1
|
Ma J, Yang L, Dang Y, Shahzad K, Song J, Jia B, Wang L, Feng J, Wang N, Pei W, Wu M, Zhang X, Zhang J, Wu J, Yu J. Deciphering the dynamic expression network of fiber elongation and the functional role of the GhTUB5 gene for fiber length in cotton based on an introgression population of upland cotton. J Adv Res 2024:S2090-1232(24)00324-2. [PMID: 39106927 DOI: 10.1016/j.jare.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined. METHODS Coexpression analyses of 277 developing fiber transcriptomes integrated with QTL mapping using 250 introgression lines of different FL phenotypes were conducted to identify genes related to fiber elongation. The function of GhTUB5 was determined by ectopic expression of two TUB5 alleles in Arabidopsis and knockout of GhTUB5 in upland cotton. Yeast two-hybrid, split-luciferase and pull-down assays were conducted to screen for interacting proteins, and upstream genes were identified by yeast one-hybrid, dual-LUC and electrophoretic mobility shift assays. RESULTS The 32,612, 30,837 and 30,277 genes expressed at 5, 10 and 15 days postanthesis (dpa) were grouped into 19 distinct coexpression modules, and 988 genes in the MEblack module were enriched in the cell wall process and exhibited significant associations with FL. A total of 20 FL-QTLs were identified, each explaining 3.34-16.04 % of the phenotypic variance in the FL. Furthermore, several FL-QTLs contained 15 genes that were differentially expressed in the MEblack module including the tubulin beta gene (TUB5). Compared with the wild type, the overexpression of GhTUB5 and GbTUB5 in Arabidopsis suppressed root cell length but promoted cellulose synthesis. Knockout of GhTUB5 resulted in longer fiber lines. Protein-based experiments revealed that GhTUB5 interacts with GhZFP6. Additionally, GhTUB5 was directly activated by GhHD-ZIP7, a homeobox-leucine zipper transcription factor, and its paralogous gene was previously reported to mediate fiber elongation. CONCLUSION This study opens a new avenue to dissect functional mechanism of cotton fiber elongation. Our findings provide some molecular details on how GhTUB5 mediates the FL phenotype in cotton.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanyue Dang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Man Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
2
|
Liu L, Grover CE, Kong X, Jareczek J, Wang X, Si A, Wang J, Yu Y, Chen Z. Expression profile analysis of cotton fiber secondary cell wall thickening stage. PeerJ 2024; 12:e17682. [PMID: 38993976 PMCID: PMC11238726 DOI: 10.7717/peerj.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.
Collapse
Affiliation(s)
- Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Josef Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Juan Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| |
Collapse
|
3
|
Wang Y, Li Y, He SP, Xu SW, Li L, Zheng Y, Li XB. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. THE PLANT CELL 2023; 35:4133-4154. [PMID: 37542517 PMCID: PMC10615210 DOI: 10.1093/plcell/koad214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 08/07/2023]
Abstract
Phytohormones play indispensable roles in plant growth and development. However, the molecular mechanisms underlying phytohormone-mediated regulation of fiber secondary cell wall (SCW) formation in cotton (Gossypium hirsutum) remain largely underexplored. Here, we provide mechanistic evidence for functional interplay between the APETALA2/ethylene response factor (AP2/ERF) transcription factor GhERF108 and auxin response factors GhARF7-1 and GhARF7-2 in dictating the ethylene-auxin signaling crosstalk that regulates fiber SCW biosynthesis. Specifically, in vitro cotton ovule culture revealed that ethylene and auxin promote fiber SCW deposition. GhERF108 RNA interference (RNAi) cotton displayed remarkably reduced cell wall thickness compared with controls. GhERF108 interacted with GhARF7-1 and GhARF7-2 to enhance the activation of the MYB transcription factor gene GhMYBL1 (MYB domain-like protein 1) in fibers. GhARF7-1 and GhARF7-2 respond to auxin signals that promote fiber SCW thickening. GhMYBL1 RNAi and GhARF7-1 and GhARF7-2 virus-induced gene silencing (VIGS) cotton displayed similar defects in fiber SCW formation as GhERF108 RNAi cotton. Moreover, the ethylene and auxin responses were reduced in GhMYBL1 RNAi plants. GhMYBL1 directly binds to the promoters of GhCesA4-1, GhCesA4-2, and GhCesA8-1 and activates their expression to promote cellulose biosynthesis, thereby boosting fiber SCW formation. Collectively, our findings demonstrate that the collaboration between GhERF108 and GhARF7-1 or GhARF7-2 establishes ethylene-auxin signaling crosstalk to activate GhMYBL1, ultimately leading to the activation of fiber SCW biosynthesis.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shao-Ping He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shang-Wei Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Li Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070,China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070,China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| |
Collapse
|
4
|
Zhang L, Ma C, Wang L, Su X, Huang J, Cheng H, Guo H. Repression of GhTUBB1 Reduces Plant Height in Gossypium hirsutum. Int J Mol Sci 2023; 24:15424. [PMID: 37895102 PMCID: PMC10607470 DOI: 10.3390/ijms242015424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The original 'Green Revolution' genes are associated with gibberellin deficiency. However, in some species, mutations in these genes cause pleiotropic phenotypes, preventing their application in dwarf breeding. The development of novel genotypes with reduced plant height will resolve this problem. In a previous study, we obtained two dwarf lines, L28 and L30, by introducing the Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. C-repeat-binding factor 1 (AmCBF1) into the upland cotton variety R15. We found that Gossypium hirsutum Tubulin beta-1 (GhTUBB1) was downregulated in L28 and L30, which suggested that this gene may have contributed to the dwarf phenotype of L28 and L30. Here, we tested this hypothesis by silencing GhTUBB1 expression in R15 and found that decreased expression resulted in a dwarf phenotype. Interestingly, we found that repressing AmCBF1 expression in L28 and L30 partly recovered the expression of GhTUBB1. Thus, AmCBF1 expression presented a negative relationship with GhTUBB1 expression in L28 and L30. Moreover, yeast one-hybrid and dual-luciferase assays suggest that AmCBF1 negatively regulates GhTUBB1 expression by directly binding to C-repeat/dehydration-responsive (CRT/DRE) elements in the GhTUBB1 promoter, potentially explaining the dwarf phenotypes of L28 and L30. This study elucidates the regulation of GhTUBB1 expression by AmCBF1 and suggests that GhTUBB1 may be a new target gene for breeding dwarf and compact cultivars.
Collapse
Affiliation(s)
- Lihua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Caixia Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Lihua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
5
|
Rajasheker G, Nagaraju M, Varghese RP, Jalaja N, Somanaboina AK, Singam P, Ramakrishna C, Penna S, Sreenivasulu N, Kishor PBK. Identification and analysis of proline-rich proteins and hybrid proline-rich proteins super family genes from Sorghum bicolor and their expression patterns to abiotic stress and zinc stimuli. FRONTIERS IN PLANT SCIENCE 2022; 13:952732. [PMID: 36226297 PMCID: PMC9549341 DOI: 10.3389/fpls.2022.952732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Systematic genome-wide analysis of Sorghum bicolor revealed the identification of a total of 48 homologous genes comprising 21 proline-rich proteins (PRPs) and 27 hybrid proline-rich proteins (HyPRPs). Comprehensive scrutiny of these gene homologs was conducted for gene structure, phylogenetic investigations, chromosome mapping, and subcellular localization of proteins. Promoter analysis uncovered the regions rich with phosphorous- (BIHD), ammonium-, sulfur-responsive (SURE), and iron starvation-responsive (IRO2) along with biotic, abiotic, and development-specific cis-elements. Further, PRPs exhibit more methylation and acetylation sites in comparison with HyPRPs. miRNAs have been predicted which might play a role in cleavage and translation inhibition. Several of the SbPRP genes were stimulated in a tissue-specific manner under drought, salt, heat, and cold stresses. Additionally, exposure of plants to abscisic acid (ABA) and zinc (Zn) also triggered PRP genes in a tissue-dependent way. Among them, SbPRP17 has been found upregulated markedly in all tissues irrespective of the stress imposed. The expressions of SbHyPRPs, especially SbHyPRP2, SbHyPRP6, and SbHyPRP17 were activated under all stresses in all three tissues. On the other hand, SbHyPRP8 (root only) and SbHyPRP12 (all three tissues) were highly responsive to cold stress and ABA while SbHyPRP26 was induced by drought and Zn in the stem. Taken together, this study indicates the critical roles that SbPRPs and SbHyPRPs play during diverse abiotic stress conditions and notably the plausible roles that these genes play upon exposure to zinc, the crucial micronutrient in plants.
Collapse
Affiliation(s)
| | - Marka Nagaraju
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Rinku Polachirakkal Varghese
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Naravula Jalaja
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Prashant Singam
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | | | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology, Bhabha Atomic Research Center, Mumbai, India
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Baños, Philippines
| | - P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| |
Collapse
|
6
|
Lu R, Li Y, Zhang J, Wang Y, Zhang J, Li Y, Zheng Y, Li XB. The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton. PLANT PHYSIOLOGY 2022; 189:628-643. [PMID: 35226094 PMCID: PMC9157132 DOI: 10.1093/plphys/kiac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
Basic helix-loop-helix/helix-loop-helix (bHLH/HLH) transcription factors play important roles in cell elongation in plants. However, little is known about how bHLH/HLH transcription factors antagonistically regulate fiber elongation in cotton (Gossypium hirsutum). In this study, we report that two bHLH/HLH transcription factors, fiber-related protein 2 (GhFP2) and ACTIVATOR FOR CELL ELONGATION 1 (GhACE1), function in fiber development of cotton. GhFP2 is an atypical bHLH protein without the basic region, and its expression is regulated by brassinosteroid (BR)-related BRASSINAZOLE RESISTANT 1 (GhBZR1). Overexpression of GhFP2 in cotton hindered fiber elongation, resulting in shortened fiber length. In contrast, suppression of GhFP2 expression in cotton promoted fiber development, leading to longer fibers compared with the wild-type. GhFP2 neither contains a DNA-binding domain nor has transcriptional activation activity. Furthermore, we identified GhACE1, a bHLH protein that interacts with GhFP2 and positively regulates fiber elongation. GhACE1 could bind to promoters of plasma membrane intrinsic protein 2;7 (GhPIP2;7) and expansions 8 (GhEXP8) for directly activating their expression, but the interaction between GhFP2 and GhACE1 suppressed transcriptional activation of these target genes by GhACE1. Taken together, our results indicate that GhACE1 promotes fiber elongation by activating expressions of GhPIP2;7 and GhEXP8, but its transcription activation on downstream genes may be obstructed by BR-modulated GhFP2. Thus, our data reveal a key mechanism for fiber cell elongation through a pair of antagonizing HLH/bHLH transcription factors in cotton.
Collapse
Affiliation(s)
- Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
7
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Li B, Zhang L, Xi J, Hou L, Fu X, Pei Y, Zhang M. An Unexpected Regulatory Sequence from Rho-Related GTPase6 Confers Fiber-Specific Expression in Upland Cotton. Int J Mol Sci 2022; 23:ijms23031087. [PMID: 35163011 PMCID: PMC8834676 DOI: 10.3390/ijms23031087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed preferentially in developing fibers. A 1240 bp regulatory region of GhROP6, which contains a short upstream regulatory sequence, the first exon, and the partial first intron, was unexpectedly isolated and introduced into transgenic cotton for analyzing promoter activity. The promoter of GhROP6 (proChROP6) conferred a specific expression in ovule surface, but not in the other floral organs and vegetative tissues. Reverse transcription PCR analysis indicated that proGhROP6 directed full-length transcription of the fused ß-glucuronidase (GUS) gene. Further investigation of GUS staining showed that proChROP6 regulated gene expression in fibers and ovule epidermis from fiber initiation to cell elongation stages. The preferential activity was enriched in fiber cells after anthesis and reached to peak on flowering days. By comparison, proGhROP6 was a mild promoter with approximately one-twenty-fifth of the strength of the constitutive promoter CaMV35S. The promoter responded to high-dosage treatments of auxin, gibberellin and salicylic acid and slightly reduced GUS activity under the in vitro treatment. Collectively, our data suggest that the GhROP6 promoter has excellent activity in initiating fibers and has potential for bioengineering of cotton fibers.
Collapse
Affiliation(s)
- Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xingxian Fu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-023-68251883; Fax: +86-023-68251883
| |
Collapse
|
9
|
Wang Y, Li Y, Gong SY, Qin LX, Nie XY, Liu D, Zheng Y, Li XB. GhKNL1 controls fiber elongation and secondary cell wall synthesis by repressing its downstream genes in cotton (Gossypium hirsutum). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:39-55. [PMID: 34796654 DOI: 10.1111/jipb.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Cotton which produces natural fiber materials for the textile industry is one of the most important crops in the world. Class II KNOX proteins are often considered as transcription factors in regulating plant secondary cell wall (SCW) formation. However, the molecular mechanism of the KNOX transcription factor-regulated SCW synthesis in plants (especially in cotton) remains unclear in details so far. In this study, we show a cotton class II KNOX protein (GhKNL1) as a transcription repressor functioning in fiber development. The GhKNL1-silenced transgenic cotton produced longer fibers with thicker SCWs, whereas GhKNL1 dominant repression transgenic lines displayed the opposite fiber phenotype, compared with controls. Further experiments revealed that GhKNL1 could directly bind to promoters of GhCesA4-2/4-4/8-2 and GhMYB46 for modulating cellulose synthesis during fiber SCW development in cotton. On the other hand, GhKNL1 could also suppress expressions of GhEXPA2D/4A-1/4D-1/13A through binding to their promoters for regulating fiber elongation of cotton. Taken together, these data revealed GhKNL1 functions in fiber elongation and SCW formation by directly repressing expressions of its target genes related to cell elongation and cellulose synthesis. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhKNL1 in cotton breeding.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
10
|
Chen Y, Zhang JB, Wei N, Liu ZH, Li Y, Zheng Y, Li XB. A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. PLANT MOLECULAR BIOLOGY 2021; 107:499-517. [PMID: 34596817 DOI: 10.1007/s11103-021-01198-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.
Collapse
Affiliation(s)
- Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Yang J, Gao L, Liu X, Zhang X, Wang X, Wang Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep 2021; 11:22833. [PMID: 34819523 PMCID: PMC8613186 DOI: 10.1038/s41598-021-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.
Collapse
Affiliation(s)
- Jiangtao Yang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihua Gao
- School of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xiaojing Liu
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaochun Zhang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Razzaq A, Zafar MM, Li P, Qun G, Deng X, Ali A, Hafeez A, Irfan M, Liu A, Ren M, Shang H, Shi Y, Gong W, Yuan Y. Transformation and Overexpression of Primary Cell Wall Synthesis-Related Zinc Finger Gene Gh_A07G1537 to Improve Fiber Length in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:777794. [PMID: 34804108 PMCID: PMC8604042 DOI: 10.3389/fpls.2021.777794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
Molecular interventions have helped to explore the genes involved in fiber length, fiber strength, and other quality parameters with improved characteristics, particularly in cotton. The current study is an extension and functional validation of previous findings that Gh_A07G1537 influences fiber length in cotton using a chromosomal segment substitution line MBI7747 through RNA-seq data. The recombinant Gh_A07G1537 derived from the MBI7747 line was over-expressed in CCRI24, a genotype with a low profile of fiber quality parameters. Putative transformants were selected on MS medium containing hygromycin (25mg/ml), acclimatized, and shifted to a greenhouse for further growth and proliferation. Transgene integration was validated through PCR and Southern Blot analysis. Stable integration of the transgene (ΔGh_A07G1537) was validated by tracking its expression in different generations (T0, T1, and T2) of transformed cotton plants. It was found to be 2.97-, 2.86-, and 2.92-folds higher expression in T0, T1, and T2 plants, respectively, of transgenic compared with non-transgenic cotton plants. Fiber quality parameters were also observed to be improved in the engineered cotton line. Genetic modifications of Gh_A07G1537 support the improvement in fiber quality parameters and should be appreciated for the textile industry.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Ge Qun
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics, Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Irfan
- Department of Biological Sciences, Forman Christian College, A Chartered University, Lahore, Pakistan
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang NN, Li Y, Chen YH, Lu R, Zhou L, Wang Y, Zheng Y, Li XB. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and elongation in cotton (Gossypium hirsutum). THE PLANT CELL 2021; 33:2736-2752. [PMID: 34043792 PMCID: PMC8408482 DOI: 10.1093/plcell/koab153] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/15/2021] [Indexed: 05/25/2023]
Abstract
Cotton, one of the most important crops in the world, produces natural fiber materials for the textile industry. WRKY transcription factors play important roles in plant development and stress responses. However, little is known about whether and how WRKY transcription factors regulate fiber development of cotton so far. In this study, we show that a fiber-preferential WRKY transcription factor, GhWRKY16, positively regulates fiber initiation and elongation. GhWRKY16-silenced transgenic cotton displayed a remarkably reduced number of fiber protrusions on the ovule and shorter fibers compared to the wild-type. During early fiber development, GhWRKY16 directly binds to the promoters of GhHOX3, GhMYB109, GhCesA6D-D11, and GhMYB25 to induce their expression, thereby promoting fiber initiation and elongation. Moreover, GhWRKY16 is phosphorylated by the mitogen-activated protein kinase GhMPK3-1 at residues T-130 and S-260. Phosphorylated GhWRKY16 directly activates the transcription of GhMYB25, GhHOX3, GhMYB109, and GhCesA6D-D11 for early fiber development. Thus, our data demonstrate that GhWRKY16 plays a crucial role in fiber initiation and elongation, and that GhWRKY16 phosphorylation by GhMPK3-1 is essential for the transcriptional activation on downstream genes during the fiber development of cotton.
Collapse
Affiliation(s)
- Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yi-Hao Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
14
|
Guo AH, Su Y, Huang Y, Wang YM, Nie HS, Zhao N, Hua JP. QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:661-685. [PMID: 33386428 PMCID: PMC7843563 DOI: 10.1007/s00122-020-03721-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/31/2020] [Indexed: 05/04/2023]
Abstract
QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.) under salt stress and normal conditions. Based on three datasets of (1) salt stress, (2) normal growth, and (3) the difference value between salt stress and normal conditions, 51, 70, and 53 QTL were mapped, respectively. Three QTL for fiber length (FL) (qFL-Chr1-1, qFL-Chr5-5, and qFL-Chr24-4) were detected under both salt and normal conditions and explained 4.26%, 9.38%, and 3.87% of average phenotypic variation, respectively. Seven genes within intervals of two stable QTL (qFL-Chr1-1 and qFL-Chr5-5) were highly expressed in lines with extreme long fiber. A total of 35 QTL clusters comprised of 107 QTL were located on 18 chromosomes and exhibited pleiotropic effects. Thereinto, two clusters were responsible for improving five fiber quality traits, and 6 influenced FL and fiber strength (FS). The QTL with positive effect for fiber length exhibited active effects on fatty acid synthesis and elongation, but the ones with negative effect played passive roles on fatty acid degradation under salt stress.
Collapse
Affiliation(s)
- An-Hui Guo
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Ying Su
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yu-Mei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Hu-Shuai Nie
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Jin-Ping Hua
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China.
| |
Collapse
|
15
|
Cheng S, Chen P, Su Z, Ma L, Hao P, Zhang J, Ma Q, Liu G, Liu J, Wang H, Wei H, Yu S. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:153-166. [PMID: 32654381 PMCID: PMC7769237 DOI: 10.1111/pbi.13449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
The transition from vegetative to reproductive growth is very important for early maturity in cotton. However, the genetic control of this highly dynamic and complex developmental process remains unclear. A high-resolution tissue- and stage-specific transcriptome profile was generated from six developmental stages using 72 samples of two early-maturing and two late-maturing cotton varieties. The results of histological analysis of paraffin sections showed that flower bud differentiation occurred at the third true leaf stage (3TLS) in early-maturing varieties, but at the fifth true leaf stage (5TLS) in late-maturing varieties. Using pairwise comparison and weighted gene co-expression network analysis, 5312 differentially expressed genes were obtained, which were divided into 10 gene co-expression modules. In the MElightcyan module, 46 candidate genes regulating cotton flower bud differentiation were identified and expressed at the flower bud differentiation stage. A novel key regulatory gene related to flower bud differentiation, GhCAL, was identified in the MElightcyan module. Anti-GhCAL transgenic cotton plants exhibited late flower bud differentiation and flowering time. GhCAL formed heterodimers with GhAP1-A04/GhAGL6-D09 and regulated the expression of GhAP1-A04 and GhAGL6-D09. GhAP1-A04- and GhAGL6-D09-silenced plants also showed significant late flowering. Finally, we propose a new flowering regulatory pathway mediated by GhCAL. This study elucidated the molecular mechanism of cotton flowering regulation and provides good genetic resources for cotton early-maturing breeding.
Collapse
Affiliation(s)
- Shuaishuai Cheng
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengyun Chen
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Zhengzheng Su
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Liang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengbo Hao
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Jingjing Zhang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Qiang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Guoyuan Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hantao Wang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hengling Wei
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Shuxun Yu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| |
Collapse
|
16
|
Song X, Zhu G, Hou S, Ren Y, Amjid MW, Li W, Guo W. Genome-Wide Association Analysis Reveals Loci and Candidate Genes Involved in Fiber Quality Traits Under Multiple Field Environments in Cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2021; 12:695503. [PMID: 34421946 PMCID: PMC8374309 DOI: 10.3389/fpls.2021.695503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
Fiber length, fiber strength, and fiber micronaire are the main fiber quality parameters in cotton. Thus, mining the elite and stable loci/alleles related to fiber quality traits and elucidating the relationship between the two may accelerate genetic improvement of fiber quality in cotton. Here, genome-wide association analysis (GWAS) was performed for fiber quality parameters based on phenotypic data, and 56,010 high-quality single nucleotide polymorphisms (SNPs) using 242 upland cotton accessions under 12 field environments were obtained. Phenotypic analysis exhibited that fiber length (FL) had a positive correlation with fiber strength (FS) and had a negative correlation with fiber micronaire (Mic). Genetic analysis also indicated that FL, FS, and Mic had high heritability of more than 80%. A total of 67 stable quantitative trait loci (QTLs) were identified through GWAS analysis, including 31 for FL, 21 for FS, and 22 for Mic. Of them, three pairs homologous QTLs were detected between A and D subgenomes, and seven co-located QTLs with two fiber quality parameters were found. Compared with the reported QTLs, 34 co-located with previous studies, and 33 were newly revealed. Integrated with transcriptome analysis, we selected 256, 244, and 149 candidate genes for FL, FS, and Mic, respectively. Gene Ontology (GO) analysis showed that most of the genes located in QTLs interval of the three fiber quality traits were involved in sugar biosynthesis, sugar metabolism, microtubule, and cytoskeleton organization, which played crucial roles in fiber development. Through correlation analysis between haplotypes and phenotypes, three genes (GH_A05G1494, GH_D11G3097, and GH_A05G1082) predominately expressed in fiber development stages were indicated to be potentially responsible for FL, FS, and Mic, respectively. The GH_A05G1494 encoded a protein containing SGS-domain, which is related to tubulin-binding and ubiquitin-protein ligase binding. The GH_D11G3097 encoded 20S proteasome beta subunit G1, and was involved in the ubiquitin-dependent protein catabolic process. The GH_A05G1082 encoded RAN binding protein 1 with a molecular function of GTPase activator activity. These results provide new insights and candidate loci/genes for the improvement of fiber quality in cotton.
Collapse
|
17
|
Li Y, Li L, Wang Y, Wang YC, Wang NN, Lu R, Wu YW, Li XB. Pollen-Specific Protein PSP231 Activates Callose Synthesis to Govern Male Gametogenesis and Pollen Germination. PLANT PHYSIOLOGY 2020; 184:1024-1041. [PMID: 32663166 PMCID: PMC7536655 DOI: 10.1104/pp.20.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 05/05/2023]
Abstract
Spatiotemporally regulated callose deposition is an essential, genetically programmed phenomenon that promotes pollen development and functionality. Severe male infertility is associated with deficient callose biosynthesis, highlighting the significance of intact callose deposition in male gametogenesis. The molecular mechanism that regulates the crucial role of callose in production of functional male gametophytes remains completely unexplored. Here, we provide evidence that the gradual upregulation of a previously uncharacterized cotton (Gossypium hirsutum) pollen-specific SKS-like protein (PSP231), specifically at the post pollen-mitosis stage, activates callose biosynthesis to promote pollen maturation. Aberrant PSP231 expression levels caused by either silencing or overexpression resulted in late pollen developmental abnormalities and male infertility phenotypes in a dose-dependent manner, highlighting the importance of fine-tuned PSP231 expression. Mechanistic analyses revealed that PSP231 plays a central role in triggering and fine-tuning the callose synthesis and deposition required for pollen development. Specifically, PSP231 protein sequesters the cellular pool of RNA-binding protein GhRBPL1 to destabilize GhWRKY15 mRNAs, turning off GhWRKY15-mediated transcriptional repression of GhCalS4/GhCalS8 and thus activating callose biosynthesis in pollen. This study showed that PSP231 is a key molecular switch that activates the molecular circuit controlling callose deposition toward pollen maturation and functionality and thereby safeguards agricultural crops against male infertility.
Collapse
Affiliation(s)
- Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Li Li
- Department of Genetics and Genome Biology, The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ya-Chao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yu-Wei Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| |
Collapse
|
18
|
Liu ZH, Chen Y, Wang NN, Chen YH, Wei N, Lu R, Li Y, Li XB. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. THE NEW PHYTOLOGIST 2020; 225:2439-2452. [PMID: 31667846 DOI: 10.1111/nph.16301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/26/2019] [Indexed: 05/20/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins are involved in transcriptional networks controlling a number of biological processes in plants. However, little information is known on the roles of bHLH proteins in cotton fibre development so far. Here, we show that a cotton bHLH protein (GhFP1) positively regulates fibre elongation. GhFP1 transgenic cotton and Arabidopsis plants were generated to study how GhFP1 regulates fibre cell elongation. Fibre length of the transgenic cotton overexpressing GhFP1 was significantly longer than that of wild-type, whereas suppression of GhFP1 expression hindered fibre elongation. Furthermore, overexpression of GhFP1 in Arabidopsis promoted trichome development. Expression of the brassinosteroid (BR)-related genes was markedly upregulated in fibres of GhFP1 overexpression cotton, but downregulated in GhFP1-silenced fibres. BR content in the transgenic fibres was significantly altered, relative to that in wild-type. Moreover, GhFP1 protein could directly bind to the promoters of GhDWF4 and GhCPD to activate expression of these BR-related genes. Therefore, our data suggest that GhFP1 as a positive regulator participates in controlling fibre elongation by activating BR biosynthesis and signalling. Additionally, homodimerisation of GhFP1 may be essential for its function, and interaction between GhFP1 and other cotton bHLH proteins may interfere with its DNA-binding activity.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yi-Hao Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
19
|
Yu Y, Zhang G, Chen Y, Bai Q, Gao C, Zeng L, Li Z, Cheng Y, Chen J, Sun X, Guo L, Xu J, Yan Z. Selection of Reference Genes for qPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Sci Rep 2019; 9:20004. [PMID: 31882847 PMCID: PMC6934855 DOI: 10.1038/s41598-019-56640-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is commonly used for deciphering gene functions. For effective qPCR analyses, suitable reference genes are needed for normalization. The objective of this study is to identify the appropriate reference gene(s) for qPCR analyses of the leaves and roots of ramie (Boehmeria nivea L.), an important natural fiber crop. To accomplish this goal, we investigated the expression patterns of eight common plant qPCR reference genes in ramie leaves and roots under five abiotic stresses, five hormonal treatments, and one biotic stress. The relative expression stabilities of the eight genes were evaluated using four common but different approaches: geNorm, NormFinder, BestKeeper, and RefFinder. Across the 11 tested conditions, ACT1 was the most stably expressed among the eight genes while GAPDH displayed the biggest variation. Overall, while variations in the suggested reference genes were found for different tissue x treatment combinations, our analyses revealed that together, genes ACT1, CYP2, and UBQ can provide robust references for gene expression studies of ramie leaves under most conditions, while genes EF-1α, TUB, and ACT1 can be used for similar studies of ramie roots. Our results should help future functional studies of the genes in ramie genome across tissues and environmental conditions.
Collapse
Affiliation(s)
- Yongting Yu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Yikun Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Qingqing Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Chunsheng Gao
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Liangbin Zeng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Zhimin Li
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Yi Cheng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jia Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Xiangping Sun
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Litao Guo
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jianping Xu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China. .,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Zhun Yan
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| |
Collapse
|
20
|
Salih H, Gong W, He S, Xia W, Odongo MR, Du X. Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics 2019; 20:661. [PMID: 31426741 PMCID: PMC6700839 DOI: 10.1186/s12864-019-5978-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Wang Xia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Magwanga Richard Odongo
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| |
Collapse
|
21
|
Morello L, Pydiura N, Galinousky D, Blume Y, Breviario D. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics 2019; 20:163-176. [PMID: 30826923 DOI: 10.1007/s10142-019-00667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy
| | - Nikolay Pydiura
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine.
| | - Diego Breviario
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy.
| |
Collapse
|
22
|
Xiang L, Liu C, Luo J, He L, Deng Y, Yuan J, Wu C, Cai Y. A tuber mustard AP2/ERF transcription factor gene, BjABR1, functioning in abscisic acid and abiotic stress responses, and evolutionary trajectory of the ABR1 homologous genes in Brassica species. PeerJ 2018; 6:e6071. [PMID: 30581669 PMCID: PMC6294115 DOI: 10.7717/peerj.6071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023] Open
Abstract
The AP2/ERF superfamily of transcription factors is one of the largest transcription factor families in plants and plays an important role in plant development processes and stress responses. In this study, BjABR1, an AP2/ERF superfamily gene, from tuber mustard (Brassica juncea var. tumida Tsen et Lee), sharing high amino acid sequence similarity with the AtABR1 (Arabidopsis thaliana AP2-like abscisic acid repressor 1) gene, were performed functional research, and the ABR1 homologous genes in Brassica species were identified and performed phylogenetic analysis. The promoter sequence of BjABR1 contained many phytohormone- and stress-related cis-elements; ABA (abscisic acid) and abiotic stresses can induce BjABR1 expression in tuber mustard; overexpression of BjABR1 in Arabidopsis can alleviate plant sensitivity to ABA and salt and osmotic stresses, and the alleviation may be due to changes in stress/ABA-induced gene expression. These results indicated that BjABR1 functions in ABA and abiotic stress responses. By BLAST searches against the genome database of five Brassica species (three diploids, B. rapa, B. nigra, and B. oleracea, and two allotetraploid, B. juncea and B. napus) using the protein sequence of AtABR1, 3, 3, 3, 6, and 5 ABR1 homologous genes in B. nigra, B. rapa, B. oleracea, B. juncea, and B. napus were identified, respectively, and they shared high sequence similarity. By sequence analysis, annotation mistakes of the protein-coding regions of two ABR1 homologous genes, GSBRNA2T00134741001 and BjuB007684, were found and corrected. Then, the evolution analysis of these ABR1 homologous genes showed that the ancestor of the three diploid species had three ABR1 homologous genes and each diploid inherited all the three genes from their ancestor; then, allotetraploid B. juncea inherited all the six genes from B. rapa and B. nigra with no gene lost, while allotetraploid B. napus inherited all the three genes from B. oleracea and two genes from B. rapa with one gene lost, indicating that ABR1 homologous genes possessed greater hereditary conservation in Brassica species. The ABR1 homologous genes between B. rapa and B. oleracea shared much higher sequence similarity compared to that of B. nigra in diploid species, indicating that ABR1 homologous genes in B. nigra had experienced more rapid evolution, and B. rapa and B. oleracea may share closer relationship compared to B. nigra. Moreover, the spatial and temporal expression analysis of six ABR1 homologous genes of tuber mustard showed that they possessed different expression models. These results imply that ABR1 homologous genes are important to Brassica plants, and they may possess similar function in ABA and abiotic stress responses but play a role in different tissues and growing stages of plant. This study will provide the foundation to the functional research of ABR1 homologous genes in the Brassica species and help to reveal and understand the evolution mechanisms of Brassica species.
Collapse
Affiliation(s)
- Liuxin Xiang
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Chao Liu
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Jingzhi Luo
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Lin He
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Yushan Deng
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Jie Yuan
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Chaofeng Wu
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory on Big Data for Bio Intelligence, School of Bioinformatics, School of Software Engineering, Chongqing, China
| | - Yingfan Cai
- Henan University, State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Kaifeng, Henan, China
| |
Collapse
|
23
|
Li Y, Wang NN, Wang Y, Liu D, Gao Y, Li L, Li XB. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1269-1282. [PMID: 30256468 DOI: 10.1111/tpj.14108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
LIM domain proteins are cysteine-rich proteins, and are often considered as actin bundlers and transcription factors in plants. However, the roles of XLIM proteins in plants (especially in cotton) remain unexplored in detail so far. In this study, we identified a cotton XLIM protein (GhXLIM6) that is preferentially expressed in cotton fiber during whole elongation stage and early secondary cell wall (SCW) synthesis stage. The GhXLIM6-silenced transgenic cotton produces shorter fibers with thinner cell walls, compared with wild-type (WT). GhXLIM6 protein could directly bind F-actin and promote actin polymerization both in vitro and in vivo. It also acts as a transcription factor to suppress GhKNL1 expression through binding the PAL-box element of GhKNL1 promoter, and subsequently regulate the expression of CesA genes related to cellulose biosynthesis and deposition in SCWs of cotton fibers. The cellulose content in fibers of GhXLIM6RNAi cotton is lower than that in WT. Taken together, these data reveal the dual roles of GhXLIM6 in fiber development. On one hand, GhXLIM6 functions in fiber elongation through binding to F-actin to maintain the dynamic F-actin cytoskeleton. On the other hand, GhXLIM6 fine-tunes fiber SCW formation, probably through directly suppressing transcription of GhKNL1 to promote cellulose biosynthesis.
Collapse
Affiliation(s)
- Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ya Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
24
|
Liu N, Sun Y, Wang P, Duan H, Ge X, Li X, Pei Y, Li F, Hou Y. Mutation of key amino acids in the polygalacturonase-inhibiting proteins CkPGIP1 and GhPGIP1 improves resistance to Verticillium wilt in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:546-561. [PMID: 30053316 DOI: 10.1111/tpj.14048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium wilt, one of the most devastating diseases of cotton (Gossypium hirsutum), causes severe yield and quality losses. Given the effectiveness of plant polygalacturonase-inhibiting proteins (PGIPs) in reducing fungal polygalacturonase (PG) activity, it is necessary to uncover the key functional amino acids to enhance cotton resistance to Verticillium dahliae. To identify novel antifungal proteins, the selectivity of key amino acids was investigated by screening against a panel of relevant PG-binding residues. Based on the obtained results, homologous models of the mutants were established. The docking models showed that hydrogen bonds and structural changes in the convex face in the conserved portion of leucine-rich repeats (LRRs) may be essential for enhanced recognition of PG. Additionally, we successfully constructed Cynanchum komarovii PGIP1 (CkPGIP1) mutants Asp176Val, Pro249Gln, and Asp176Val/Pro249Gln and G. hirsutum PGIP1 (GhPGIP1) mutants Glu169Val, Phe242Gln, and Glu169Val/Phe242Gln with site-directed mutagenesis. The proteins of interest can effectively inhibit VdPG1 activity and V. dahliae mycelial growth in a dose-dependent manner. Importantly, mutants that overproduced PGIP in Arabidopsis and cotton showed enhanced resistance to V. dahliae, with reduced Verticillium-associated chlorosis and wilting. Furthermore, the lignin content was measured in mutant-overexpressing plants, and the results showed enhanced lignification of the xylem, which blocked the spread of V. dahliae. Thus, using site-directed mutagenesis assays, we showed that mutations in CkPGIP1 and GhPGIP1 give rise to PGIP versatility, which allows evolving recognition specificities for PG and is required to promote Verticillium resistance in cotton by restricting the growth of invasive fungal pathogens.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hongxia Duan
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
25
|
Salih H, Gong W, He S, Mustafa NS, Du X. Comparative transcriptome analysis of TUCPs in Gossypium hirsutum Ligon-lintless-1 mutant and their proposed functions in cotton fiber development. Mol Genet Genomics 2018; 294:23-34. [DOI: 10.1007/s00438-018-1482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
|
26
|
Sun L, Alariqi M, Zhu Y, Li J, Li Z, Wang Q, Li Y, Rui H, Zhang X, Jin S. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zhang J, Huang GQ, Zou D, Yan JQ, Li Y, Hu S, Li XB. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. THE NEW PHYTOLOGIST 2018; 217:625-640. [PMID: 29105766 DOI: 10.1111/nph.14864] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/24/2017] [Indexed: 05/18/2023]
Abstract
Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Qiu Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shan Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
28
|
Gavazzi F, Pigna G, Braglia L, Gianì S, Breviario D, Morello L. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC PLANT BIOLOGY 2017; 17:237. [PMID: 29221437 PMCID: PMC5721616 DOI: 10.1186/s12870-017-1186-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. RESULTS We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. CONCLUSIONS Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Gaia Pigna
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Silvia Gianì
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| |
Collapse
|
29
|
Yadav VK, Yadav VK, Pant P, Singh SP, Maurya R, Sable A, Sawant SV. GhMYB1 regulates SCW stage-specific expression of the GhGDSL promoter in the fibres of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1163-1174. [PMID: 28182326 PMCID: PMC5552479 DOI: 10.1111/pbi.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/19/2023]
Abstract
Secondary cell wall (SCW) biosynthesis is an important stage of the cotton fibre development, and its transcriptional regulation is poorly understood. We selected the Gossypium hirsutum GDSL (GhGDSL) lipase/hydrolase gene (CotAD_74480), which is expressed during SCW biosynthesis (19 through to 25 days postanthesis; DPA), for study. T1 -transgenic cotton lines expressing the β-glucuronidase (gus) reporter under the control of a 1026-bp promoter fragment of GhGDSL (PGhGDSL ) showed 19 DPA stage-specific increase in GUS expression. 5' deletion indicated that the 194-bp fragment between -788 and -594 relative to the transcription start site was essential for this stage-specific expression. Site-directed mutagenesis of eight transcription factor binding sites within PGhGDSL demonstrated that the MYB1AT motif (AAACCA) at -603/-598 was critical for the 19 DPA-specific reporter gene expressions. Yeast one-hybrid (Y1H) analysis identified nine proteins, including GhMYB1 (CotAD_64719) that bound to the PGhGDSL promoter. Further, Y1H experiments using the 5' promoter deletions and individually mutated promoter motifs indicated that GhMYB1 interacted with PGhGDSL at MYB1AT sequence. GhMYB1 was expressed specifically in fibre from 19 DPA, overlapping with the sharp rise in GhGDSL expression, indicating that it could regulate GhGDSL during fibre development. Analysis of genes co-expressed with GhMYB1 showed that it potentially regulates a number of other 19-25 DPA-specific genes in networks including those functioning in the cell wall and precursor synthesis, but not the major polysaccharide and protein components of the fibre SCW. GhGDSL and its promoter are therefore potential tools for the improvement of cotton fibre quality traits.
Collapse
Affiliation(s)
- Vrijesh Kumar Yadav
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐National Botanical Research InstituteLucknowIndia
| | - Vikash Kumar Yadav
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐National Botanical Research InstituteLucknowIndia
| | - Poonam Pant
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐National Botanical Research InstituteLucknowIndia
| | - Surendra Pratap Singh
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
| | - Rashmi Maurya
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
| | - Anshulika Sable
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
| | - Samir V. Sawant
- Plant Molecular Biology LaboratoryCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐National Botanical Research InstituteLucknowIndia
| |
Collapse
|
30
|
Qin LX, Chen Y, Zeng W, Li Y, Gao L, Li DD, Bacic A, Xu WL, Li XB. The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:957-971. [PMID: 27888523 DOI: 10.1111/tpj.13434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/18/2016] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are highly glycosylated proteins that play pivotal roles in diverse developmental processes in plants. Type-II AG glycans, mostly O-linked to the hydroxyproline residues of the protein backbone, account for up to 95% w/w of the AGP, but their functions are still largely unclear. Cotton fibers are extremely elongated single-cell trichomes on the seed epidermis; however, little is known of the molecular basis governing the regulation of fiber cell development. Here, we characterized the role of a CAZy glycosyltransferase 31 (GT31) family member, GhGalT1, in cotton fiber development. The fiber length of the transgenic cotton overexpressing GhGalT1 was shorter than that of the wild type, whereas in the GhGalT1-silenced lines there was a notable increase in fiber length compared with wild type. The carbohydrate moieties of AGPs were altered in fibers of GhGalT1 transgenic cotton. The galactose: arabinose ratio of AG glycans was higher in GhGalT1 overexpression fibers, but was lower in GhGalT1-silenced lines, compared with that in the wild type. Overexpression of GhGalT1 upregulates transcript levels of a broad range of cell wall-related genes, especially the fasciclin-like AGP (FLA) backbone genes. An enzyme activity assay demonstrated that GhGalT1 is a β-1,3-galactosyltransferase (β-1,3-GalT) involved in biosynthesis of the β-1,3-galactan backbone of the type-II AG glycans of AGPs. We also show that GhGalT1 can form homo- and heterodimers with other cotton GT31 family members to facilitate AG glycan assembly of AGPs. Thus, our data demonstrate that GhGalT1 influences cotton fiber development via controlling the glycosylation of AGPs, especially FLAs.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
31
|
Dong CJ, Wu AM, Du SJ, Tang K, Wang Y, Liu JY. GhMCS1, the Cotton Orthologue of Human GRIM-19, Is a Subunit of Mitochondrial Complex I and Associated with Cotton Fibre Growth. PLoS One 2016; 11:e0162928. [PMID: 27632161 PMCID: PMC5025012 DOI: 10.1371/journal.pone.0162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5-15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ai-Min Wu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shao-Jun Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Xin S, Tao C, Li H. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum. PLoS One 2016; 11:e0161695. [PMID: 27597995 PMCID: PMC5012575 DOI: 10.1371/journal.pone.0161695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023] Open
Abstract
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.
Collapse
Affiliation(s)
- Shan Xin
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Chengcheng Tao
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
33
|
Huang J, Chen F, Wu S, Li J, Xu W. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2016; 59:194-205. [PMID: 26803299 DOI: 10.1007/s11427-015-4991-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022]
Abstract
The secondary cell wall in mature cotton fibers contains over 90% cellulose with low quantities of xylan and lignin. However, little is known regarding the regulation of secondary cell wall biosynthesis in cotton fibers. In this study, we characterized an R2R3-MYB transcription factor, GhMYB7, in cotton. GhMYB7 is expressed at a high level in developing fibers and encodes a MYB protein that is targeted to the cell nucleus and has transcriptional activation activity. Ectopic expression of GhMYB7 in Arabidopsis resulted in small, curled, dark green leaves and also led to shorter inflorescence stems. A cross-sectional assay of basal stems revealed that cell wall thickness of vessels and interfascicular fibers was higher in transgenic lines overexpressing GhMYB7 than in the wild type. Constitutive expression of GhMYB7 in Arabidopsis activated the expression of a suite of secondary cell wall biosynthesis-related genes (including some secondary cell wall-associated transcription factors), leading to the ectopic deposition of cellulose and lignin. The ectopic deposition of secondary cell walls may have been initiated before the cessation of cell expansion. Moreover, GhMYB7 was capable of binding to the promoter regions of AtSND1 and AtCesA4, suggesting that GhMYB7 may function upstream of NAC transcription factors. Collectively, these findings suggest that GhMYB7 is a potential transcriptional activator, which may participate in regulating secondary cell wall biosynthesis of cotton fibers.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Siyu Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
34
|
Fan X, Fan B, Wang Y, Yang W. Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm. PLANT BIOTECHNOLOGY REPORTS 2016; 10:1-11. [PMID: 26941851 PMCID: PMC4761005 DOI: 10.1007/s11816-015-0382-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 05/19/2023]
Abstract
Breeding of naturally colored cotton fiber has been hampered by the limited germplasm, an alternative way is to use transgenic approach to create more germplasm for breeding. Here, we report our effort to engineer anthocyanin production in cotton. The maize Lc gene, under the control of the constitutive 35S promoter, was introduced into cotton through genetic transformation. Our data showed that the expression of the Lc gene alone is sufficient to trigger the accumulation of anthocyanin in a variety of cell types including fiber cells in cotton. However, the accumulation of colored anthocyanin in cotton fibers requires the participation of light signaling. These data indicate that it is feasible to engineer colored fibers through transgenic approach in cotton. Furthermore, we showed that the Lc-transgenic cotton plants are resistant to cotton bollworm. These transgenic plants are, therefore, potentially useful for cotton breeding against cotton bollworm.
Collapse
Affiliation(s)
- Xiaoping Fan
- />Institute of Cotton Research, Academy of ShanXi Agricultural Science, Yuncheng City, Shanxi Province 044000 China
| | - Bohong Fan
- />Institute of Cotton Research, Academy of ShanXi Agricultural Science, Yuncheng City, Shanxi Province 044000 China
| | - Yuxiang Wang
- />Institute of Cotton Research, Academy of ShanXi Agricultural Science, Yuncheng City, Shanxi Province 044000 China
| | - Weicai Yang
- />Key Laboratory of Molecular and Developmental Biology and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing, 100101 China
| |
Collapse
|
35
|
Zhang X, Wei J, Fan S, Song M, Pang C, Wei H, Wang C, Yu S. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:178-186. [PMID: 26566835 DOI: 10.1016/j.plantsci.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/04/2015] [Accepted: 05/03/2015] [Indexed: 05/15/2023]
Abstract
In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Jianghui Wei
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China.
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan, People's Republic of China.
| |
Collapse
|
36
|
Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:72-84. [PMID: 25879154 DOI: 10.1111/pbi.12358] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.
Collapse
Affiliation(s)
- Lin-Hui Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shen-Jie Wu
- Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi Province, China
| | - Yi-Shu Peng
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Rui-Na Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang Province, China
| | - Xi Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Ping Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Ping Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jian-Bo Zhu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang Province, China
| | - Gai-Li Jiao
- Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi Province, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
37
|
Liang W, Fang L, Xiang D, Hu Y, Feng H, Chang L, Zhang T. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development. PLoS One 2015; 10:e0143503. [PMID: 26600249 PMCID: PMC4658197 DOI: 10.1371/journal.pone.0143503] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
For efficient spinning and superior fabric production, long fiber length is a desired trait for cotton production. To unveil the molecular basis of the cotton fiber length regulation, a short fiber mutant, Ligon lintless-1 (Li1), is selected to compare with its corresponding wild type (WT). Li1 is a monogenic dominant cotton mutant causing extremely short fibers (<6mm) on mature seeds with visible pleiotropic effects on vegetative growth and development. In this research, we compared the transcriptome of fiber bearing ovules at 1 DPA, 3 DPA, 8 DPA and leaf between Li1 mutant and WT. A total of 7,852 differentially expressed genes (DEGs) were detected in ovules and leaves, which mainly participated in sugar, secondary metabolite and lipid metabolism pathways based on KEGG analysis. The common DEGs at 1 DPA and 3 DPA were involved in the responses to endogenous stimulus, signal transduction and long-chain fatty acid biosynthesis. For 3 DPA, 8 DPA and leaf, the common DEGs were involved in the responses to auxin and receptor kinases related pathway. Further analysis showed that 37 genes involved in very-long-chain fatty acid biosynthesis were suppressed in Li1 mutant during fiber fast elongation development. Most of the DEGs involved in cell wall metabolism, such cellulose synthase, expansin family, and glycosyl hydrolase were differentially expressed at 3 DPA and 8 DPA. Our results provide new insights into the mechanisms of fiber elongation, and offer novel genes as potential objects for fiber length improvement.
Collapse
Affiliation(s)
- Wenhua Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Xiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
38
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
39
|
Bellaloui N, Stetina SR, Turley RB. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:137. [PMID: 25852704 PMCID: PMC4365723 DOI: 10.3389/fpls.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/20/2015] [Indexed: 05/14/2023]
Abstract
Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed.
Collapse
Affiliation(s)
- Nacer Bellaloui
- Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture, Agricultural Research ServiceStoneville, MS, USA
| | | | | |
Collapse
|
40
|
Li L, Li Y, Wang NN, Li Y, Lu R, Li XB. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:528-534. [PMID: 25294521 DOI: 10.1111/plb.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT-PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high-speed co-sedimentation and low co-sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F-actin. Further biochemical experiments verified that GhPLIM1 protein can protect F-actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.
Collapse
Affiliation(s)
- L Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
41
|
Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. FRONTIERS IN PLANT SCIENCE 2015; 6:838. [PMID: 26583018 PMCID: PMC4628126 DOI: 10.3389/fpls.2015.00838] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 05/20/2023]
Abstract
Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification.
Collapse
Affiliation(s)
- Kamran S. Bajwa
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
- *Correspondence: Kamran S. Bajwa
| | - Ahmad A. Shahid
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Abdul Q. Rao
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Aftab Bashir
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Asia Aftab
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Tayyab Husnain
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| |
Collapse
|
42
|
Fang L, Tian R, Li X, Chen J, Wang S, Wang P, Zhang T. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genomics 2014; 15:838. [PMID: 25273845 PMCID: PMC4190578 DOI: 10.1186/1471-2164-15-838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). Results A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. Conclusions This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-838) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Li L, Huang J, Qin L, Huang Y, Zeng W, Rao Y, Li J, Li X, Xu W. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. PHYSIOLOGIA PLANTARUM 2014; 152:367-79. [PMID: 24641584 DOI: 10.1111/ppl.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 05/02/2023]
Abstract
Xylan is the major hemicellulosic constituent in dicot secondary cell walls. Cell wall composition of cotton fiber changes dynamically throughout development. Not only the amounts but also the molecular sizes of the hemicellulosic polysaccharides show substantial changes during cotton fiber development. However, none of the genes encoding glycosyltransferases (GTs) responsible for synthesizing xylan have been isolated and characterized in cotton fiber. In this study, we applied a bioinformatics approach and identified two putative GTs from cotton, designated GhGT43A1 and GhGT43C1, which belong to the CAZy GT43 family and are closely related to Arabidopsis IRX9 and IRX14, respectively. We show that GhGT43A1 is highly and preferentially expressed in 15 and 20 days post-anthesis (dpa) cotton fiber, whereas GhGT43C1 is ubiquitously expressed in most organs, with especially high expression in 15 dpa fiber and hypocotyl. Complementation analysis demonstrates that GhG43A1 and GhGT43C1 are orthologs of Arabidopsis IRX9 and IRX14, respectively. Furthermore, we show that overexpression of GhGT43A1 or GhGT43C1 in Arabidopsis results in increased xylan content. We also show that overexpression of GhGT43A1 or GhGT43C1 leads to more cellulose deposition. These findings suggest that GhGT43A1 and GhGT43C1 likely participate in xylan synthesis during fiber development.
Collapse
Affiliation(s)
- Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gong SY, Huang GQ, Sun X, Qin LX, Li Y, Zhou L, Li XB. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4133-47. [PMID: 24831118 PMCID: PMC4112624 DOI: 10.1093/jxb/eru182] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study, the GhKNL1 (KNOTTED1-LIKE) gene, encoding a classical class II KNOX protein was identified in cotton (Gossypium hirsutum). GhKNL1 was preferentially expressed in developing fibres at the stage of secondary cell wall (SCW) biosynthesis. GhKNL1 was localized in the cell nucleus, and could interact with GhOFP4, as well as AtOFP1, AtOFP4, and AtMYB75. However, GhKNL1 lacked transcriptional activation activity. Dominant repression of GhKNL1 affected fibre development of cotton. The expression levels of genes related to fibre elongation and SCW biosynthesis were altered in transgenic fibres of cotton. As a result, transgenic cotton plants produced aberrant, shrunken, and collapsed fibre cells. Length and cell-wall thickness of fibres of transgenic cotton plants were significantly reduced compared with the wild type. Furthermore, overexpression and dominant repression of GhKNL1 in Arabidopsis resulted in a reduction in interfascicular fibre cell-wall thickening of basal stems of transgenic plants. Complementation revealed that GhKNL1 rescued the defective phenotype of Arabidopsis knat7 mutant in some extent. These data suggest that GhKNL1, as a transcription factor, participates in regulating fibre development of cotton.
Collapse
Affiliation(s)
- Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
45
|
Zhou Y, Li BY, Li M, Li XJ, Zhang ZT, Li Y, Li XB. A MADS-box gene is specifically expressed in fibers of cotton (Gossypium hirsutum) and influences plant growth of transgenic Arabidopsis in a GA-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:70-9. [PMID: 24374505 DOI: 10.1016/j.plaphy.2013.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/06/2013] [Indexed: 05/02/2023]
Abstract
In this study, a cDNA, GhMADS14, encoding a typical MADS-box protein with 223 amino acids was isolated from a cotton cDNA library. Fluorescent microscopy indicated that the GhMADS14 protein was localized in the cell nucleus. GhMADS14 was specifically expressed in the elongating fibers, and its expression was gradually enhanced at early stages of fiber elongation and reached its peak in 9-10 DPA fibers. Overexpression of GhMADS14 in Arabidopsis hindered plant growth. Measurement and statistical analysis revealed that hypocotyl length of GhMADS14 transgenic seedlings was significantly reduced, and the height of the mature transgenic plants was remarkably less than that of the wild type. Furthermore, expression of GA 20-oxidase (AtGA20ox1 and AtGA20ox2) and GA 3-oxidase (AtGA3ox1 and AtGA3ox2) genes was remarkably reduced, whereas AtGA2ox1 and AtGA2ox8 were dramatically up-regulated in the transgenic plants, compared with the wild type. These results suggested that overexpression of GhMADS14 in Arabidopsis may alter expression levels of the genes related to GA biosynthetic and metabolic pathways, resulting in the reduction of endogenous GA amounts in cells. As a result, the transgenic plants grew slowly and display a GA-deficient phenotype.
Collapse
Affiliation(s)
- Ying Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bing-Ying Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Jie Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ze-Ting Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
46
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bellaloui N, Turley RB. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:516. [PMID: 24416037 PMCID: PMC3874854 DOI: 10.3389/fpls.2013.00516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/02/2013] [Indexed: 05/27/2023]
Abstract
There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil) under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using five sets of near-isogenic lines (NILs). Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N). The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (N) in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (F) or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds.Generally and with few exceptions, seed protein was higher in fuzzy lines than in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher cottonseed quality.
Collapse
Affiliation(s)
- Nacer Bellaloui
- *Correspondence: Nacer Bellaloui, Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture-Agricultural Research Service, 141 ExperimentStation Road, Stoneville, MS 38776, USA e-mail:
| | | |
Collapse
|
48
|
Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L. PLoS One 2013; 8:e76443. [PMID: 24146870 PMCID: PMC3795732 DOI: 10.1371/journal.pone.0076443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species.
Collapse
|
49
|
Li B, Li DD, Zhang J, Xia H, Wang XL, Li Y, Li XB. Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:902-16. [PMID: 23651035 DOI: 10.1111/jipb.12063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated from cotton (Gossypium hirsutum) and designated AnnGh3, AnnGh4, AnnGh5, and AnnGh6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that AnnGh3, AnnGh4, and AnnGh5 were preferentially expressed in fibers, while the transcripts of AnnGh6 were predominantly accumulated in roots. During fiber development, the transcripts of AnnGh3/4/5 genes were mainly accumulated in rapidly elongating fibers. With fiber cells further developed, their expression activity was dramatically declined to a relatively low level. In situ hybridization results indicated that AnnGh3 and AnnGh5 were expressed in initiating fiber cells (0-2 DPA). Additionally, their expression in fibers was also regulated by phytohormones and [Ca(2+)]. Subcellular localization analysis discovered that AnnGh3 protein was localized in the cytoplasm. Overexpression of AnnGh3 in Arabidopsis resulted in a significant increase in trichome density and length on leaves of the transgenic plants, suggesting that AnnGh3 may be involved in fiber cell initiation and elongation of cotton.
Collapse
Affiliation(s)
- Bing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Li DD, Ruan XM, Zhang J, Wu YJ, Wang XL, Li XB. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. THE NEW PHYTOLOGIST 2013; 199:695-707. [PMID: 23656428 DOI: 10.1111/nph.12309] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/03/2013] [Indexed: 05/10/2023]
Abstract
Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.
Collapse
Affiliation(s)
- Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | |
Collapse
|