microscopic simulations that describe a 3D soft solid whose boundary experiences active surface stresses. The competition between active boundary and elastic bulk yields a broad range of previously unexplored phenomena, which are demonstrations of so-called active elastocapillarity. In contrast to thin shells and vesicles, we discover that bulk 3D elasticity controls snap-through transitions between different anisotropic shapes. These transitions meet at a critical point, allowing a universal classification via Landau theory. In addition, the active surface modifies elastic wave propagation to allow zero, or even negative, group velocities. These phenomena offer robust principles for programming shape change and functionality into active solids, from robotic metamaterials down to shape-shifting nanoparticles.
Collapse
Affiliation(s)
- Jack Binysh
- Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Thomas R. Wilks
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Exact Sciences Innovation, Sherard Building, Edmund Halley Road, Oxford OX4 4DQ, UK
| | - Anton Souslov
- Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
16
|
Romeo N, Hastewell A, Mietke A, Dunkel J. Learning developmental mode dynamics from single-cell trajectories. eLife 2021; 10:e68679. [PMID: 34964437 PMCID: PMC8871385 DOI: 10.7554/elife.68679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Embryogenesis is a multiscale process during which developmental symmetry breaking transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell microscopy provide unprecedented insights into the collective cell dynamics at various stages of embryonic development. This rapid experimental progress poses the theoretical challenge of translating high-dimensional imaging data into predictive low-dimensional models that capture the essential ordering principles governing developmental cell migration in complex geometries. Here, we combine mode decomposition ideas that have proved successful in condensed matter physics and turbulence theory with recent advances in sparse dynamical systems inference to realize a computational framework for learning quantitative continuum models from single-cell imaging data. Considering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, we show how cell trajectory data on a curved surface can be coarse-grained and compressed with suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell dynamics enables a compact characterization of developmental symmetry breaking and the direct inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic conceptual foundation, we expect that mode-based model learning can help advance the quantitative biophysical understanding of a wide range of developmental structure formation processes.
Collapse
Affiliation(s)
- Nicolas Romeo
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alasdair Hastewell
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
17
|
Ghosh S, Gutti S, Chaudhuri D. Pattern formation, localized and running pulsation on active spherical membranes. SOFT MATTER 2021; 17:10614-10627. [PMID: 34605510 DOI: 10.1039/d1sm00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Sashideep Gutti
- BITS Pilani Hyderabad Campus, Hyderabad 500078, Telengana, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
18
|
Singh A, Incardona P, Sbalzarini IF. A C++ expression system for partial differential equations enables generic simulations of biological hydrodynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:117. [PMID: 34554349 PMCID: PMC8460516 DOI: 10.1140/epje/s10189-021-00121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
We present a user-friendly and intuitive C++ expression system to implement numerical simulations of continuum biological hydrodynamics. The expression system allows writing simulation programs in near-mathematical notation and makes codes more readable, more compact, and less error-prone. It also cleanly separates the implementation of the partial differential equation model from the implementation of the numerical methods used to discretize it. This allows changing either of them with minimal changes to the source code. The presented expression system is implemented in the high-performance computing platform OpenFPM, supporting simulations that transparently parallelize on multi-processor computer systems. We demonstrate that our expression system makes it easier to write scalable codes for simulating biological hydrodynamics in space and time. We showcase the present framework in numerical simulations of active polar fluids, as well as in classic simulations of fluid dynamics from the incompressible Navier-Stokes equations to Stokes flow in a ball. The presented expression system accelerates scalable simulations of spatio-temporal models that encode the physics and material properties of tissues in order to algorithmically study morphogenesis.
Collapse
Affiliation(s)
- Abhinav Singh
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Pietro Incardona
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Ivo F Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
19
|
GrandPre T, Klymko K, Mandadapu KK, Limmer DT. Entropy production fluctuations encode collective behavior in active matter. Phys Rev E 2021; 103:012613. [PMID: 33601608 DOI: 10.1103/physreve.103.012613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
We derive a general lower bound on distributions of entropy production in interacting active matter systems. The bound is tight in the limit that interparticle correlations are small and short-ranged, which we explore in four canonical active matter models. In all models studied, the bound is weak where collective fluctuations result in long-ranged correlations, which subsequently links the locations of phase transitions to enhanced entropy production fluctuations. We develop a theory for the onset of enhanced fluctuations and relate it to specific phase transitions in active Brownian particles. We also derive optimal control forces that realize the dynamics necessary to tune dissipation and manipulate the system between phases. In so doing, we uncover a general relationship between entropy production and pattern formation in active matter, as well as ways of controlling it.
Collapse
Affiliation(s)
- Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94609, USA
| | - Katherine Klymko
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94609, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - David T Limmer
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Department of Chemistry, University of California, Berkeley, California 94609, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
| |
Collapse
|
20
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Martínez-Calvo A, Sevilla A. Universal Thinning of Liquid Filaments under Dominant Surface Forces. PHYSICAL REVIEW LETTERS 2020; 125:114502. [PMID: 32975989 DOI: 10.1103/physrevlett.125.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Theory and numerical simulations of the thinning of liquid threads at high superficial concentration of surfactants suggest the existence of an asymptotic regime where surface tension balances surface viscous stresses, leading to an exponential thinning with an e-fold time F(Θ)(3μ_{s}+κ_{s})/σ, where μ_{s} and κ_{s} are the surface shear and dilatational viscosity coefficients, σ is the interfacial tension, Θ=κ_{s}/μ_{s}, and F(Θ) is a universal function. The potential use of this phenomenon to measure the surface viscosity coefficients is discussed.
Collapse
Affiliation(s)
- A Martínez-Calvo
- Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - A Sevilla
- Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
22
|
Mokbel M, Hosseini K, Aland S, Fischer-Friedrich E. The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent. Biophys J 2020; 118:1968-1976. [PMID: 32208141 PMCID: PMC7175418 DOI: 10.1016/j.bpj.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022] Open
Abstract
Cell shape changes are vital for many physiological processes such as cell proliferation, cell migration, and morphogenesis. They emerge from an orchestrated interplay of active cellular force generation and passive cellular force response, both crucially influenced by the actin cytoskeleton. To model cellular force response and deformation, cell mechanical models commonly describe the actin cytoskeleton as a contractile isotropic incompressible material. However, in particular at slow frequencies, there is no compelling reason to assume incompressibility because the water content of the cytoskeleton may change. Here, we challenge the assumption of incompressibility by comparing computer simulations of an isotropic actin cortex with tunable Poisson ratio to measured cellular force response. Comparing simulation results and experimental data, we determine the Poisson ratio of the cortex in a frequency-dependent manner. We find that the Poisson ratio of the cortex decreases in the measured frequency regime analogous to trends reported for the Poisson ratio of glassy materials. Our results therefore indicate that actin cortex compression or dilation is possible in response to acting forces at sufficiently fast timescales. This finding has important implications for the parameterization in active gel theories that describe actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Marcel Mokbel
- Faculty of Informatics/Mathematics, Hochschule für Technik und Wirtschaft, Dresden, Germany
| | - Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Aland
- Faculty of Informatics/Mathematics, Hochschule für Technik und Wirtschaft, Dresden, Germany.
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|