1
|
Luo Y, Wang X, Zhang D, Zhan L, Li D, Li C, Cong C, Cai H. Overexpression of phosphoenolpyruvate carboxylase kinase gene MsPPCK1 from Medicago sativa L. increased alkali tolerance of alfalfa by enhancing photosynthetic efficiency and promoting nodule development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108764. [PMID: 38879983 DOI: 10.1016/j.plaphy.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The phosphoenolpyruvate carboxylase kinase of Medicago sativa L. (MsPPCK1) modulates the phosphorylation status and activity of the C4 pathway phosphoenolpyruvate carboxylase enzyme, which is pivotal for photosynthetic carbon assimilation in plants. This study investigated the role of MsPPCK1 in alfalfa by creating transgenic plants overexpressing MsPPCK1 under the control of the CaMV35S promoter. The enhanced alkali tolerance of transgenic plants indicated an important role of MsPPCK1 gene in regulating plant alkali tolerance. Transgenic plants exhibited heightened antioxidant activity (SOD, POD, and CAT), reduced MDA, H2O2, OFR and REC% content, increased activity of key photosynthetic enzymes (PEPC, PPDK, NADP-ME, and NADP-MDH), and enhanced photosynthetic parameters (Pn, E, Gs, and Ci). Moreover, MsPPCK1 overexpression increased the content of organic acids (oxaloacetic, malic, citric, and succinic acids) in the plants. The upregulation of MsPPCK1 under rhizobial inoculation showcased its other role in nodule development. In transgenic plants, MsDMI2, MsEnod12, and MsNODL4 expression increased, facilitating root nodule development and augmenting plant nodulation. Accelerated root nodule growth positively influences plant growth and yield and enhances alfalfa resistance to alkali stress. This study highlights the pivotal role of MsPPCK1 in fortifying plant alkali stress tolerance and improving yield, underscoring its potential as a key genetic target for developing alkali-tolerant and high-yielding alfalfa varieties.
Collapse
Affiliation(s)
- Yaqin Luo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinsheng Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Depeng Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lifeng Zhan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Donghuan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chunxin Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chunlong Cong
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Cai
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Feria AB, Ruíz-Ballesta I, Baena G, Ruíz-López N, Echevarría C, Vidal J. Phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase isoenzymes play an important role in the filling and quality of Arabidopsis thaliana seed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:70-80. [PMID: 36099810 DOI: 10.1016/j.plaphy.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Three plant-type phosphoenolpyruvate carboxylase (PPC1 to PPC3) and two phosphoenolpyruvate carboxylase kinase (PPCKs: PPCK1 and 2) genes are present in the Arabidopsis thaliana genome. In seeds, all PPC genes were found to be expressed. Examination of individual ppc mutants showed little reduction of PEPC protein and global activity, with the notable exception of PPC2 which represent the most abundant PEPC in dry seeds. Ppc mutants exhibited moderately lower seed parameters (weight, area, yield, germination kinetics) than wild type. In contrast, ppck1-had much altered (decreased) yield. At the molecular level, ppc3-was found to be significantly deficient in global seed nitrogen (nitrate, amino-acids, and soluble protein pools). Also, N-deficiency was much more marked in ppck1-, which exhibited a tremendous loss of 95% and 90% in nitrate and proteins, respectively. The line ppck2-had accumulated amino-acids but lower levels of soluble proteins. Regarding carboxylic acid pools, Krebs cycle intermediates were found to be diminished in all mutants; this was accompanied by a consistent decrease in ATP. Lipids were stable in ppc mutants, however ppck1-seeds accumulated more lipids while ppck2-seeds showed high level of polyunsaturated fatty acid oleic and linolenic (omega 3). Altogether, the results indicate that the complete PEPC and PPCK family are needed for normal C/N metabolism ratio, growth, development, yield and quality of the seed.
Collapse
Affiliation(s)
- Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain.
| | - Isabel Ruíz-Ballesta
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Noemí Ruíz-López
- Dpto. de Mejora Genética y Biotecnología, IHSM La Mayora, UMA-CSIC. Av. Louis Pasteur, 49, 29010, Málaga, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Jean Vidal
- Institute of Plant Sciences Paris-Saclay(IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. d'Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Batiment 630, Rue Noetzlin, 91192, Gif-sur-Yvette cedex, France
| |
Collapse
|
3
|
Wang Q, Yung WS, Wang Z, Lam HM. The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics 2020; 112:5282-5294. [PMID: 32987152 DOI: 10.1016/j.ygeno.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen fixation in legumes requires the development of specialized organs called root nodules. Here we characterized the high-confidence transcriptome and genome-wide patterns of H3K4me3 marks in soybean roots and mature nodules symbiotic with Sinorhizobium fredii. Changes in H3K4me3 levels were positively associated with the transcription levels of functional genes in the nodules. The up-regulation of H3K4me3 levels was not only present in leghaemoglobin and nodulin-related genes, but also in genes involved in nitrogen and carbon metabolic pathways. In addition, genes regulating the transmembrane transport of metal ions, phosphates, sulphates, peptides, and sugars were differentially modified. On the contrary, a loss of H3K4me3 marks was found in several key transcription factor genes and was correlated with the down-regulation of the defense-related network in nodules, which could contribute to nodule maintenance. All these findings demonstrate massive reprogramming of gene expressions via alterations in H3K4me3 levels in the genes in mature soybean nodules.
Collapse
Affiliation(s)
- Qianwen Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Shing Yung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Rashid FAA, Scafaro AP, Asao S, Fenske R, Dewar RC, Masle J, Taylor NL, Atkin OK. Diel- and temperature-driven variation of leaf dark respiration rates and metabolite levels in rice. THE NEW PHYTOLOGIST 2020; 228:56-69. [PMID: 32415853 DOI: 10.1111/nph.16661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Leaf respiration in the dark (Rdark ) is often measured at a single time during the day, with hot-acclimation lowering Rdark at a common measuring temperature. However, it is unclear whether the diel cycle influences the extent of thermal acclimation of Rdark , or how temperature and time of day interact to influence respiratory metabolites. To examine these issues, we grew rice under 25°C : 20°C, 30°C : 25°C and 40°C : 35°C day : night cycles, measuring Rdark and changes in metabolites at five time points spanning a single 24-h period. Rdark differed among the treatments and with time of day. However, there was no significant interaction between time and growth temperature, indicating that the diel cycle does not alter thermal acclimation of Rdark . Amino acids were highly responsive to the diel cycle and growth temperature, and many were negatively correlated with carbohydrates and with organic acids of the tricarboxylic acid (TCA) cycle. Organic TCA intermediates were significantly altered by the diel cycle irrespective of growth temperature, which we attributed to light-dependent regulatory control of TCA enzyme activities. Collectively, our study shows that environmental disruption of the balance between respiratory substrate supply and demand is corrected for by shifts in TCA-dependent metabolites.
Collapse
Affiliation(s)
- Fatimah Azzahra Ahmad Rashid
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjung Malim, Perak, Malaysia
| | - Andrew P Scafaro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ricarda Fenske
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Roderick C Dewar
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicolas L Taylor
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Waseem M, Ahmad F. The phosphoenolpyruvate carboxylase gene family identification and expression analysis under abiotic and phytohormone stresses in Solanum lycopersicum L. Gene 2019; 690:11-20. [DOI: 10.1016/j.gene.2018.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/20/2023]
|
6
|
Heyduk K, Hwang M, Albert V, Silvera K, Lan T, Farr K, Chang TH, Chan MT, Winter K, Leebens-Mack J. Altered Gene Regulatory Networks Are Associated With the Transition From C 3 to Crassulacean Acid Metabolism in Erycina (Oncidiinae: Orchidaceae). FRONTIERS IN PLANT SCIENCE 2019; 9:2000. [PMID: 30745906 PMCID: PMC6360190 DOI: 10.3389/fpls.2018.02000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/24/2018] [Indexed: 05/21/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C3 photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited environments. CAM plants fix CO2 mostly at night, when transpiration rates are low. All of the CAM pathway genes exist in ancestral C3 species, but the timing and magnitude of expression are greatly altered between C3 and CAM species. Understanding these regulatory changes is key to elucidating the mechanism by which CAM evolved from C3. Here, we use two closely related species in the Orchidaceae, Erycina pusilla (CAM) and Erycina crista-galli (C3), to conduct comparative transcriptomic analyses across multiple time points. Clustering of genes with expression variation across the diel cycle revealed some canonical CAM pathway genes similarly expressed in both species, regardless of photosynthetic pathway. However, gene network construction indicated that 149 gene families had significant differences in network connectivity and were further explored for these functional enrichments. Genes involved in light sensing and ABA signaling were some of the most differently connected genes between the C3 and CAM Erycina species, in agreement with the contrasting diel patterns of stomatal conductance in C3 and CAM plants. Our results suggest changes to transcriptional cascades are important for the transition from C3 to CAM photosynthesis in Erycina.
Collapse
Affiliation(s)
- Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Michelle Hwang
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Victor Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kimberly Farr
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Tien-Hao Chang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Ping CY, Chen FC, Cheng TC, Lin HL, Lin TS, Yang WJ, Lee YI. Expression Profiles of Phosphoenolpyruvate Carboxylase and Phosphoenolpyruvate Carboxylase Kinase Genes in Phalaenopsis, Implications for Regulating the Performance of Crassulacean Acid Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:1587. [PMID: 30425727 PMCID: PMC6218735 DOI: 10.3389/fpls.2018.01587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/12/2018] [Indexed: 05/26/2023]
Abstract
Phalaenopsis is one of the most important potted plants in the ornamental market of the world. Previous reports implied that crassulacean acid metabolism (CAM) orchids at their young seedling stages might perform C3 or weak CAM photosynthetic pathways, but the detailed molecular evidence is still lacking. In this study, we used a key species in white Phalaenopsis breeding line, Phalaenopsis aphrodite subsp. formosana, to study the ontogenetical changes of CAM performance in Phalaenopsis. Based on the investigations of rhythms of day/night CO2 exchange, malate contents and phosphoenolpyruvate carboxylase (PEPC) activities, it is suggested that a progressive shift from C3 to CAM occurred as the protocorms differentiated the first leaf. To understand the role of phosphoenolpyruvate carboxylase kinase (PEPC kinase) in relation to its target PEPC in CAM performance in Phalaenopsis, the expression profiles of the genes encoding PEPC (PPC) and PEPC kinase (PPCK) were measured in different developmental stages. In Phalaenopsis, two PPC isogenes were constitutively expressed over a 24-h cycle similar to the housekeeping genes in all stages, whereas the significant day/night difference in PaPPCK expression corresponds to the day/night fluctuations in PEPC activity and malate level. These results suggest that the PaPPCK gene product is most likely involved in regulation of CAM performance in different developmental stages of Phalaenopsis seedlings.
Collapse
Affiliation(s)
- Chia-Yun Ping
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Teen-Chi Cheng
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Huey-Ling Lin
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan
| | - Tzong-Shyan Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Wen-Ju Yang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yung-I Lee
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Ting MKY, She YM, Plaxton WC. Transcript profiling indicates a widespread role for bacterial-type phosphoenolpyruvate carboxylase in malate-accumulating sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5857-5869. [PMID: 29240945 PMCID: PMC5854131 DOI: 10.1093/jxb/erx399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing castor oil seeds where it tightly interacts with co-expressed PTPC polypeptides to form unusual hetero-octameric Class-2 PEPC complexes that are desensitized to allosteric inhibition by L-malate. Analysis of RNA-Seq and microarray transcriptome datasets revealed two distinct patterns of tissue-specific BTPC expression in vascular plants. Species such as Arabidopsis thaliana, strawberry, rice, maize, and poplar mainly exhibited pollen- or floral-specific BTPC expression. By contrast, BTPC transcripts were relatively abundant in developing castor, cotton, and soybean seeds, cassava tubers, as well as immature tomato, cucumber, grape, and avocado fruit. Immunoreactive 118 kDa BTPC polypeptides were detected on immunoblots of cucumber and tomato fruit extracts. Co-immunoprecipitation established that as in castor, BTPCs physically interact with endogenous PTPCs to form Class-2 PEPC complexes in tomato and cucumber fruit. We hypothesize that Class-2 PEPCs simultaneously maintain rapid anaplerotic PEP carboxylation and respiratory CO2 refixation in diverse, biosynthetically active sinks that accumulate high malate levels.
Collapse
Affiliation(s)
- Michael K Y Ting
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Yi-Min She
- Centre for Biologics Evaluation Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | - William C Plaxton
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Correspondence:
| |
Collapse
|
9
|
O’Leary BM, Plaxton WC. Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Wang N, Zhong X, Cong Y, Wang T, Yang S, Li Y, Gai J. Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean. Sci Rep 2016; 6:38448. [PMID: 27924923 PMCID: PMC5141416 DOI: 10.1038/srep38448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon-nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Zhong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yahui Cong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Songnan Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Pan L, Zhang J, Chi X, Chen N, Chen M, Wang M, Wang T, Yang Z, Zhang Z, Wan Y, Yu S, Liu F. The antisense expression of AhPEPC1 increases seed oil production in peanuts ( Arachis hypogaea L.). GRASAS Y ACEITES 2016. [DOI: 10.3989/gya.0322161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although phosphoenolpyruvate carboxylases (PEPCs) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.). In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.
Collapse
|
12
|
Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism. PLANT PHYSIOLOGY 2015; 167:671-81. [PMID: 25588735 PMCID: PMC4348777 DOI: 10.1104/pp.114.254474] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a crucial enzyme that catalyzes an irreversible primary metabolic reaction in plants.Previous studies have used transgenic plants expressing ectopic PEPC forms with diminished feedback inhibition to examine the role of PEPC in carbon and nitrogen metabolism. To date, the in vivo role of PEPC in carbon and nitrogen metabolism has not been analyzed in plants. In this study, we examined the role of PEPC in plants, demonstrating that PPC1 and PPC2 were highly expressed genes encoding PEPC in Arabidopsis (Arabidopsis thaliana) leaves and that PPC1 and PPC2 accounted for approximately 93% of total PEPC activity in the leaves. A double mutant, ppc1/ppc2, was constructed that exhibited a severe growth-arrest phenotype. The ppc1/ppc2 mutant accumulated more starch and sucrose than wild-type plants when seedlings were grown under normal conditions. Physiological and metabolic analysis revealed that decreased PEPC activity in the ppc1/ppc2 mutant greatly reduced the synthesis of malate and citrate and severely suppressed ammonium assimilation. Furthermore, nitrate levels in the ppc1/ppc2 mutant were significantly lower than those in wild-type plants due to the suppression of ammonium assimilation. Interestingly, starch and sucrose accumulation could be prevented and nitrate levels could be maintained by supplying the ppc1/ppc2 mutant with exogenous malate and glutamate, suggesting that low nitrogen status resulted in the alteration of carbon metabolism and prompted the accumulation of starch and sucrose in the ppc1/ppc2 mutant. Our results demonstrate that PEPC in leaves plays a crucial role in modulating the balance of carbon and nitrogen metabolism in Arabidopsis.
Collapse
|
13
|
Kizhakkedath P, Jegadeeson V, Venkataraman G, Parida A. A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka. Mol Biol Rep 2014; 42:1091-105. [PMID: 25481774 DOI: 10.1007/s11033-014-3848-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022]
Abstract
Vacuolar NHX-type antiporters play a role in Na(+)/K(+) uptake that contributes to growth, nutrition and development. Under salt/osmotic stress they mediate the vacuolar compartmentalization of K(+)/Na(+), thereby preventing toxic Na(+)K(+) ratios in the cytosol. Porteresia coarctata (Roxb.) Tateoka, a mangrove associate, is a distant wild relative of cultivated rice and is saline as well as submergence tolerant. A vacuolar NHX homolog isolated from a P. coarctata cDNA library (PcNHX1) shows 96 % identity (nucleotide level) to OsNHX1. Diurnal PcNHX1 expression in leaves was found to be largely unaltered, though damped by salinity. PcNHX1 promoter directed GUS expression is phloem-specific in leaves, stem and roots of transgenic plants in the absence of stress. Under NaCl stress, GUS expression was also seen in the epidermal and sub-epidermal layers (mesophyll, guard cells and trichomes) of leaves, root tip. The salinity in the rhizosphere of P. coarctata varies considerably due to diurnal/semi-diurnal tidal inundation. The diurnal expression of PcNHX1 in leaves and salinity induced expression in roots may have evolved in response to dynamic changes in salinity of in the P. coarctata rhizosphere. Despite high sequence conservation between OsNHX1 and PcNHX1, the distinctive expression pattern of PcNHX1 exemplifies how variation in expression is fine tuned to suit the halophytic growth habitat of a plant.
Collapse
Affiliation(s)
- Praseetha Kizhakkedath
- Department of Plant Molecular Biology, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | | | | | | |
Collapse
|
14
|
Aldous SH, Weise SE, Sharkey TD, Waldera-Lupa DM, Stühler K, Mallmann J, Groth G, Gowik U, Westhoff P, Arsova B. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp. PLANT PHYSIOLOGY 2014; 165:1076-1091. [PMID: 24850859 PMCID: PMC4081323 DOI: 10.1104/pp.114.240283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 05/04/2023]
Abstract
The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.
Collapse
Affiliation(s)
- Sophia H Aldous
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Sean E Weise
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Thomas D Sharkey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Daniel M Waldera-Lupa
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Kai Stühler
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Julia Mallmann
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Georg Groth
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Borjana Arsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| |
Collapse
|
15
|
Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem J 2014; 458:109-18. [PMID: 24266766 DOI: 10.1042/bj20131191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.
Collapse
|
16
|
Sun M, Sun X, Zhao Y, Zhao C, DuanMu H, Yu Y, Ji W, Zhu Y. Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS One 2014; 9:e89578. [PMID: 24586886 PMCID: PMC3934933 DOI: 10.1371/journal.pone.0089578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022] Open
Abstract
So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops.
Collapse
Affiliation(s)
- Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoli Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yang Zhao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Chaoyue Zhao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Wei Ji
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HBC, de Oliveira MCN, Harmon FG, Nepomuceno A. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 2014; 9:e86402. [PMID: 24475115 PMCID: PMC3903518 DOI: 10.1371/journal.pone.0086402] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023] Open
Abstract
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
Collapse
Affiliation(s)
- Juliana Marcolino-Gomes
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Department of Biology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Claire Bendix
- Plant Gene Expression Center, ARS/USDA, Albany, California, USA and Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, USA
| | - Thiago Jonas Nakayama
- Department of Crop Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Brandon Celaya
- Plant Gene Expression Center, ARS/USDA, Albany, California, USA and Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, USA
| | - Hugo Bruno Correa Molinari
- Embrapa LABEX US Plant Biotechnology, Plant Gene Expression Center-ARS/USDA, Albany, California, United States of America
| | | | - Frank G. Harmon
- Plant Gene Expression Center, ARS/USDA, Albany, California, USA and Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, USA
| | - Alexandre Nepomuceno
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Embrapa LABEX US Plant Biotechnology, Plant Gene Expression Center-ARS/USDA, Albany, California, United States of America
| |
Collapse
|
18
|
Monreal JA, Arias-Baldrich C, Pérez-Montaño F, Gandullo J, Echevarría C, García-Mauriño S. Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. PLANTA 2013; 237:1401-13. [PMID: 23408154 DOI: 10.1007/s00425-013-1855-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/01/2013] [Indexed: 05/25/2023]
Abstract
Salinity increases phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity in sorghum leaves. This work has been focused on the mechanisms responsible for this phenomenon. The light-triggered expression of SbPPCK1 gene, accountable for the photosynthetic C4-PEPCase-k, is controlled by a complex signal transduction chain involving phospholipases C and D (PLC and PLD). These two phospholipase-derived signalling pathways were functional in salinized plants. Pharmacological agents that act on PLC (U-73122, neomycin) or PLD (n-butanol) derived signals, blocked the expression of SbPPCK1, but had little effect on PEPCase-k activity. This discrepancy was further noticed when SbPPCK1-3 gene expression and PEPCase-k activity were studied in parallel. At 172 mM, the main effect of NaCl was to decrease the rate of PEPCase-k protein turnover. Meanwhile, 258 mM NaCl significantly increased both SbPPCK1 and SbPPCK2 gene expression and/or mRNA stability. The combination of these factors contributed to maintain a high PEPCase-k activity in salinity. LiCl increased calcium-dependent protein kinase (CDPK) activity in illuminated sorghum leaves while it decreased the rate of PEPCase-k degradation. The latter effect was restrained by W7, an inhibitor of CDPK activity. Recombinant PEPCase-k protein was phosphorylated in vitro by PKA. A conserved phosphorylation motif, which can be recognized by PKA and by plant CDPKs, is present in the three PEPCase-ks proteins. Thus, it is possible that a phosphorylation event could be controlling (increasing) the stability of PEPCase-k in salinity. These results propose a new mechanism of regulation of PEPCase-k levels, and highlight the relevance of the preservation of key metabolic elements during the bulk degradation of proteins, which is commonly associated to stress.
Collapse
Affiliation(s)
- José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no 6, 41012, Seville, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Park J, Khuu N, Howard ASM, Mullen RT, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:251-62. [PMID: 22404138 DOI: 10.1111/j.1365-313x.2012.04985.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.
Collapse
Affiliation(s)
- Joonho Park
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
20
|
Molecular and structural analysis of C4-specific PEPC isoform from Pennisetum glaucum plays a role in stress adaptation. Gene 2012; 500:224-31. [DOI: 10.1016/j.gene.2012.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
O’Leary B, Fedosejevs ET, Hill AT, Bettridge J, Park J, Rao SK, Leach CA, Plaxton WC. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5485-95. [PMID: 21841182 PMCID: PMC3223045 DOI: 10.1093/jxb/err225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism.
Collapse
Affiliation(s)
- Brendan O’Leary
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Eric T. Fedosejevs
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Allyson T. Hill
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - James Bettridge
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Joonho Park
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Srinath K. Rao
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Craig A. Leach
- Progenra Inc., 271A Great Valley Parkway, Malvern, Pennsylvania 19355, USA
| | - William C. Plaxton
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Aubry S, Brown NJ, Hibberd JM. The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3049-59. [PMID: 21321052 DOI: 10.1093/jxb/err012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our most productive crops and native vegetation use a modified version of photosynthesis known as the C(4) pathway. Leaves of C(4) crops have increased nitrogen and water use efficiencies compared with C(3) species. Although the modifications to leaves of C(4) plants are complex, their faster growth led to the proposal that C(4) photosynthesis should be installed in C(3) crops in order to increase yield potential. Typically, a limited set of proteins become restricted to mesophyll or bundle sheath cells, and this allows CO(2) to be concentrated around the primary carboxylase RuBisCO. The role that these proteins play in C(3) species prior to their recruitment into the C(4) pathway is addressed here. Understanding the role of these proteins in C(3) plants is likely to be of use in predicting how the metabolism of a C(3) leaf will alter as components of the C(4) pathway are introduced as part of efforts to install characteristics of C(4) photosynthesis in leaves of C(3) crops.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
23
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
24
|
O'Leary B, Rao S, Plaxton W. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds. Biochem J 2011; 433:65-74. [PMID: 20950272 PMCID: PMC3010082 DOI: 10.1042/bj20101361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107 kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118 kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.
Collapse
Key Words
- oil seed metabolism
- phosphoenolpyruvate carboxylase (pepc)
- phosphorylation site-specific antibodies
- protein phosphorylation
- ricinus communis (castor oil plant)
- site-directed mutagenesis
- atppc, plant-type phosphoenolpyruvate carboxylase isozyme from arabidopsis thaliana
- btpc, bacterial-type phosphoenolpyruvate carboxylase
- cos, castor (ricinus communis) oil seed(s)
- i50, inhibitor concentration producing 50% inhibition of enzyme activity
- pep, phosphoenolpyruvate
- pepc, pep carboxylase
- pp2a, protein phosphatase type-2a
- pp2ac, catalytic subunit of pp2a
- ptpc, plant-type pepc
- rcppc, btpc from ricinus communis
Collapse
Affiliation(s)
- Brendan O'Leary
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Srinath K. Rao
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - William C. Plaxton
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
- †Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
25
|
Monreal JA, López-Baena FJ, Vidal J, Echevarría C, García-Mauriño S. Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2819-27. [PMID: 20410319 PMCID: PMC2882271 DOI: 10.1093/jxb/erq114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 05/21/2023]
Abstract
The photosynthetic phosphoenolpyruvate carboxylase (C(4)-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca(2+)-dependent step. The present study investigates the cascade components at the higher integrated level of Sorghum bicolor leaf discs and leaves. PEPC-k up-regulation required light and photosynthetic electron transport. However, the PI-PLC inhibitor U-73122 and inhibitors of calcium release from intracellular stores only partially blocked this process. Analysis of [(32)P]phosphate-labelled phospholipids showed a light-dependent increase in phospholipase D (PLD) activity. Treatment of leaf discs with n-butanol, which decreases the formation of phosphatidic acid (PA) by PLD, led to the partial inhibition of the C(4)-PEPC phosphorylation, suggesting the participation of PLD/PA in the signalling cascade. PPCK1 gene expression was strictly light-dependent. Addition of neomycin or n-butanol decreased, and a combination of both inhibitors markedly reduced PPCK1 expression and the concomitant rise in PEPC-k activity. The calcium/calmodulin antagonist W7 blocked the light-dependent up-regulation of PEPC-k, pointing to a Ca(2+)-dependent protein kinase (CDPK) integrating both second messengers, calcium and PA, which were shown to increase the activity of sorghum CDPK.
Collapse
Affiliation(s)
- José Antonio Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain
| | - Jean Vidal
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bâtiment 630, Université de Paris-Sud, Centre d′Orsay, Cedex, France
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
26
|
O'Leary B, Rao SK, Kim J, Plaxton WC. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 2009; 284:24797-805. [PMID: 19605358 DOI: 10.1074/jbc.m109.022863] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated anaplerotic enzyme situated at a major branch point of the plant C metabolism. Two distinct oligomeric classes of PEPC occur in the triglyceride-rich endosperm of developing castor oil seeds (COS). Class-1 PEPC is a typical homotetramer composed of identical 107-kDa plant-type PEPC (PTPC) subunits (encoded by RcPpc3), whereas the novel Class-2 PEPC 910-kDa hetero-octameric complex arises from a tight interaction between Class-1 PEPC and distantly related 118-kDa bacterial-type PEPC (BTPC) polypeptides (encoded by RcPpc4). Here, COS BTPC was expressed from full-length RcPpc4 cDNA in Escherichia coli as an active PEPC that exhibited unusual properties relative to PTPCs, including a tendency to form large aggregates, enhanced thermal stability, a high K(m)((PEP)), and insensitivity to metabolite effectors. A chimeric 900-kDa Class-2 PEPC hetero-octamer having a 1:1 stoichiometry of BTPC:PTPC subunits was isolated from a mixture of clarified extracts containing recombinant RcPPC4 and an Arabidopsis thaliana Class-1 PEPC (the PTPC, AtPPC3). The purified Class-2 PEPC exhibited biphasic PEP saturation kinetics with high and low affinity sites attributed to its AtPPC3 and RcPPC4 subunits, respectively. The RcPPC4 subunits: (i) catalyzed the majority of the Class-2 PEPC V(max), particularly in the presence of the inhibitor l-malate, and (ii) also functioned as Class-2 PEPC regulatory subunits by modulating PEP binding and catalytic potential of its AtPPC3 subunits. BTPCs appear to associate with PTPCs to form stable Class-2 PEPC complexes in vivo that are hypothesized to maintain high flux from PEP under physiological conditions that would otherwise inhibit Class-1 PEPCs.
Collapse
Affiliation(s)
- Brendan O'Leary
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
27
|
Dimou M, Paunescu A, Aivalakis G, Flemetakis E, Katinakis P. Co-localization of carbonic anhydrase and phosphoenol-pyruvate carboxylase and localization of pyruvate kinase in roots and hypocotyls of etiolated Glycine max seedlings. Int J Mol Sci 2009; 10:2896-2910. [PMID: 19742174 PMCID: PMC2738901 DOI: 10.3390/ijms10072896] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022] Open
Abstract
We investigated the presence of carbonic anhydrase in root and hypocotyl of etiolated soybean using enzymatic, histochemical, immunohistochemical and in situ hybridization approaches. In parallel, we used in situ hybridization and immunolocalization to determine the expression pattern and localization of phosphoenolpyruvate carboxylase. Their co-localization in the root tip as well as in the central cylinder, suggests that a large fraction of the CO(2) may be re-introduced into C4 compounds. GmPK3 expression, coding for a cytoplasmic isoform of pyruvate kinase, was detected in all different root cell types, suggesting that both phosphoenolpyruvate-utilizing enzymes are involved in phosphoenolpyruvate metabolism in etiolated soybean roots; a case indicative of the necessary flexibility plant metabolism has to adopt in order to compensate various physiological conditions.
Collapse
Affiliation(s)
- Maria Dimou
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Botanikos, Athens, Greece; E-Mails:
(M.D.);
(G.A.);
(E.F.)
| | - Anca Paunescu
- Institute of Biology, Splaiul Independentei 296, Bucharest 060031, Romania; E-Mail:
(A.P.)
| | - Georgios Aivalakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Botanikos, Athens, Greece; E-Mails:
(M.D.);
(G.A.);
(E.F.)
| | - Emmanouil Flemetakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Botanikos, Athens, Greece; E-Mails:
(M.D.);
(G.A.);
(E.F.)
| | - Panagiotis Katinakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Botanikos, Athens, Greece; E-Mails:
(M.D.);
(G.A.);
(E.F.)
| |
Collapse
|
28
|
Müller K, Doubnerová V, Synková H, Cerovská N, Ryslavá H. Regulation of phosphoenolpyruvate carboxylase in PVY(NTN)-infected tobacco plants. Biol Chem 2009; 390:245-51. [PMID: 19090725 DOI: 10.1515/bc.2009.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of viral infection on the regulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in Nicotiana tabacum L. leaves was studied. PEPC activity was 3 times higher in infected plant leaves compared to healthy plants. Activity of plant PEPC can be regulated, e.g., by de novo synthesis or reversible phosphorylation. The reason for the increase of PEPC activity as a consequence of PVY(NTN) infection was studied. The amount of PEPC determined by Western blot analysis or by relative estimation of PEPC mRNA by real-time PCR did not differ in control and PVY(NTN)-infected plants. Changes in posttranslational modification of PEPC by phosphorylation were evaluated by comparing activity of the native and the dephosphorylated enzyme. The infected plants were characterized by a higher decrease of the enzyme activity after its dephosphorylation, which indicated a higher phosphorylation level. Immunochemical detection of phosphoproteins by Western blot analysis showed a more intensive band corresponding to PEPC from the infected material. This strengthens the hypothesis of an infection-related phosphorylation, which could be part of the plant's response to pathogen attack. The physiological implications of the increase in PEPC activity during PVY(NTN) infection are discussed.
Collapse
Affiliation(s)
- Karel Müller
- Department of Biochemistry, Faculty of Natural Science, Charles University, Hlavova 2030, CZ-128 00 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG. The Circadian Clock inArabidopsisRoots Is a Simplified Slave Version of the Clock in Shoots. Science 2008; 322:1832-5. [DOI: 10.1126/science.1161403] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The circadian oscillator in eukaryotes consists of several interlocking feedback loops through which the expression of clock genes is controlled. It is generally assumed that all plant cells contain essentially identical and cell-autonomous multiloop clocks. Here, we show that the circadian clock in the roots of matureArabidopsisplants differs markedly from that in the shoots and that the root clock is synchronized by a photosynthesis-related signal from the shoot. Two of the feedback loops of the plant circadian clock are disengaged in roots, because two key clock components, the transcription factors CCA1 and LHY, are able to inhibit gene expression in shoots but not in roots. Thus, the plant clock is organ-specific but not organ-autonomous.
Collapse
|
30
|
Feria AB, Alvarez R, Cochereau L, Vidal J, García-Mauriño S, Echevarría C. Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. PLANT PHYSIOLOGY 2008; 148:761-74. [PMID: 18753284 PMCID: PMC2556803 DOI: 10.1104/pp.108.124982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 05/20/2023]
Abstract
During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca(2+)-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages.
Collapse
Affiliation(s)
- Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Jacobs B, Engelmann S, Westhoff P, Gowik U. Evolution of C(4) phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. PLANT, CELL & ENVIRONMENT 2008; 31:793-803. [PMID: 18266899 DOI: 10.1111/j.1365-3040.2008.01796.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
During the evolution of angiosperms, C4 phosphoenolpyruvate carboxylases have evolved several times independently from ancestral non-photosynthetic isoforms. They show distinct kinetic and regulatory properties when compared with the C3 isozymes. To identify the evolutionary alterations which are responsible for C4-specific properties, particularly the increased tolerance towards the allosteric inhibitor L-malate, the photosynthetic phosphoenolpyruvate carboxylase of Flaveria trinervia Mohr C4 and its ortholog from the closely related C3 plant Flaveria pringlei Gand. were examined using reciprocal enzyme chimeras. The main determinants for a high tolerance towards L-malate were located in the C-terminal region of the C4 enzyme. The effect of interchanging the region between amino acids 296 and 437 was strongly dependent upon the activation of the enzyme by glucose-6-phosphate. This confirms earlier observations that this region is important for the regulation of the enzyme by glucose-6-phosphate and that it harbours determinants for the different response of the C3 and the C4 enzyme towards this allosteric activator. In addition, it was possible to demonstrate that the only C4-specific amino acid, a serine in the C-terminal part of the enzyme, is not involved in conferring an increased L-malate tolerance to the C4 enzyme.
Collapse
Affiliation(s)
- Bianca Jacobs
- Institut für Entwicklungs-und Molekularbiologie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
32
|
Chen YC, Lin HH, Jeng ST. Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. PLANT, CELL & ENVIRONMENT 2008; 31:1844-50. [PMID: 17971062 DOI: 10.1111/j.1365-3040.2008.01885.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ipomoelin gene (IPO) was identified to be a wound-inducible gene from Ipomoea batatas, and its expression was stimulated by methyl jasmonate (MeJA) and hydrogen peroxide. IPO protein was also characterized as a defence-related protein, and it is also a carbohydrate-binding protein. In this study, the expression of IPO was used as a molecular probe to study the effects of Ca2+ on the signal transduction of ethylene. A confocal microscope monitored the Ca2+ within cells, and Northern blotting examined IPO expression. The presence of Ca2+ channel blocker, including diltiazem, neomycin or ruthenium red, abolished the increase of cytosolic Ca2+, and reduced the IPO expression in the cells induced by ethylene. Furthermore, both Ca2+ influxes and IPO expression stimulated by ethylene were prohibited in the presence of 10 mm ethylene glycol-bis(2-aminoethyl ether)-N, N, N', N'-tetraacetic acid (EGTA). These results indicated that Ca2+ influxes into the cytosol induced by ethylene are from both apoplast and organelles, and are required for activating IPO expression. However, in the presence of 1 mm EGTA, ethylene can still stimulate IPO expression, but mechanical wounding failed to do it. Therefore, Ca2+ channels in the plasma membrane induced by ethylene have higher affinity to Ca2+ than that stimulated by wounding. Moreover, the addition of A23187, an ionophore, raised cytosolic Ca2+, but was unable to stimulate IPO expression. These findings showed that IPO induction did not solely depend on Ca2+, and Ca2+ elevation in cytosol is necessary but not sufficient for IPO expression. The application of PD98059, a mitogen-activated protein kinase kinase (MAPKK) inhibitor, did not prevent Ca2+ from increasing in the cytosol induced by ethylene, but inhibited the IPO expression stimulated by staurosporine (STA), a protein kinase inhibitor. Conclusively, elevation of cytosolic Ca2+ by ethylene may stimulate protein phosphatase and MAPKK, which finally activates IPO expression.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Gennidakis S, Rao S, Greenham K, Uhrig RG, O'Leary B, Snedden WA, Lu C, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:839-49. [PMID: 17894783 DOI: 10.1111/j.1365-313x.2007.03274.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two classes of phosphoenolpyruvate carboxylase (PEPC) sharing the same 107-kDa catalytic subunit (p107) were previously purified from developing castor oil seed (COS) endosperm. The association of p107 with an immunologically unrelated 64-kDa polypeptide (p64) causes pronounced physical and kinetic differences between the Class-1 PEPC p107 homotetramer and Class-2 PEPC p107/p64 hetero-octamer. Tryptic peptide sequencing matched p64 to the deduced C-terminal half of several bacterial-type PEPCs (BTPCs) of vascular plants. Immunoblots probed with anti-(COS p64 peptide or p107)-IgG established that: (i) BTPC exists in vivo as an approximately 118-kDa polypeptide (p118) that is rapidly truncated to p64 by an endogenous cysteine endopeptidase during incubation of COS extracts on ice, and (ii) mature and germinated COS contain Class-1 PEPC and p107, but no detectable Class-2 PEPC nor p118. Non-denaturing PAGE, in-gel PEPC activity staining and immunoblotting of developing COS extracts demonstrated that p118 and p107 are subunits of the non-proteolysed approximately 910-kDa Class-2 PEPC complex. As total PEPC activity of clarified COS extracts was unaffected following p118 truncation to p64, the BTPC p118 may function as a regulatory rather than catalytic subunit of the Class-2 PEPC. Moreover, recombinant AtPPC3 and AtPPC4 (Arabidopsis orthologs of COS p107 and p118) expressed as active and inactive PEPCs, respectively. Cloning of cDNAs encoding p118 (RcPpc4) and p107 (RcPpc3) confirmed their respective designation as bacterial- and plant-type PEPCs. Levels of RcPpc3 and RcPpc4 transcripts generally mirrored the respective amounts of p107 and p118. The collective findings provide insights into the molecular features and functional significance of vascular plant BTPCs.
Collapse
Affiliation(s)
- Sam Gennidakis
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Murmu J, Plaxton WC. Phosphoenolpyruvate carboxylase protein kinase from developing castor oil seeds: partial purification, characterization, and reversible control by photosynthate supply. PLANTA 2007; 226:1299-310. [PMID: 17624549 DOI: 10.1007/s00425-007-0551-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/09/2007] [Indexed: 05/16/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) protein kinase (PPCK) was purified approximately 1,500-fold from developing castor oil seeds (COS). Gel filtration and immunoblotting with anti-(rice PPCK2)-immune serum indicated that this Ca2+-insensitive PPCK exists as a 31-kDa monomer. COS PPCK-mediated rephosphorylation of the 107-kDa subunit (p107) of COS PEPC1 (Km = 2.2 microM) activated PEPC1 by approximately 80% when assayed under suboptimal conditions (pH 7.3, 0.2 mM PEP, and 0.125 mM malate). COS PPCK displayed remarkable selectivity for phosphorylating COS PEPC1 (relative to tobacco, sorghum, or maize PEPCs), exhibited a broad pH-activity optima of approximately pH 8.5, and at pH 7.3 was activated 40-65% by 1 mM PEP, or 10 mM Gln or Asn, but inhibited 65% by 10 mM L-malate. The possible control of COS PPCK by disulfide-dithiol interconversion was suggested by its rapid inactivation and subsequent reactivation when incubated with oxidized glutathione and then dithiothreitol. In vitro PPCK activity correlated with in vivo p107 phosphorylation status, with both peaking in mid-cotyledon to full-cotyledon developing COS. Notably, PPCK activity and p107 phosphorylation of developing COS were eliminated following pod excision or prolonged darkness of intact plants. Both effects were fully reversed 12 h following reillumination of darkened plants. These results implicate a direct relationship between the up-regulation of COS PPCK and p107 phosphorylation during the recommencement of photosynthate delivery from illuminated leaves to the non-photosynthetic COS. Overall, the results support the hypothesis that PEPC and PPCK participate in the control of photosynthate partitioning into C-skeletons needed as precursors for key biosynthetic pathways of developing COS.
Collapse
Affiliation(s)
- Jhadeswar Murmu
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
35
|
Chen ZH, Nimmo G, Jenkins G, Nimmo H. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 2007; 405:191-8. [PMID: 17376028 PMCID: PMC1925254 DOI: 10.1042/bj20070102] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/06/2007] [Accepted: 03/21/2007] [Indexed: 11/17/2022]
Abstract
P(i) (inorganic phosphate) limitation severely impairs plant growth and reduces crop yield. Hence plants have evolved several biochemical and morphological responses to P(i) starvation that both enhance uptake and conserve use. The mechanisms involved in P(i) sensing and signal transduction are not completely understood. In the present study we report that a previously uncharacterized transcription factor, BHLH32, acts as a negative regulator of a range of P(i) starvation-induced processes in Arabidopsis. In bhlh32 mutant plants in P(i)-sufficient conditions, expression of several P(i) starvation-induced genes, formation of anthocyanins, total P(i) content and root hair formation were all significantly increased compared with the wild-type. Among the genes negatively regulated by BHLH32 are those encoding PPCK (phosphoenolpyruvate carboxylase kinase), which is involved in modifying metabolism so that P(i) is spared. The present study has shown that PPCK genes are rapidly induced by P(i) starvation leading to increased phosphorylation of phosphoenolpyruvate carboxylase. Furthermore, several Arabidopsis proteins that regulate epidermal cell differentiation [TTG1 (TRANSPARENT TESTA GLABRA1), GL3 (GLABRA3) and EGL3 (ENHANCER OF GL3)] positively regulate PPCK gene expression in response to P(i) starvation. BHLH32 can physically interact with TTG1 and GL3. We propose that BHLH32 interferes with the function of TTG1-containing complexes and thereby affects several biochemical and morphological processes that respond to P(i) availability.
Collapse
Key Words
- arabidopsis
- basic helix–loop–helix (bhlh) protein
- gene expression
- inorganic phosphate (pi) starvation
- phosphoenolpyruvate carboxylase kinase (ppck)
- root hair formation
- atpt1, phosphate transporter 1
- bhlh, basic helix–loop–helix
- cpc, caprice
- ct, threshold cycle value
- egl3, enhancer of glabra3
- gfp, green fluorescent protein
- gl3, glabra3
- gst, glutathione s-transferase
- lpi, low pi insensitive
- ms, murashige–skoog
- pepc, phosphoenolpyruvate carboxylase, pepck, pepc kinase
- phr1, phosphate starvation response 1
- pi, inorganic phosphate
- rt, reverse transcriptase
- sqd1, udp-sulfoquinovose synthase 1
- ttg1, transparent testa glabra1
- wer, werewolf
Collapse
Affiliation(s)
- Zhi-Hui Chen
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Gillian A. Nimmo
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Gareth I. Jenkins
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Hugh G. Nimmo
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
36
|
Xu W, Sato SJ, Clemente TE, Chollet R. The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:910-23. [PMID: 17257170 DOI: 10.1111/j.1365-313x.2006.03006.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a widely distributed metabolic enzyme among plant and prokaryotic species. In vascular plants, the typical PEPC is regulated post-translationally by a complex interplay between opposing metabolite effectors and reversible protein phosphorylation. This phosphorylation event is controlled primarily by the up-/down-regulation of PEPC-kinase (PpcK), an approximately 31-kDa Ser/Thr-kinase. As a sequel to earlier investigations related to PEPC phosphorylation in N(2)-fixing nodules of Glycine max, we now present a detailed molecular analysis of the PpcK multigene family in nodulated soybeans. Although the GmPpcK1-4 transcripts are all expressed throughout nodule development, only the nearly identical GmPpcK2/3 homologs are nodule-enhanced and up-/down-regulated in vivo by photosynthate supply from the shoots. In contrast, GmPpcK1 is a 'housekeeping' gene, and GmPpcK4 is a highly divergent member, distantly removed from the legume PpcK subfamily. Real-time qRT-PCR analysis indicates that GmPpcK2/3 are overwhelmingly the dominant PpcKs expressed and up-/down-regulated throughout nodule development, mirroring the expression properties of nodule-enhanced PEPC (GmPpc7). In situ RT-PCR investigation of the spatial localization of the GmPpcK1-4 and GmPpc7 transcripts in mature nodules is entirely consistent with this view. Complementary histochemical and related RNA gel-blot findings with nodulated, GmPpcK1/3 promoter::GUS-expressing T(2) plants provide direct experimental evidence that (i) PpcK gene expression is controlled primarily at the transcriptional level; and (ii) the contrasting expression properties of GmPpcK1/3 are conferred largely by regulatory element(s) within the approximately 1.4-kb 5'-upstream region. As a result of our multifaceted analyses of GmPpcK1-4, GmPpc7 and PEPC-phosphorylation in the soybean nodule, it is proposed that the GmPpcK2/3 homologs and GmPpc7 together comprise the key molecular 'downstream players' in this regulatory phosphorylation system within the mature nodule's central zone.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|
37
|
Shenton M, Fontaine V, Hartwell J, Marsh JT, Jenkins GI, Nimmo HG. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:45-53. [PMID: 16925599 DOI: 10.1111/j.1365-313x.2006.02850.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have examined the complexity of the phosphoenolpyruvate carboxylase kinase (PPCK) gene family in the C(4) monocots maize and sorghum. Maize contains at least four PPCK genes. The encoded proteins are similar to other phosphoenolpyruvate carboxylase (PEPC) kinases, in that they comprise a protein kinase domain with minimal extensions, except that two of the proteins contain unusual acidic insertions. The spatial and temporal expression patterns of the genes provide information about their presumed functions. Expression of ZmPPCK1 in leaves is mesophyll cell-specific and light-induced, indicating that it encodes the PEPC kinase that is responsible for the phosphorylation of leaf PEPC during C(4) photosynthesis. Surprisingly, ZmPPCK2 is expressed in leaf bundle sheath cells, preferentially in the dark. This suggests that a main function of the ZmPPCK2 gene product is to allow PEPC to function anaplerotically in bundle sheath cells in the dark without interfering with the C(4) cycle. ZmPPCK2, ZmPPCK3 and ZmPPCK4 are all induced by exposure of tissue to cycloheximide, whereas ZmPPCK1 is not. This suggests that the ZmPPCK2, ZmPPCK3 and ZmPPCK4 genes share the property that their expression is controlled by a rapidly turning over repressor. Sequence and expression data show that sorghum contains orthologues of ZmPPCK1 and ZmPPCK2.
Collapse
Affiliation(s)
- Matt Shenton
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
38
|
Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, Hall A, Vickers C, Nicholas Hewitt C. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:960-8. [PMID: 16899082 DOI: 10.1111/j.1365-313x.2006.02847.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.
Collapse
Affiliation(s)
- Michael J Wilkinson
- Department of Environmental Science, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fukayama H, Tamai T, Taniguchi Y, Sullivan S, Miyao M, Nimmo HG. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:258-68. [PMID: 16762031 DOI: 10.1111/j.1365-313x.2006.02779.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC), a key enzyme of primary metabolism of higher plants, is regulated by reversible phosphorylation, which is catalyzed by PEPC kinase (PPCK). Rice has three functional PPCK genes, OsPPCK1, OsPPCK2 and OsPPCK3, all of which have an intron close to the 3' end of the coding region. A novel control mechanism was found for expression of OsPPCK2, namely alternative transcription initiation, and two different transcripts were detected. The four different transcripts of the OsPPCK genes showed different expression patterns. While OsPPCK1 and OsPPCK3 were highly expressed in roots and at low levels in other organs, the two OsPPCK2 transcripts were expressed in all organs. OsPPCK3 was expressed mostly at night, while the long OsPPCK2 transcripts were present in the leaves only in the daytime. Nitrate supplementation of leaves selectively induced expression of both OsPPCK2 transcripts, while phosphate starvation only induced the shorter one. Such diverse expression patterns of OsPPCK genes suggest the importance and variety of strict activity regulation of PEPC in rice. From the correlation between gene expression and the phosphorylation level of PEPC, which was monitored as that of the maize PEPC expressed in transgenic rice plants, it was concluded that the short OsPPCK2 transcripts were expressed in rice leaf mesophyll cells upon nitrogen supplementation and phosphate starvation, whereas OsPPCK3 participated in the nocturnal phosphorylation of PEPC in these cells. Expression of PPCK proteins in rice leaves was detected by immunoblotting using a specific antiserum, and the expression of two different OsPPCK2 proteins derived from alternative transcription initiation was confirmed.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Photobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Xu W, Ahmed S, Moriyama H, Chollet R. The Importance of the Strictly Conserved, C-terminal Glycine Residue in Phosphoenolpyruvate Carboxylase for Overall Catalysis. J Biol Chem 2006; 281:17238-17245. [PMID: 16624802 DOI: 10.1074/jbc.m602299200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a "multifaceted," allosteric enzyme involved in C4 acid metabolism in green plants/microalgae and prokaryotes. Before the elucidation of the three-dimensional structures of maize C4 leaf and Escherichia coli PEPC, our truncation analysis of the sorghum C4 homologue revealed important roles for the enzyme's C-terminal alpha-helix and its appended QNTG961 tetrapeptide in polypeptide stability and overall catalysis, respectively. Collectively, these functional and structural observations implicate the importance of the PEPC C-terminal tetrapeptide for both catalysis and negative allosteric regulation. We have now more finely dissected this element of PEPC structure-function by modification of the absolutely conserved C-terminal glycine of the sorghum C4 isoform by site-specific mutagenesis (G961(A/V/D)) and truncation (DeltaC1/C4). Although the C4 polypeptide failed to accumulate in a PEPC- strain (XH11) of E. coli transformed with the Asp mutant, the other variants were produced at wild-type levels. Although neither of these four mutants displayed an apparent destabilization of the purified PEPC homotetramer, all were compromised catalytically in vivo and in vitro. Functional complementation of XH11 cells under selective growth conditions was restricted progressively by the Ala, DeltaC1 and Val, and DeltaC4 modifications. Likewise, steady-state kinetic analysis of the purified mutant enzymes revealed corresponding negative trends in kcat and kcat/K0.5 (phosphoenolpyruvate) but not in K0.5 or the Hill coefficient. Homology modeling of these sorghum C-terminal variants against the structure of the closely related maize C4 isoform predicted perturbations in active-site molecular cavities and/or ion-pairing with essential, invariant Arg-638. These collective observations reveal that even a modest, neutral alteration of the PEPC C-terminal hydrogen atom side chain is detrimental to enzyme function.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Biochemistry, Lincoln, Nebraska 68588-0664
| | - Shaheen Ahmed
- Department of Biochemistry, Lincoln, Nebraska 68588-0664
| | | | - Raymond Chollet
- Department of Biochemistry, Lincoln, Nebraska 68588-0664; Plant Science Initiative, University of Nebraska, Lincoln, Nebraska 68588-0664.
| |
Collapse
|
41
|
Sánchez R, Flores A, Cejudo FJ. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. PLANTA 2006; 223:901-9. [PMID: 16283377 DOI: 10.1007/s00425-005-0144-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
The phosphoenolpyruvate carboxylase (PEPC) gene family of Arabidopsis is composed of four genes. Based on sequence analysis it was deduced that Atppc1, Atppc2 and Atppc3 genes encode plant-type PEPCs, whereas Atppc4 encodes a PEPC without phosphorylation motif, but no data at the protein level have been reported. Here, we describe the analysis of the four Arabidopsis PEPC polypeptides, which were expressed in Escherichia coli. Immunological characterization with anti plant-type PEPC and an anti-AtPPC4 antibody, raised in this work, showed that the bacterial-type PEPC is unrelated with plant-type PEPCs. Western-blot analysis of different Arabidopsis organs probed with anti plant-type PEPC antibodies detected a double band, the one with low molecular weight corresponding to the three plant-type PEPCs. The high molecular weight subunit is not encoded by any of the Arabidopsis PEPC genes. No bands were detected with the anti-AtPPC4 antibody. PEPC genes show differential expression in Arabidopsis organs and in response to environmental stress. Atppc2 transcripts were found in all Arabidopsis organs suggesting that it is a housekeeping gene. In contrast, Atppc3 gene was expressed in roots and Atppc1 in roots and flowers, as Atppc4. Highest PEPC activity was found in roots, which showed expression of the four PEPC genes. Salt and drought exerted a differential induction of PEPC gene expression in roots, Atppc4 showing the highest induction in response to both stresses. These results show that PEPC is part of the adaptation of the plant to salt and drought and suggest that this is the function of the new bacterial-type PEPC.
Collapse
Affiliation(s)
- Rosario Sánchez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Avda Américo Vespucio, 49, 41092, Sevilla, Spain
| | | | | |
Collapse
|
42
|
Gowik U, Engelmann S, Bläsing OE, Raghavendra AS, Westhoff P. Evolution of C(4) phosphoenolpyruvate carboxylase in the genus Alternanthera: gene families and the enzymatic characteristics of the C(4) isozyme and its orthologues in C(3) and C(3)/C(4) Alternantheras. PLANTA 2006; 223:359-68. [PMID: 16136331 DOI: 10.1007/s00425-005-0085-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 07/11/2005] [Indexed: 05/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.3) is a key enzyme of C(4) photosynthesis. It has evolved from ancestral non-photosynthetic (C(3)) isoforms and thereby changed its kinetic and regulatory properties. We are interested in understanding the molecular changes, as the C(4) PEPCases were adapted to their new function in C(4) photosynthesis and have therefore analysed the PEPCase genes of various Alternanthera species. We isolated PEPCase cDNAs from the C(4) plant Alternanthera pungens H.B.K., the C(3)/C(4) intermediate plant A. tenella Colla, and the C(3) plant A. sessilis (L.) R.Br. and investigated the kinetic properties of the corresponding recombinant PEPCase proteins and their phylogenetic relationships. The three PEPCases are most likely derived from orthologous gene classes named ppcA. The affinity constant for the substrate phosphoenolpyruvate (K (0.5) PEP) and the degree of activation by glucose-6-phosphate classified the enzyme from A. pungens (C(4)) as a C(4) PEPCase isoform. In contrast, both the PEPCases from A. sessilis (C(3)) and A. tenella (C(3)/C(4)) were found to be typical C(3) PEPCase isozymes. The C(4) characteristics of the PEPCase of A. pungens were accompanied by the presence of the C(4)-invariant serine residue at position 775 reinforcing that a serine at this position is essential for being a C(4) PEPCase (Svensson et al. 2003). Genomic Southern blot experiments and sequence analysis of the 3' untranslated regions of these genes indicated the existence of PEPCase multigene family in all three plants which can be grouped into three classes named ppcA, ppcB and ppcC.
Collapse
Affiliation(s)
- U Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Of the many plant genes whose expressions are controlled by the circadian clock, one of the phosphoenolpyruvate carboxylase kinase genes in soya bean (Glycine max) exhibits the unusual property that its control is organ-specific – it is under circadian control in leaves but not in roots. Preliminary experiments suggest that the same is true for at least one gene in Arabidopsis thaliana. It will be important to define the extent and function of this phenomenon and the underlying mechanism.
Collapse
|
44
|
Tripodi KE, Turner WL, Gennidakis S, Plaxton WC. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. PLANT PHYSIOLOGY 2005; 139:969-78. [PMID: 16169958 PMCID: PMC1256010 DOI: 10.1104/pp.105.066647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.
Collapse
Affiliation(s)
- Karina E Tripodi
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Clustering the ESTs from a large dataset representing a single species is a convenient starting point for a number of investigations into gene discovery, genome evolution, expression patterns, and alternatively spliced transcripts. Several methods have been developed to accomplish this, the most widely available being UniGene, a public domain collection of gene-oriented clusters for over 45 different species created and maintained by NCBI. The goal is for each cluster to represent a unique gene, but currently it is not known how closely the overall results represent that reality. UniGene's build procedure begins with initial mRNA clusters before joining ESTs. UniGene's results for soybean indicate a significant amount of redundancy among some sequences reported to be unique mRNAs. To establish a valid non-redundant known gene set for Glycine max we applied our algorithm to the clustering of only mRNA sequences. The mRNA dataset was run through the algorithm using two different matching stringencies. The resulting cluster compositions were compared to each other and to UniGene. Clusters exhibiting differences among the three methods were analyzed by 1) nucleotide and amino acid alignment and 2) submitting authors conclusions to determine whether members of a single cluster represented the same gene or not. RESULTS Of the 12 clusters that were examined closely most contained examples of sequences that did not belong in the same cluster. However, neither the two stringencies of PECT nor UniGene had a significantly greater record of accuracy in placing paralogs into separate clusters. CONCLUSION Our results reveal that, although each method produces some errors, using multiple stringencies for matching or a sequential hierarchical method of increasing stringencies can provide more reliable results and therefore allow greater confidence in the vast majority of clusters that contain only ESTs and no mRNA sequences.
Collapse
Affiliation(s)
- Ronald L Frank
- Biological Sciences Department, University of Missouri-Rolla, Rolla, MO, USA
| | - Fikret Ercal
- Computer Science Department, University of Missouri-Rolla, Rolla, MO, USA
| |
Collapse
|
46
|
Mamedov TG, Moellering ER, Chollet R. Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:832-43. [PMID: 15941397 DOI: 10.1111/j.1365-313x.2005.02416.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC [Ppc]) has been previously purified and characterized in biochemical and immunological terms from two green microalgae, Chlamydomonas reinhardtii and Selenastrum minutum. The findings indicate that these algae possess at least two distinct PEPC enzyme-forms, homotetrameric Class-1 and heteromeric Class-2, that differ significantly from each other and their plant and prokaryotic counterparts. Surprisingly, however, green-algal PEPC has been unexplored to date in molecular terms. This study reports the molecular cloning of the two Ppc genes in C. reinhardtii (CrPpc1, CrPpc2), each of which is transcribed in vivo and encodes a fully active, recombinant PEPC that lacks the regulatory, N-terminal seryl-phosphorylation domain that typifies the vascular-plant enzyme. These distinct catalytic subunit-types differ with respect to their (i) predicted molecular mass ( approximately 108.9 [CrPpc1] versus approximately 131.2 kDa [CrPpc2]) and critical C-terminal tetrapeptide; and (ii) immunoreactivity with antisera against the p102 and p130 polypeptides of S. minutum PEPC1/PEPC2 and PEPC2, respectively. Only the Ppc1 transcript encodes the p102 catalytic subunits common to both Class-1 and Class-2 enzyme-forms in C. reinhardtii. The steady-state transcript levels of both CrPpc1/2 are coordinately up-/down-regulated by changes in [CO2] or [NH] during growth, and generally mirror the response of cytoplasmic glutamine synthetase (Gs1) transcript abundance to changes in inorganic [N] at 5% CO2. These collective findings provide key molecular insight into the Ppc genes and corresponding PEPC catalytic subunits in the eukaryotic algae.
Collapse
Affiliation(s)
- Tarlan G Mamedov
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
47
|
Agetsuma M, Furumoto T, Yanagisawa S, Izui K. The ubiquitin-proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. PLANT & CELL PHYSIOLOGY 2005; 46:389-398. [PMID: 15695455 DOI: 10.1093/pcp/pci043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In C4 photosynthesis, phosphoenolpyruvate carboxylase (PEPC) is the enzyme responsible for catalyzing the primary fixation of atmospheric CO2. The activity of PEPC is regulated diurnally by reversible phosphorylation. PEPC kinase (PEPCk), a protein kinase involved in this phosphorylation, is highly specific for PEPC and consists of only the core domain of protein kinase. Owing to its extremely low abundance in cells, analysis of its regulatory mechanism at the protein level has been difficult. Here we employed a transient expression system using maize mesophyll protoplasts. The PEPCk protein with a FLAG tag could be expressed correctly and detected with high sensitivity. Rapid degradation of PEPCk protein was confirmed and shown to be blocked by MG132, a 26S proteasome inhibitor. Furthermore, MG132 enhanced accumulation of PEPCk with increased molecular sizes at about 8 kDa intervals. Using anti-ubiquitin antibody, this increase was shown to be due to ubiquitination. This is the first report to show the involvement of the ubiquitin-proteasome pathway in PEPCk turnover. The occurrence of PEPCks with higher molecular sizes, which was noted previously with cell extracts from various plants, was also suggested to be due to ubiquitination of native PEPCk.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | |
Collapse
|