1
|
Li P, Xiang Q, Wang Y, Dong X. Characterizing seed dormancy in Epimedium brevicornu Maxim.: Development of novel chill models and determination of dormancy release mechanisms by transcriptomics. BMC PLANT BIOLOGY 2024; 24:757. [PMID: 39112934 PMCID: PMC11308244 DOI: 10.1186/s12870-024-05471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Epimedium brevicornu Maxim. is a perennial persistent C3 plant of the genus Epimedium Linn. in the family Berberaceae that exhibits severe physiological and morphological seed dormancy.We placed mature E. brevicornu seeds under nine stratification treatment conditions and explored the mechanisms of influence by combining seed embryo growth status assessment with related metabolic pathways and gene co-expression analysis. RESULTS We identified 3.9 °C as the optimum cold-stratification temperature of E. brevicornu seeds via a chilling unit (CU) model. The best treatment was variable-temperature stratification (10/20 °C, 12/12 h) for 4 months followed by low-temperature stratification (4 °C) for 3 months (4-3). A total of 63801 differentially expressed genes were annotated to 2587 transcription factors (TFs) in 17 clusters in nine treatments (0-0, 0-3, 1-3, 2-3, 3-3, 4-3, 4-2, 4-1, 4-0). Genes specifically highly expressed in the dormancy release treatment group were significantly enriched in embryo development ending in seed dormancy and fatty acid degradation, indicating the importance of these two processes. Coexpression analysis implied that the TF GRF had the most reciprocal relationships with genes, and multiple interactions centred on zf-HD and YABBY as well as on MYB, GRF, and TCP were observed. CONCLUSION In this study, analyses of plant hormone signal pathways and fatty acid degradation pathways revealed changes in key genes during the dormancy release of E. brevicornu seeds, providing evidence for the filtering of E. brevicornu seed dormancy-related genes.
Collapse
Affiliation(s)
- Pengshu Li
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
- College of Agronomy and Biotechnology, Sanya Institute of China Agricultural University, Sanya, 610101, Hainan, China
| | - Qiuyan Xiang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
| | - Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
3
|
Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, Dong W. Antimicrobial Peptides from Plants: A cDNA-Library Based Isolation, Purification, Characterization Approach and Elucidating Their Modes of Action. Int J Mol Sci 2021; 22:8712. [PMID: 34445412 PMCID: PMC8395713 DOI: 10.3390/ijms22168712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.
Collapse
Affiliation(s)
- Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | - Gamarelanbia Mohamed
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | | | - Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Razia Sultana
- State Key Laboratory of Agricultural Microbiology, Department of Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Noshin Saiara
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| |
Collapse
|
4
|
Ayaz A, Saqib S, Huang H, Zaman W, Lü S, Zhao H. Genome-wide comparative analysis of long-chain acyl-CoA synthetases (LACSs) gene family: A focus on identification, evolution and expression profiling related to lipid synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:1-11. [PMID: 33556720 DOI: 10.1016/j.plaphy.2021.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 05/27/2023]
Abstract
In plants, Long-chain acyl-CoA synthetases (LACSs) play key roles in activating fatty acids to fatty acyl-CoA thioesters, which are then further involved in lipid synthesis and fatty acid catabolism. LACSs have been intensively studied in Arabidopsis, but its evolutionary relationship in green plants is unexplored. In this study, we performed a comprehensive genome-wide analysis of the LACS gene family across green plants followed by phylogenetic clustering analysis, gene structure determination, detection of conserved motifs, gene expression in tissues and subcellular localization. Our results identified LACS genes in 122 plant species including algae, low land plants (i.e., mosses and lycophytes), monocots, and eudicots. In total, 697 sequences were identified, and 629 sequences were selected because of alignment and some duplication errors. The retrieved amino acid sequences ranged from 271 to 1056 residues and diversified in intron/exon patterns in different LACSs. Phylogenetic clustering grouped LACS gene family into six major clades with distinct potential functions. This classification is well supported by examining gene structure and conserved motifs. Also, gene expression analysis and subcellular localization substantiate with clade division in the phylogeny, indicating that the evolutionary pattern is visible in their functionality. Additionally, experimental analysis of lacs2 mutant validated that LACS2 plays key roles in suberin synthesis. Thus, our study not only provides an evolutionary mechanism underlying functional diversification but also lays the foundation for further elucidation of the LACS gene family.
Collapse
Affiliation(s)
- Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question. BIOLOGY 2020; 9:biology9070162. [PMID: 32664680 PMCID: PMC7407140 DOI: 10.3390/biology9070162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still suggested in some textbooks and recent scientific articles. Genetic research (including the study of mutants and transcriptomic analysis) is becoming increasingly important in plant biology, so metabolic pathways must be presented correctly to avoid misinterpretation and the dissemination of bad science. The focus of our study is therefore aconitase, from its first localization inside the glyoxysomes to its relocation. We also examine data concerning the role of the enzyme malate dehydrogenase in the glyoxylate cycle and data of the expression of aconitase genes in Arabidopsis and other selected higher plants. We then propose a new model concerning the interaction between glyoxysomes, mitochondria and cytosol in cotyledons or endosperm during the germination of oil-rich seeds.
Collapse
|
6
|
Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin Cell Dev Biol 2020; 108:82-93. [PMID: 32147380 DOI: 10.1016/j.semcdb.2020.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.
Collapse
Affiliation(s)
- Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany.
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular Cell Biology, Guelph, Ontario, N1G 2W1, Canada
| | - John M Dyer
- United States Department of Agriculture, Agriculture Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, TX, 76203, USA
| |
Collapse
|
7
|
Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC PLANT BIOLOGY 2020; 20:21. [PMID: 31931712 PMCID: PMC6958636 DOI: 10.1186/s12870-020-2240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shou-Lai Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fu-Ge Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhong-Yan Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. PLANT PHYSIOLOGY 2018; 176:199-207. [PMID: 29203559 PMCID: PMC5761825 DOI: 10.1104/pp.17.01522] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 05/04/2023]
Abstract
Oil bodies have multiple functions: oleosin-mediated freezing tolerance of seeds, direct interaction with glyoxysomes for lipid degradation in seedlings, and antifungal compound production in leaves.
Collapse
Affiliation(s)
- Takashi L Shimada
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | | |
Collapse
|
9
|
Hayashi M, Tanaka M, Yamamoto S, Nakagawa T, Kanai M, Anegawa A, Ohnishi M, Mimura T, Nishimura M. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:1328-1338. [PMID: 28586467 PMCID: PMC5921527 DOI: 10.1093/pcp/pcx076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/16/2017] [Indexed: 05/22/2023]
Abstract
Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
- Corresponding author: E-mail,: ; Fax, +81-749-64-8101
| | - Mina Tanaka
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Saki Yamamoto
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Taro Nakagawa
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
10
|
Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana. J Biol Chem 2016; 291:19734-45. [PMID: 27466365 DOI: 10.1074/jbc.m116.748814] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 02/02/2023] Open
Abstract
Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.
Collapse
Affiliation(s)
- Songkui Cui
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the RIKEN Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, the Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan, and
| | - Yasuko Hayashi
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Masayoshi Otomo
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Shoji Mano
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Makoto Hayashi
- the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama 526-0829, Japan
| | - Mikio Nishimura
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan,
| |
Collapse
|
11
|
McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM. The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. Curr Biol 2016; 26:707-12. [PMID: 26898465 PMCID: PMC4791430 DOI: 10.1016/j.cub.2016.01.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Stomata regulate the uptake of CO2 and the loss of water vapor [1] and contribute to the control of water-use efficiency [2] in plants. Although the guard-cell-signaling pathway coupling blue light perception to ion channel activity is relatively well understood [3], we know less about the sources of ATP required to drive K+ uptake [3, 4, 5, 6]. Here, we show that triacylglycerols (TAGs), present in Arabidopsis guard cells as lipid droplets (LDs), are involved in light-induced stomatal opening. Illumination induces reductions in LD abundance, and this involves the PHOT1 and PHOT2 blue light receptors [3]. Light also induces decreases in specific TAG molecular species. We hypothesized that TAG-derived fatty acids are metabolized by peroxisomal β-oxidation to produce ATP required for stomatal opening. In silico analysis revealed that guard cells express all the genes required for β-oxidation, and we showed that light-induced stomatal opening is delayed in three TAG catabolism mutants (sdp1, pxa1, and cgi-58) and in stomata treated with a TAG breakdown inhibitor. We reasoned that, if ATP supply was delaying light-induced stomatal opening, then the activity of the plasma membrane H+-ATPase should be reduced at this time. Monitoring changes in apoplastic pH in the mutants showed that this was the case. Together, our results reveal a new role for TAGs in vegetative tissue and show that PHOT1 and PHOT2 are involved in reductions in LD abundance. Reductions in LD abundance in guard cells of the lycophyte Selaginella suggest that TAG breakdown may represent an evolutionarily conserved mechanism in light-induced stomatal opening. Guard cells break down triacylglycerols to supply ATP for use in stomatal opening Light-induced stomatal opening is delayed in triacylglycerol catabolism mutants PHOT blue light receptors are involved in reductions in lipid droplet (LD) abundance Light-induced reductions in LD abundance occur in Selaginella guard cells
Collapse
Affiliation(s)
- Deirdre H McLachlan
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jue Lan
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christoph-Martin Geilfus
- Institut fur Pflanzenernährung und Bodenkunde, Christian-Albrechts-Universität zu Kiel, Hermann-Rodewald- Straße 2, 24118 Kiel, Germany
| | - Antony N Dodd
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tony Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Zhesi He
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Michael V Mickelbart
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
12
|
Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc Natl Acad Sci U S A 2013; 110:1279-84. [PMID: 23288899 DOI: 10.1073/pnas.1218034110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxisomes are organelles that perform diverse metabolic functions in different organisms, but a common function is β-oxidation of a variety of long chain aliphatic, branched, and aromatic carboxylic acids. Import of substrates into peroxisomes for β-oxidation is mediated by ATP binding cassette (ABC) transporter proteins of subfamily D, which includes the human adrenoleukodystropy protein (ALDP) defective in X-linked adrenoleukodystrophy (X-ALD). Whether substrates are transported as CoA esters or free acids has been a matter of debate. Using COMATOSE (CTS), a plant representative of the ABCD family, we demonstrate that there is a functional and physical interaction between the ABC transporter and the peroxisomal long chain acyl-CoA synthetases (LACS)6 and -7. We expressed recombinant CTS in insect cells and showed that membranes from infected cells possess fatty acyl-CoA thioesterase activity, which is stimulated by ATP. A mutant, in which Serine 810 is replaced by asparagine (S810N) is defective in fatty acid degradation in vivo, retains ATPase activity but has strongly reduced thioesterase activity, providing strong evidence for the biological relevance of this activity. Thus, CTS, and most likely the other ABCD family members, represent rare examples of polytopic membrane proteins with an intrinsic additional enzymatic function that may regulate the entry of substrates into the β-oxidation pathway. The cleavage of CoA raises questions about the side of the membrane where this occurs and this is discussed in the context of the peroxisomal coenzyme A (CoA) budget.
Collapse
|
13
|
Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc'h N, Clastre M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. PLANTA 2011; 234:903-14. [PMID: 21655959 DOI: 10.1007/s00425-011-1444-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/17/2011] [Indexed: 05/19/2023]
Abstract
In plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome.
Collapse
Affiliation(s)
- Andrew J Simkin
- EA 2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, 31 Avenue Monge, 37200, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang XC, Yu X, Zhang HJ, Song FM. Molecular characterization of a defense-related AMP-binding protein gene, OsBIABP1, from rice. J Zhejiang Univ Sci B 2010; 10:731-9. [PMID: 19816997 DOI: 10.1631/jzus.b0920042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We cloned and characterized a rice gene OsBIABP1 encoding an AMP-binding protein. The full-length cDNA of OsBIABP1 is 1912-bp long and is predicted to encode a 558-aa protein. OsBIABP1 contains a typical AMP-binding signature motif and shows high similarity to members of AMP-binding protein family. OsBIABP1 is expressed in stems, leaves and flowers of rice plants, but is not expressed, or expressed at a very low level, in rice roots. The expression of OsBIABP1 was induced by some defense-related signal molecules, e.g., salicylic acid (SA), benzothiadiazole, jasmonic acid (JA), and 1-amino cyclopropane-1-carboxylic acid, which mediate SA- and JA/ethylene (ET)-dependent defense signaling pathways, respectively. Furthermore, the expression of OsBIABP1 is activated by the infection of Magnaporthe oryzae, and the induced expression is quicker and stronger during early stages of pathogenesis in incompatible interaction than that in compatible interaction between rice and M. oryzae. Our results suggest that OsBIABP1 may be a defense-related AMP-binding protein that is involved in the regulation of defense response through SA and/or JA/ET signaling pathways.
Collapse
Affiliation(s)
- Xin-chun Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | |
Collapse
|
15
|
Lee KR. Metabolic engineering for production of industrial oils in transgenic plants. ACTA ACUST UNITED AC 2009. [DOI: 10.5010/jpb.2009.36.2.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Andersson MX, Dörmann P. Chloroplast Membrane Lipid Biosynthesis and Transport. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
18
|
Schuhmann H, Huesgen PF, Gietl C, Adamska I. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1847-56. [PMID: 18952862 PMCID: PMC2593680 DOI: 10.1104/pp.108.125377] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/20/2008] [Indexed: 05/22/2023]
Abstract
Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. Recently, candidates for the responsible processing protease were identified from plants (DEG15) and mammals (TYSND1). We demonstrate that plants lacking DEG15 show an expressed phenotype potentially linked to reduced beta-oxidation, indicating the impact of protein processing on peroxisomal functions in higher eukaryotes. Mutational analysis of Arabidopsis (Arabidopsis thaliana) DEG15 revealed that conserved histidine, aspartic acid, and serine residues are essential for the proteolytic activity of this enzyme in vitro. This indicates that DEG15 and related enzymes are trypsin-like serine endopeptidases. Deletion of a plant-specific stretch present in the protease domain diminished, but did not abolish, the proteolytic activity of DEG15 against the PTS2-containing glyoxysomal malate dehydrogenase. Fluorescence microscopy showed that a DEG15-green fluorescent protein fusion construct is targeted to peroxisomes in planta. In vivo studies with isolated homozygous deg15 knockout mutants and complemented mutant lines suggest that this enzyme mediates general processing of PTS2-containing proteins.
Collapse
Affiliation(s)
- Holger Schuhmann
- Department of Physiology and Plant Biochemistry, University of Konstanz, DE-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
19
|
Andersson MX, Dörmann P. Chloroplast Membrane Lipid Biosynthesis and Transport. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
He X, Chen GQ, Kang ST, McKeon TA. Ricinus communis contains an acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester. Lipids 2007; 42:931-8. [PMID: 17680295 DOI: 10.1007/s11745-007-3090-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain complete coding regions corresponding to 694 and 690 amino acids, respectively. The third cDNA, RcACS 1, encodes a truncated gene sequence. The RcACS 2 and RcACS 4 share 77% identity at the amino acid sequence level. Complementation tests showed that both RcACS 2 and RcACS 4 successfully restored growth of a yeast mutant strain (YB525) deficient in ACS. Lysates from yeast cells expressing RcACS 2 and 4 were enzymatically active when using 14C-labeled oleic acid as a substrate. A cell fractionation study indicates that RcACS 2 and 4 are mainly associated with membranes. Substrate specificity assays indicate that the RcACS 2 preferentially activates ricinoleate, while the RcACS 4 has a preference for nonhydroxy fatty acids.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, USDA, 800 Buchanan St, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
21
|
Giri AP, Wünsche H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. PLANT PHYSIOLOGY 2006; 142:1621-41. [PMID: 17028148 PMCID: PMC1676057 DOI: 10.1104/pp.106.088781] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/27/2006] [Indexed: 05/12/2023]
Abstract
When Manduca sexta attacks Nicotiana attenuata, fatty acid-amino acid conjugates (FACs) in the larvae's oral secretions (OS) are introduced into feeding wounds. These FACs trigger a transcriptional response that is similar to the response induced by insect damage. Using two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time of flight, and liquid chromatography-tandem mass spectrometry, we characterized the proteins in phenolic extracts and in a nuclear fraction of leaves elicited by larval attack, and/or in leaves wounded and treated with OS, FAC-free OS, and synthetic FACs. Phenolic extracts yielded approximately 600 protein spots, many of which were altered by elicitation, whereas nuclear protein fractions yielded approximately 100 spots, most of which were unchanged by elicitation. Reproducible elicitor-induced changes in 90 spots were characterized. In general, proteins that increased were involved in primary metabolism, defense, and transcriptional and translational regulation; those that decreased were involved in photosynthesis. Like the transcriptional defense responses, proteomic changes were strongly elicited by the FACs in OS. A semiquantitative reverse transcription-PCR approach based on peptide sequences was used to compare transcript and protein accumulation patterns for 17 candidate proteins. In six cases the patterns of elicited transcript accumulation were consistent with those of elicited protein accumulation. Functional analysis of one of the identified proteins involved in photosynthesis, RuBPCase activase, was accomplished by virus-induced gene silencing. Plants with decreased levels of RuBPCase activase protein had reduced photosynthetic rates and RuBPCase activity, and less biomass, responses consistent with those of herbivore-attacked plants. We conclude that the response of the plant's proteome to herbivore elicitation is complex, and integrated transcriptome-proteome-metabolome analysis is required to fully understand this ubiquitous ecological interaction.
Collapse
Affiliation(s)
- Ashok P Giri
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Hayashi M, Nishimura M. Arabidopsis thaliana--a model organism to study plant peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1382-91. [PMID: 17005266 DOI: 10.1016/j.bbamcr.2006.08.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/28/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes.
Collapse
Affiliation(s)
- Makoto Hayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
23
|
Bonsegna S, Slocombe SP, De Bellis L, Baker A. AtLACS7 interacts with the TPR domains of the PTS1 receptor PEX5. Arch Biochem Biophys 2005; 443:74-81. [PMID: 16256065 DOI: 10.1016/j.abb.2005.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/16/2005] [Accepted: 09/17/2005] [Indexed: 11/24/2022]
Abstract
Long-chain acyl-CoA synthetases (LACSs) activate fatty acids for further metabolism and are encoded by a multi-gene family in Arabidopsis. AtLACS6 possesses a type 2 (PTS2) peroxisomal targeting sequence, whilst AtLACS7 has both a type 1 and type 2 peroxisomal targeting sequence. AtLACS7 was used as bait in a yeast two-hybrid screen. Multiple clones of the PTS1 receptor PEX5 were isolated. Quantitative beta-galactosidase assay indicated that full-length PEX5 interacts with AtLACS7 with higher affinity than the TPR domains alone. The interaction between PEX5 and AtLACS7 was confirmed by co-immunoprecipitation and shown to be specific for the PTS1, therefore the AtLACS7 PTS1 is accessible to bind PEX5 in the full-length AtLACS7 protein. The expression profile of AtLACS6, AtLACS7, AtPEX5, and AtPEX7 revealed that AtLACS6 and 7 have distinct patterns of expression and we speculate that the possession of two targeting signals may be advantageous for the import of AtLACS7 when receptors may be limiting.
Collapse
Affiliation(s)
- Stefania Bonsegna
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Italy
| | | | | | | |
Collapse
|
24
|
Walters C, Landré P, Hill L, Corbineau F, Bailly C. Organization of lipid reserves in cotyledons of primed and aged sunflower seeds. PLANTA 2005; 222:397-407. [PMID: 16136327 DOI: 10.1007/s00425-005-1541-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 03/10/2005] [Indexed: 05/04/2023]
Abstract
Imbibing sunflower (Helianthus annuus L., cv. Briosol) seeds at water potentials between -2 MPa and -5 MPa leads to faster (priming) or slower (accelerated ageing) germination depending on the temperature and duration of treatment. Mobilization of food reserves may be associated with the changes in seed vigor. To study this, morphological, biochemical and phase properties of lipid, the major food reserve in sunflower, were compared in freshly harvested (i.e., control), primed and aged sunflower cotyledons using electron microscopy, biochemical analyses and differential scanning calorimetry, respectively. Lipid bodies became smaller and more dispersed throughout the cytoplasm during priming and ageing. Despite ultrastructural changes, there were few measured changes in biochemistry of the neutral lipid component; lipid content, proportion of saturated and unsaturated fatty acids and level of free fatty acids were unchanged in primed and slightly aged seeds, with only severely aged seeds showing a net decrease in polyunsaturated fatty acids and an increase in free fatty acids. Subtle changes in the calorimetric behavior of lipids within sunflower cotyledons were observed. Sunflower lipids exhibited polymorphic crystalline and amorphous solid phases when cooled to <-100 degrees C, but priming decreased the rate of crystallization in vivo and ageing increased the rate of crystallization, but decreased percentage crystallinity. The observed changes in thermal behavior in vivo are consistent with losses and gains, respectively, of interacting non-lipid moieties in the triacylglycerol matrix.
Collapse
Affiliation(s)
- Christina Walters
- National Center for Genetic Resources Preservation, USDA-ARS, 1111 S. Mason Street, Fort Collins, CO 80521, USA.
| | | | | | | | | |
Collapse
|
25
|
Matsui K, Fukutomi S, Ishii M, Kajiwara T. A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Lett 2004; 569:195-200. [PMID: 15225633 DOI: 10.1016/j.febslet.2004.05.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 05/26/2004] [Accepted: 05/26/2004] [Indexed: 11/27/2022]
Abstract
A tomato lipase gene homologous to Arabidopsis DAD1 (lipase homologous to DAD1; LeLID1) was cloned and characterized. The corresponding transcript increased rapidly during germination of the seeds and reached a maximum level at four days after germination. Thereafter, it decreased rapidly. Little expression could be found in flowers or fruits. Immunoblot analyses showed that the gene products could be found in the cotyledons and hypocotyls, but not in the roots. In the cotyledons most LeLID1 could be recovered in a soluble fraction. The recombinant LeLID1 protein showed maximum lipase activity at pH 8.0. It showed high activity against triacylglycerols (TAGs) with long acyl chains, but little activity with phosphatidylcholine or monogalactosyldiacylglycerol. TAGs composed of short acyl chains could not be a substrate for the enzyme. A possible involvement of LeLID1 in fat mobilization during seed germination is discussed.
Collapse
Affiliation(s)
- Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | |
Collapse
|
26
|
Reumann S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. PLANT PHYSIOLOGY 2004; 135:783-800. [PMID: 15208424 PMCID: PMC514115 DOI: 10.1104/pp.103.035584] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 05/18/2023]
Abstract
To specify the C-terminal peroxisome targeting signal type 1 (PTS1) and the N-terminal PTS2 for higher plants, a maximum number of plant cDNAs and expressed sequence tags that are homologous to PTS1- and PTS2-targeted plant proteins was retrieved from the public databases and the primary structure of their targeting domains was analyzed for conserved properties. According to their high overall frequency in the homologs and their widespread occurence in different orthologous groups, nine major PTS1 tripeptides ([SA][RK][LM]> without AKM> plus SRI> and PRL>) and two major PTS2 nonapeptides (R[LI]x5HL) were defined that are considered good indicators for peroxisomal localization if present in unknown proteins. A lower but significant number of homologs contained 1 of 11 minor PTS1 tripeptides or of 9 minor PTS2 nonapeptides, many of which have not been identified before in plant peroxisomal proteins. The region adjacent to the PTS peptides was characterized by specific conserved properties as well, such as a pronounced incidence of basic and Pro residues and a high positive net charge, which probably play an auxiliary role in peroxisomal targeting. By contrast, several peptides with assumed peroxisomal targeting properties were not found in any of the 550 homologs and hence play--if at all--only a minor role in peroxisomal targeting. Based on the definition of these major and minor PTS and on the recognition of additional conserved properties, the accuracy of predicting peroxisomal proteins can be raised and plant genomes can be screened for novel proteins of peroxisomes more successfully.
Collapse
Affiliation(s)
- Sigrun Reumann
- Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany
| |
Collapse
|
27
|
Hayashi M, Nishimura M. Entering a new era of research on plant peroxisomes. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:577-82. [PMID: 14611956 DOI: 10.1016/j.pbi.2003.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are globular organelles, of approximately 1 microm in diameter, that are found ubiquitously in eukaryotic cells. In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways: lipid breakdown, photorespiration and H2O2-detoxificaton. However, recent progress using Arabidopsis mutants has suggested that peroxisomes have more diverse functions than are known at present. Extensive studies using genetic and post-genomic approaches will renovate our present understanding of the functions of peroxisomes in plants.
Collapse
Affiliation(s)
- Makoto Hayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
28
|
Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M. Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2003; 44:1275-89. [PMID: 14701923 DOI: 10.1093/pcp/pcg173] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It is well known that peroxisomal matrix proteins contain one of two targeting signals, PTS1 and PTS2. We comprehensively surveyed genes related to peroxisomal function and biogenesis in the entire Arabidopsis genome sequence. Here, we identified 256 gene candidates of PTS1- and PTS2-containing proteins and another 30 genes of non-PTS-containing proteins. Of these, only 29 proteins have been reported to be functionally characterized as peroxisomal proteins in higher plants. We extensively investigated expression profiles of genes described above in various organs of Arabidopsis: Statistical analyses of these expression profiles revealed that peroxisomal genes could be divided into five groups. One group showed ubiquitous expression in all organs examined, while the other four were classified as showing organ-specific expression in seedlings, cotyledons, roots and in both cotyledons and leaves. These data proposed more detailed description of differentiation of plant peroxisomes.
Collapse
Affiliation(s)
- Tomoe Kamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Developing rice seeds rapidly accumulated storage lipids between 5 and 12 d after flowering. The contents of palmitic, oleic, and linoleic acids increased throughout seed development, while the alpha-linolenic acid content remained low. The activity of acyl-CoA synthetase varied coincidentally during the period of lipid accumulation, and rice seeds had a sufficient capacity to supply acyl-CoA substrates for TAG synthesis. Acyl-CoA synthetase showed a broad specificity for native FA of rice seeds except for stearic acid, and pi electrons of a delta9-delta11 double bond in the C16-C18 acyl chains were required for its maximal activity.
Collapse
Affiliation(s)
- Ken'ichi Ichihara
- Biological Chemistry, Graduate School of Agricultural Science, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan.
| | | | | |
Collapse
|