1
|
Liu J, Li D, Wang J, Wang Q, Guo X, Fu Q, Kear P, Zhu G, Yang X. Genome-wide characterization of the CPA gene family in potato and a preliminary functional analysis of its role in NaCl tolerance. BMC Genomics 2024; 25:144. [PMID: 38317113 PMCID: PMC10840148 DOI: 10.1186/s12864-024-10000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.
Collapse
Affiliation(s)
- Jintao Liu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Dianjue Li
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Jing Wang
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Qian Wang
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xiao Guo
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable/National Vegetable Improvement Center Shandong Sub-Center, Jinan, 250100, China
| | - Qi Fu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific, Beijing, 100081, China
| | - Guangtao Zhu
- Key Lab for Potato Biology in Universities of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| | - Xiaohui Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable/National Vegetable Improvement Center Shandong Sub-Center, Jinan, 250100, China.
| |
Collapse
|
2
|
Guo Y, Zhu C, Tian Z. Overexpression of KvCHX Enhances Salt Tolerance in Arabidopsis thaliana Seedlings. Curr Issues Mol Biol 2023; 45:9692-9708. [PMID: 38132451 PMCID: PMC10741925 DOI: 10.3390/cimb45120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The CHX (cation/H+ exchanger) family plays an important role in the transmembrane transport of cation/H+ in plants. The aim of this study was to identify and functionally analyze the KvCHX gene in the halophyte Kosteletzkya virginica to investigate its role in regulating the K+/Na+ ratio under salinity tolerance. Based on a partial gene sequence of EST from K. virginica, the full-length DNA sequence of the KvCHX gene was obtained using genome walking technology. Structural analysis and phylogenetic relationship analysis showed that the KvCHX gene was closely related to the AtCHX17 gene. The KvCHX overexpression vector was successfully constructed and transformed into Arabidopsis via floral dipping. Arabidopsis seedlings overexpressing KvCHX showed an enhanced tolerance to salt stress compared with wild-type plants. Transgenic Arabidopsis seedlings grew better under K+ deficiency than WT. The results showed that KvCHX could promote the uptake of K+, increase the ratio of K+/Na+, and promote the growth of plants under K+ deficiency and treatment with NaCl solution. KvCHX is involved in K+ transport and improves plant salt tolerance by coordinating K+ acquisition and homeostasis.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (C.Z.)
| | - Chengrong Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (C.Z.)
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Jia Q, Song J, Zheng C, Fu J, Qin B, Zhang Y, Liu Z, Jia K, Liang K, Lin W, Fan K. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean ( Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int J Mol Sci 2023; 24:16560. [PMID: 38068884 PMCID: PMC10705888 DOI: 10.3390/ijms242316560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Jiahui Fu
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Bin Qin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kunzhi Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kai Fan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
5
|
Jiao Z, Yin L, Zhang Q, Xu W, Jia Y, Xia K, Zhang M. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13764. [PMID: 35975452 DOI: 10.1111/ppl.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Some members of the CYP51G subfamily has been shown to be obtusifoliol 14α-demethylase, key enzyme of the sterol and brassinosteroid (BR) biosynthesis, which mediate plant development and response to stresses. However, little is known about the functions of CYP51H subfamily in rice. Here, OsCYP51H3, an ortholog of rice OsCYP51G1 was identified. Compared with wild type, the mutants oscyp51H3 and OsCYP51H3-RNAi showed dwarf phenotype, late flowering, erected leaves, lower seed-setting rate, and smaller and shorter seeds. In contrast, the phenotypic changes of OsCYP51H3-OE plants are not obvious. Metabolomic analysis of oscyp51H3 mutant indicated that OsCYP51H3 may also encode an obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, but possibly not that of triterpenes. The RNA-seq results showed that OsCYP51H3 may affect the expression of a lot of genes related to rice development. These findings showed that OsCYP51H3 codes for a putative obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, and mediates rice development.
Collapse
Affiliation(s)
- Zhengli Jiao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Yin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiming Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijuan Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Li W, Li M, Li S, Zhang Y, Li X, Xu G, Yu L. Function of Rice High-Affinity Potassium Transporters in Pollen Development and Fertility. PLANT & CELL PHYSIOLOGY 2022; 63:967-980. [PMID: 35536598 DOI: 10.1093/pcp/pcac061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Plant High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) transporters have been predicted as membrane H+-K+ symporters in facilitating K+ uptake and distribution, while their role in seed production remains to be elucidated. In this study, we report that OsHAK26 is preferentially expressed in anthers and seed husks and located in the Golgi apparatus. Knockout of either OsHAK26 or plasma membrane located H+-K+ symporter gene OsHAK1 or OsHAK5 in both Nipponbare and Dongjin cultivars caused distorted anthers, reduced number and germination rate of pollen grains. Seed-setting rate assay by reciprocal cross-pollination between the mutants of oshak26, oshak1, oshak5 and their wild types confirmed that each HAK transporter is foremost for pollen viability, seed-setting and grain yield. Intriguingly, the pollens of oshak26 showed much thinner wall and were more vulnerable to desiccation than those of oshak1 or oshak5. In vitro assay revealed that the pollen germination rate of oshak5 was dramatically affected by external K+ concentration. The results suggest that the role of OsHAK26 in maintaining pollen development and fertility may relate to its proper cargo sorting for construction of pollen walls, while the role of OsHAK1 and OsHAK5 in maintaining seed production likely relates to their transcellular K+ transport activity.
Collapse
Affiliation(s)
- Weihong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Academy of Agricultural Sciences, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu 223001, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
8
|
Buoso S, Musetti R, Marroni F, Calderan A, Schmidt W, Santi S. Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153659. [PMID: 35299031 DOI: 10.1016/j.jplph.2022.153659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Phytoplasmas are sieve-elements restricted wall-less, pleomorphic pathogenic microorganisms causing devastating damage to over 700 plant species worldwide. The invasion of sieve elements by phytoplasmas has several consequences on nutrient transport and metabolism, anyway studies about changes of the mineral-nutrient profile following phytoplasma infections are scarce and offer contrasting results. Here, we examined changes in macro- and micronutrient concentration in tomato plant upon 'Candidatus Phytoplasma solani' infection. To investigate possible effects of 'Ca. P. solani' infection on mineral element allocation, the mineral elements were separately analysed in leaf midrib, leaf lamina and root. Moreover, we focused our analysis on the transcriptional regulation of genes encoding trans-membrane transporters of mineral nutrients. To this aim, a manually curated inventory of differentially expressed genes encoding transporters in tomato leaf midribs was mined from the transcriptional profile of healthy and infected tomato leaf midribs. Results highlighted changes in ion homeostasis in the host plant, and significant modulations at transcriptional level of genes encoding ion transporters and channels.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Alberto Calderan
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan; Biotechnology Center, National Chung Hsing University, 40227, Taichung, Taiwan.
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
9
|
Robinson R, Sollapura V, Couroux P, Sprott D, Ravensdale M, Routly E, Xing T, Robert LS. The Brassica mature pollen and stigma proteomes: preparing to meet. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1546-1568. [PMID: 33650121 DOI: 10.1111/tpj.15219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Successful pollination in Brassica brings together the mature pollen grain and stigma papilla, initiating an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes, comprising the primary molecular effectors required upon their meeting. Knowledge of the roles and global composition of these proteomes in Brassica species is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. Brassica napus, Brassica oleracea and Brassica rapa) that holds considerable potential as a bio-industrial crop. A total of 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also the important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and revealed 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination. Corresponding pollen and stigma transcriptomes were also generated, highlighting functional divergences between the proteome and transcriptome during different stages of pollen-stigma interaction. This study illustrates the investigative potential of combining the most comprehensive Brassicaceae pollen and stigma proteomes to date with iTRAQ and transcriptome data to provide a unique global perspective of pollen and stigma development and interaction.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Vishwanath Sollapura
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Ravensdale
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Tim Xing
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
10
|
Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. PLANT, CELL & ENVIRONMENT 2021. [PMID: 33289138 DOI: 10.1101/2020.05.29.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
11
|
Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. PLANT, CELL & ENVIRONMENT 2021; 44:2167-2184. [PMID: 33289138 DOI: 10.1111/pce.13972] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 05/12/2023]
Abstract
Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
12
|
Wu L, Wu M, Liu H, Gao Y, Chen F, Xiang Y. Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:205-221. [PMID: 34004558 DOI: 10.1016/j.plaphy.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Plant monovalent cation/proton antiporters (CPAs), types of transmembrane transporters, play important roles in resistance to salt stress. In this study, 37 CPA genes from moso bamboo (Phyllostachys edulis) were identified and characterised. The expression profiles of 10 CPA1 genes (PheNHXs) of moso bamboo were detected by qRT-PCR, which showed that they were specifically expressed in six tissues. In addition, the expression of 10 PheNHXs in leaves and roots changed significantly under 150/200 mM NaCl and 100 μM ABA treatments. In particular, the expression of PheNHX2 in leaves and roots was significantly upregulated under NaCl treatment, thus, we cloned PheNHX2 and analysed its function. Subcellular localisation analysis showed that PheNHX2 was located on the vacuolar membrane. Overexpression of PheNHX2 reduced seed germination and root growth of Arabidopsis thaliana under salt stress, as well as severely affecting cellular Na+ and K+ content, which in turn reduced the salt tolerance of transgenic Arabidopsis. Measurements of physiological indicators, including chlorophyll content, malondialdehyde content, peroxidase and catalase enzyme activities and relative electrical conductivity, all supported this conclusion. Under salt stress, PheNHX2 also inhibited the expression of some stress-related and ion transport-related genes in transgenic Arabidopsis. Overall, these results indicate that overexpression of PheNHX2 reduces the salt tolerance of transgenic Arabidopsis. This investigation establishes a foundation for subsequent functional studies of moso bamboo CPA genes, and it provides a deeper understanding of PheNHX2 regulation in relation to the salt tolerance of moso bamboo.
Collapse
Affiliation(s)
- Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
14
|
Jia Q, Li MW, Zheng C, Xu Y, Sun S, Li Z, Wong FL, Song J, Lin WW, Li Q, Zhu Y, Liang K, Lin W, Lam HM. The soybean plasma membrane-localized cation/H + exchanger GmCHX20a plays a negative role under salt stress. PHYSIOLOGIA PLANTARUM 2021; 171:714-727. [PMID: 33094482 DOI: 10.1111/ppl.13250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Cation/H+ -exchanger (CHX) perform diverse functions in plants, including being a part of the protective mechanisms to cope with salt stress. GmCHX1 has been previously identified as the causal gene in a major salt-tolerance quantitative trait locus (QTL) in soybean, but little is known about another close paralog, GmCHX20a, found in the same QTL. In this study, GmCHX20a was characterized along with GmCHX1. The expression patterns of the two genes and the direction of Na+ flux directed by overexpression of these two transporters are different, suggesting that they are functionally distinct. The ectopic expression of GmCHX20a led to an increase in salt sensitivity and osmotic tolerance, which was consistent with its role in increasing Na+ uptake into the root. Although this seems counter-intuitive, it may in fact be part of the mechanism by which soybean could counter act the effects of osmotic stress, which is commonly manifested in the initial stage of salinity stress. On the other hand, GmCHX1 from salt-tolerant soybean was shown to protect plants via Na+ exclusion under salt stress. Taken together these results suggest that GmCHX20a and GmCHX1 might work complementally through a concerted effort to address both osmotic stress and ionic stress as a result of elevated salinity.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyue Xu
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Song Sun
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Li
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Fuk-Ling Wong
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Wei Lin
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Qinghua Li
- Putian Institute of Agricultural Sciences, Putian, China
| | - Yebao Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Calhoun S, Bell TAS, Dahlin LR, Kunde Y, LaButti K, Louie KB, Kuftin A, Treen D, Dilworth D, Mihaltcheva S, Daum C, Bowen BP, Northen TR, Guarnieri MT, Starkenburg SR, Grigoriev IV. A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun Biol 2021; 4:333. [PMID: 33712730 PMCID: PMC7955037 DOI: 10.1038/s42003-021-01859-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Microalgae efficiently convert sunlight into lipids and carbohydrates, offering bio-based alternatives for energy and chemical production. Improving algal productivity and robustness against abiotic stress requires a systems level characterization enabled by functional genomics. Here, we characterize a halotolerant microalga Scenedesmus sp. NREL 46B-D3 demonstrating peak growth near 25 °C that reaches 30 g/m2/day and the highest biomass accumulation capacity post cell division reported to date for a halotolerant strain. Functional genomics analysis revealed that genes involved in lipid production, ion channels and antiporters are expanded and expressed. Exposure to temperature stress shifts fatty acid metabolism and increases amino acids synthesis. Co-expression analysis shows that many fatty acid biosynthesis genes are overexpressed with specific transcription factors under cold stress. These and other genes involved in the metabolic and regulatory response to temperature stress can be further explored for strain improvement.
Collapse
Affiliation(s)
- Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tisza Ann Szeremy Bell
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Division of Biological Sciences, Genome Core, University of Montana, Missoula, MT, USA
| | - Lukas R Dahlin
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Yuliya Kunde
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrea Kuftin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Treen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sirma Mihaltcheva
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin P Bowen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Shawn R Starkenburg
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Nestrerenko EO, Krasnoperova OE, Isayenkov SV. Potassium Transport Systems and Their Role in Stress Response, Plant Growth, and Development. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
18
|
Wang Y, Ying J, Zhang Y, Xu L, Zhang W, Ni M, Zhu Y, Liu L. Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish ( Raphanus sativus L.). Int J Mol Sci 2020; 21:E8262. [PMID: 33158201 PMCID: PMC7662821 DOI: 10.3390/ijms21218262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
The CPA (cation proton antiporter) family plays an essential role during plant stress tolerance by regulating ionic and pH homeostasis of the cell. Radish fleshy roots are susceptible to abiotic stress during growth and development, especially salt stress. To date, CPA family genes have not yet been identified in radish and the biological functions remain unclear. In this study, 60 CPA candidate genes in radish were identified on the whole genome level, which were divided into three subfamilies including the Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) families. In total, 58 of the 60 RsCPA genes were localized to the nine chromosomes. RNA-seq. data showed that 60 RsCPA genes had various expression levels in the leaves, roots, cortex, cambium, and xylem at different development stages, as well as under different abiotic stresses. RT-qPCR analysis indicated that all nine RsNHXs genes showed up regulated trends after 250 mM NaCl exposure at 3, 6, 12, and 24h. The RsCPA31 (RsNHX1) gene, which might be the most important members of the RsNHX subfamily, exhibited obvious increased expression levels during 24h salt stress treatment. Heterologous over-and inhibited-expression of RsNHX1 in Arabidopsis showed that RsNHX1 had a positive function in salt tolerance. Furthermore, a turnip yellow mosaic virus (TYMV)-induced gene silence (VIGS) system was firstly used to functionally characterize the candidate gene in radish, which showed that plant with the silence of endogenous RsNHX1 was more susceptible to the salt stress. According to our results we provide insights into the complexity of the RsCPA gene family and a valuable resource to explore the potential functions of RsCPA genes in radish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| |
Collapse
|
19
|
Vaid N, Ishihara H, Plötner B, Sageman-Furnas K, Wiszniewski A, Laitinen RAE. Leaf chlorosis in Arabidopsis thaliana hybrids is associated with transgenerational decline and imbalanced ribosome number. THE NEW PHYTOLOGIST 2020; 228:989-1000. [PMID: 32557724 DOI: 10.1111/nph.16752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 05/09/2023]
Abstract
The interaction of two parental genomes can result in negative outcomes in offspring, also known as hybrid incompatibility. We have previously reported a case in which two recessively interacting alleles result in hybrid chlorosis in Arabidopsis thaliana. A DEAD-box RNA helicase 18 (AtRH18) was identified to be necessary for chlorosis. In this study, we use a sophisticated genetic approach to investigate genes underlying hybrid chlorosis. Sequence comparisons, DNA methylation inhibitor drug treatment and segregation analysis were used to investigate the epigenetic regulation of hybrid chlorosis. Relative rRNA numbers were quantified using real-time quantitative PCR. We confirmed the causality of AtRH18 and provided evidence for the involvement of the promoter region of AtRH18 in the hybrid chlorosis. Furthermore, AtMOM1 from the second parent was identified as the likely candidate gene on chromosome 1. Chlorotic hybrids displayed transgenerational decline in chlorosis, and DNA demethylation experiment restored chlorophyll levels in chlorotic hybrids. Quantification of rRNA indicated that hybrid chlorosis was associated with an imbalance in the ratio of cytosolic and plastid ribosomes. Our findings highlight that the epigenetic regulation of AtRH18 causes hybrid breakdown and provide novel information about the role of AtRH18 in plant development.
Collapse
Affiliation(s)
- Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Katelyn Sageman-Furnas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
20
|
Isayenkov SV, Dabravolski SA, Pan T, Shabala S. Phylogenetic Diversity and Physiological Roles of Plant Monovalent Cation/H + Antiporters. FRONTIERS IN PLANT SCIENCE 2020; 11:573564. [PMID: 33123183 PMCID: PMC7573149 DOI: 10.3389/fpls.2020.573564] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
The processes of plant nutrition, stress tolerance, plant growth, and development are strongly dependent on transport of mineral nutrients across cellular membranes. Plant membrane transporters are key components of these processes. Among various membrane transport proteins, the monovalent cation proton antiporter (CPA) superfamily mediates a broad range of physiological and developmental processes such as ion and pH homeostasis, development of reproductive organs, chloroplast operation, and plant adaptation to drought and salt stresses. CPA family includes plasma membrane-bound Na+/H+ exchanger (NhaP) and intracellular Na+/H+ exchanger NHE (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins. In this review, we have completed the phylogenetic inventory of CPA transporters and undertaken a comprehensive evolutionary analysis of their development. Compared with previous studies, we have significantly extended the range of plant species, including green and red algae and Acrogymnospermae into phylogenetic analysis. Our data suggest that the multiplication and complexation of CPA isoforms during evolution is related to land colonisation by higher plants and associated with an increase of different tissue types and development of reproductive organs. The new data extended the number of clades for all groups of CPAs, including those for NhaP/SOS, NHE/NHX, KEA, and CHX. We also critically evaluate the latest findings on the biological role, physiological functions and regulation of CPA transporters in relation to their structure and phylogenetic position. In addition, the role of CPA members in plant tolerance to various abiotic stresses is summarized, and the future priority directions for CPA studies in plants are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Vitebsk, Belarus
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
21
|
Deolu-Ajayi AO, Meyer AJ, Haring MA, Julkowska MM, Testerink C. Genetic Loci Associated with Early Salt Stress Responses of Roots. iScience 2019; 21:458-473. [PMID: 31707259 PMCID: PMC6849332 DOI: 10.1016/j.isci.2019.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Salinity is a devastating abiotic stress accounting for major crop losses yearly. Plant roots can strikingly grow away from high-salt patches. This response is termed halotropism and occurs through auxin redistribution in roots in response to a salt gradient. Here, a natural variation screen for the early and NaCl-specific halotropic response of 333 Arabidopsis accessions revealed quantitative differences in the first 24 h. These data were successfully used to identify genetic components associated with the response through Genome-Wide Association Study (GWAS). Follow-up characterization of knockout mutants in Col-0 background confirmed the role of transcription factor WRKY25, cation-proton exchanger CHX13, and a gene of unknown function DOB1 (Double Bending 1) in halotropism. In chx13 and dob1 mutants, ion accumulation and shoot biomass under salt stress were also affected. Thus, our GWAS has identified genetic components contributing to main root halotropism that provide insight into the genetic architecture underlying plant salt responses.
Collapse
Affiliation(s)
- Ayodeji O Deolu-Ajayi
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands; Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands
| | - Michel A Haring
- Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Magdalena M Julkowska
- Department of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands.
| |
Collapse
|
22
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Rice lectin receptor‐like kinase provides salinity tolerance by ion homeostasis. Biotechnol Bioeng 2019; 117:498-510. [DOI: 10.1002/bit.27216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Shabnam K. Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and BioinformaticsCOBS&H, CCS Haryana Agricultural UniversityHisar Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| |
Collapse
|
23
|
Fu L, Ding Z, Sun X, Zhang J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes (Basel) 2019; 10:genes10100743. [PMID: 31554307 PMCID: PMC6826491 DOI: 10.3390/genes10100743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/14/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023] Open
Abstract
Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Zehong Ding
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| |
Collapse
|
24
|
Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed JW. miR167 limits anther growth to potentiate anther dehiscence. Development 2019; 146:dev.174375. [PMID: 31262724 DOI: 10.1242/dev.174375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.
Collapse
Affiliation(s)
- Lanjie Zheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Gonzalo Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Laurina Bird
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Laboratoire de Reproduction et Developpement des Plantes, Ecole Normale Superieure de Lyon, 69342 Lyon, France
| |
Collapse
|
25
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Sharma H, Taneja M, Upadhyay SK. Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics 2019; 112:356-370. [PMID: 30818061 DOI: 10.1016/j.ygeno.2019.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
The monovalent cation proton antiporter (CPA) superfamily comprises Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins, which play vital functions in plants. A total of 107 TaCPA proteins were identified in Triticum aestivum, and phylogenetically classified into 35 TaNHX, 24 TaKEA and 48 TaCHX proteins. These families had representatives derived from all three sub-genomes. TaKEA genes consisted of higher number of exons, followed by TaNHXs and TaCHXs. The occurrence of about 10 transmembrane regions and higher composition of helices and coils support their membrane-bound and hydrophobic nature. Diverse expression in various tissues and modulated expression under stress conditions suggested their role in development and in response to stress. Co-expression analyses revealed their complex interaction networks. Expression of TaNHX4-B.1 and TaNHX4-B.4 facilitated differential abiotic stress tolerance to Escherichia coli. Our study provides comprehensive information about CPA genes, which would be useful in their future functional characterization.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Botany, Panjab University, Sector 14, Chandigarh 160014, India
| | - Mehak Taneja
- Department of Botany, Panjab University, Sector 14, Chandigarh 160014, India
| | | |
Collapse
|
27
|
Sze H, Chanroj S. Plant Endomembrane Dynamics: Studies of K +/H + Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. PLANT PHYSIOLOGY 2018; 177:875-895. [PMID: 29691301 PMCID: PMC6053008 DOI: 10.1104/pp.18.00142] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 05/17/2023]
Abstract
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the trans-Golgi network or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane and contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and, in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis (Arabidopsis thaliana) genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet, the presence of distinct residues suggests that some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Salil Chanroj
- Department of Biotechnology, Burapha University, Chon-Buri 20131, Thailand
| |
Collapse
|
28
|
Molecular characterization and expression analysis of the Na +/H + exchanger gene family in Medicago truncatula. Funct Integr Genomics 2017; 18:141-153. [PMID: 29280022 DOI: 10.1007/s10142-017-0581-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl- contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl-. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.
Collapse
|
29
|
Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in
Eucalyptus microcarpa
: Implications for adaptive potential to projected climate change. Mol Ecol 2017; 26:6002-6020. [DOI: 10.1111/mec.14341] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rebecca Jordan
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | - Ary A. Hoffmann
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | | | | |
Collapse
|
30
|
Lei R, Li X, Ma Z, Lv Y, Hu Y, Yu D. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:962-976. [PMID: 28635025 DOI: 10.1111/tpj.13619] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/13/2017] [Accepted: 06/02/2017] [Indexed: 05/20/2023]
Abstract
Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis.
Collapse
Affiliation(s)
- Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhenbing Ma
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yan Lv
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
31
|
Jia B, Sun M, DuanMu H, Ding X, Liu B, Zhu Y, Sun X. GsCHX19.3, a member of cation/H + exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 2017; 7:9423. [PMID: 28842677 PMCID: PMC5573395 DOI: 10.1038/s41598-017-09772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/21/2023] Open
Abstract
Cation/H+ exchangers (CHX) are characterized to be involved in plant growth, development and stress responses. Although soybean genome sequencing has been completed, the CHX family hasn't yet been systematically analyzed, especially in wild soybean. Here, through Hidden Markov Model search against Glycine soja proteome, 34 GsCHXs were identified and phylogenetically clustered into five groups. Members within each group showed high conservation in motif architecture. Interestingly, according to our previous RNA-seq data, only Group IVa members exhibited highly induced expression under carbonate alkaline stress. Among them, GsCHX19.3 displayed the greatest up-regulation in response to carbonate alkaline stress, which was further confirmed by quantitative real-time PCR analysis. We also observed the ubiquitous expression of GsCHX19.3 in different tissues and its localization on plasma membrane. Moreover, we found that GsCHX19.3 expression in AXT4K, a yeast mutant lacking four ion transporters conferred resistance to low K+ at alkali pH, as well as carbonate stress. Consistently, in Arabidopsis, GsCHX19.3 overexpression increased plant tolerance both to high salt and carbonate alkaline stresses. Furthermore, we also confirmed that GsCHX19.3 transgenic lines showed lower Na+ concentration but higher K+/Na+ values under salt-alkaline stress. Taken together, our findings indicated that GsCHX19.3 contributed to high salinity and carbonate alkaline tolerance.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Medicinaregatan, 9ES-413 90, Gothenburg, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China.
| |
Collapse
|
32
|
Plötner B, Nurmi M, Fischer A, Watanabe M, Schneeberger K, Holm S, Vaid N, Schöttler MA, Walther D, Hoefgen R, Weigel D, Laitinen RAE. Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:251-262. [PMID: 28378460 DOI: 10.1111/tpj.13560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 05/28/2023]
Abstract
Hybrids often differ in fitness from their parents. They may be superior, translating into hybrid vigour or heterosis, but they may also be markedly inferior, because of hybrid weakness or incompatibility. The underlying genetic causes for the latter can often be traced back to genes that evolve rapidly because of sexual or host-pathogen conflicts. Hybrid weakness may manifest itself only in later generations, in a phenomenon called hybrid breakdown. We have characterized a case of hybrid breakdown among two Arabidopsis thaliana accessions, Shahdara (Sha, Tajikistan) and Lövvik-5 (Lov-5, Northern Sweden). In addition to chlorosis, a fraction of the F2 plants have defects in leaf and embryo development, and reduced photosynthetic efficiency. Hybrid chlorosis is due to two major-effect loci, of which one, originating from Lov-5, appears to encode an RNA helicase (AtRH18). To examine the role of the chlorosis allele in the Lövvik area, in addition to eight accessions collected in 2009, we collected another 240 accessions from 15 collections sites, including Lövvik, from Northern Sweden in 2015. Genotyping revealed that Lövvik collection site is separated from the rest. Crosses between 109 accessions from this area and Sha revealed 85 cases of hybrid chlorosis, indicating that the chlorosis-causing allele is common in this area. These results suggest that hybrid breakdown alleles not only occur at rapidly evolving loci, but also at genes that code for conserved processes.
Collapse
Affiliation(s)
- Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Markus Nurmi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
33
|
Padmanaban S, Czerny DD, Levin KA, Leydon AR, Su RT, Maugel TK, Zou Y, Chanroj S, Cheung AY, Johnson MA, Sze H. Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3165-3178. [PMID: 28338823 PMCID: PMC5853877 DOI: 10.1093/jxb/erw483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 05/20/2023]
Abstract
Flowering plant genomes encode multiple cation/H+ exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the egg or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. As pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.
Collapse
Affiliation(s)
- Senthilkumar Padmanaban
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Daniel D Czerny
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kara A Levin
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Robert T Su
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Timothy K Maugel
- Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD, USA
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Salil Chanroj
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Biotechnology, Burapha University, Chon-Buri, Thailand
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Heven Sze
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
- Correspondence:
| |
Collapse
|
34
|
Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 2017; 12:e0171254. [PMID: 28152098 PMCID: PMC5289576 DOI: 10.1371/journal.pone.0171254] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Fertilization sensitivity to heat in rice is a major issue within climate change scenarios in the tropics. A panel of 167 indica landraces and improved varieties was phenotyped for spikelet sterility (SPKST) under 38°C during anthesis and for several secondary traits potentially affecting panicle micro-climate and thus the fertilization process. The panel was genotyped with an average density of one marker per 29 kb using genotyping by sequencing. Genome-wide association analyses (GWAS) were conducted using three methods based on single marker regression, haplotype regression and simultaneous fitting of all markers, respectively. Fourteen loci significantly associated with SPKST under at least two GWAS methods were detected. A large number of associations was also detected for the secondary traits. Analysis of co-localization of SPKST associated loci with QTLs detected in progenies of bi-parental crosses reported in the literature allowed to narrow -down the position of eight of those QTLs, including the most documented one, qHTSF4.1. Gene families underlying loci associated with SPKST corresponded to functions ranging from sensing abiotic stresses and regulating plant response, such as wall-associated kinases and heat shock proteins, to cell division and gametophyte development. Analysis of diversity at the vicinity of loci associated with SPKST within the rice three thousand genomes, revealed widespread distribution of the favourable alleles across O. sativa genetic groups. However, few accessions assembled the favourable alleles at all loci. Effective donors included the heat tolerant variety N22 and some Indian and Taiwanese varieties. These results provide a basis for breeding for heat tolerance during anthesis and for functional validation of major loci governing this trait.
Collapse
Affiliation(s)
| | - Crisanta Bueno
- International Rice Research Institute, Los-Banos, Philippines
| | | | | | | | | |
Collapse
|
35
|
Kumari PH, Kumar SA, Sivan P, Katam R, Suravajhala P, Rao KS, Varshney RK, Kishor PBK. Overexpression of a Plasma Membrane Bound Na +/H + Antiporter-Like Protein ( SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 7:2027. [PMID: 28111589 PMCID: PMC5216050 DOI: 10.3389/fpls.2016.02027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress.
Collapse
Affiliation(s)
- P. Hima Kumari
- Department of Genetics, Osmania UniversityHyderabad, India
| | - S. Anil Kumar
- Department of Genetics, Osmania UniversityHyderabad, India
| | - Pramod Sivan
- Department of Biosciences, Sardar Patel UniversityAnand, India
| | - Ramesh Katam
- Department of Biological Sciences, College of Science and Technology, Florida A&M UniversityTallahassee, FL, USA
| | | | - K. S. Rao
- Department of Biosciences, Sardar Patel UniversityAnand, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | |
Collapse
|
36
|
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA. Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:91-111. [PMID: 27895207 PMCID: PMC5210754 DOI: 10.1104/pp.16.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Ion homeostasis and signaling are crucial to regulate pollen tube growth and morphogenesis and affect upstream membrane transporters and downstream targets.
Collapse
Affiliation(s)
- Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Bárbara Tavares
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| |
Collapse
|
37
|
Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 2016; 113:E5242-9. [PMID: 27528686 DOI: 10.1073/pnas.1519555113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants experience hyperosmotic stress when faced with saline soils and possibly with drought stress, but it is currently unclear how plant roots perceive this stress in an environment of dynamic water availabilities. Hyperosmotic stress induces a rapid rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) in plants, and this Ca(2+) response may reflect the activities of osmo-sensory components. Here, we find in the reference plant Arabidopsis thaliana that the rapid hyperosmotic-induced Ca(2+) response exhibited enhanced response magnitudes after preexposure to an intermediate hyperosmotic stress. We term this phenomenon "osmo-sensory potentiation." The initial sensing and potentiation occurred in intact plants as well as in roots. Having established a quantitative understanding of wild-type responses, we investigated effects of pharmacological inhibitors and candidate channel/transporter mutants. Quintuple mechano-sensitive channels of small conductance-like (MSL) plasma membrane-targeted channel mutants as well as double mid1-complementing activity (MCA) channel mutants did not affect the response. Interestingly, however, double mutations in the plastid K(+) exchange antiporter (KEA) transporters kea1kea2 and a single mutation that does not visibly affect chloroplast structure, kea3, impaired the rapid hyperosmotic-induced Ca(2+) responses. These mutations did not significantly affect sensory potentiation of the response. These findings suggest that plastids may play an important role in early steps mediating the response to hyperosmotic stimuli. Together, these findings demonstrate that the plant osmo-sensory components necessary to generate rapid osmotic-induced Ca(2+) responses remain responsive under varying osmolarities, endowing plants with the ability to perceive the dynamic intensities of water limitation imposed by osmotic stress.
Collapse
|
38
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
39
|
Zhou H, Qi K, Liu X, Yin H, Wang P, Chen J, Wu J, Zhang S. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Mol Genet Genomics 2016; 291:1727-42. [DOI: 10.1007/s00438-016-1215-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
|
40
|
Czerny DD, Padmanaban S, Anishkin A, Venema K, Riaz Z, Sze H. Protein architecture and core residues in unwound α-helices provide insights to the transport function of plant AtCHX17. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1983-1998. [PMID: 27179641 DOI: 10.1016/j.bbamem.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/08/2016] [Indexed: 01/27/2023]
Abstract
Using Arabidopsis thaliana AtCHX17 as an example, we combine structural modeling and mutagenesis to provide insights on its protein architecture and transport function which is poorly characterized. This approach is based on the observation that protein structures are significantly more conserved in evolution than linear sequences, and mechanistic similarities among diverse transporters are emerging. Two homology models of AtCHX17 were obtained that show a protein fold similar to known structures of bacterial Na(+)/H(+) antiporters, EcNhaA and TtNapA. The distinct secondary and tertiary structure models highlighted residues at positions potentially important for CHX17 activity. Mutagenesis showed that asparagine-N200 and aspartate-D201 inside transmembrane5 (TM5), and lysine-K355 inside TM10 are critical for AtCHX17 activity. We reveal previously unrecognized threonine-T170 and lysine-K383 as key residues at unwound regions in the middle of TM4 and TM11 α-helices, respectively. Mutation of glutamate-E111 located near the membrane surface inhibited AtCHX17 activity, suggesting a role in pH sensing. The long carboxylic tail of unknown purpose has an alternating β-sheet and α-helix secondary structure that is conserved in prokaryote universal stress proteins. These results support the overall architecture of AtCHX17 and identify D201, N200 and novel residues T170 and K383 at the functional core which likely participates in ion recognition, coordination and/or translocation, similar to characterized cation/H(+) exchangers. The core of AtCHX17 models according to EcNhaA and TtNapA templates faces inward and outward, respectively, which may reflect two conformational states of the alternating access transport mode for proteins belonging to the plant CHX family.
Collapse
Affiliation(s)
- Daniel D Czerny
- Department of Cell Biology and Molecular Genetics (DC, SP, ZR, HS), University of Maryland, College Park, MD 20742, USA
| | - Senthilkumar Padmanaban
- Department of Cell Biology and Molecular Genetics (DC, SP, ZR, HS), University of Maryland, College Park, MD 20742, USA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kees Venema
- Dpto de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/. Profesor Albareda 1, 18008Granada, Spain
| | - Zoya Riaz
- Department of Cell Biology and Molecular Genetics (DC, SP, ZR, HS), University of Maryland, College Park, MD 20742, USA
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics (DC, SP, ZR, HS), University of Maryland, College Park, MD 20742, USA; Maryland Agricultural Experiment Station, Department of Plant Science and Landscape Architecture (HS), University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
41
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
42
|
Domingo C, Lalanne E, Catalá MM, Pla E, Reig-Valiente JL, Talón M. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1462. [PMID: 27733859 PMCID: PMC5039197 DOI: 10.3389/fpls.2016.01462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/13/2016] [Indexed: 05/15/2023]
Abstract
Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt tolerant mutants illustrates the complexity of this trait evidencing the breadth of the plant responses to salinity including simultaneous cooperation of alternative or complementary mechanisms.
Collapse
Affiliation(s)
- Concha Domingo
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
- *Correspondence: Concha Domingo
| | - Eric Lalanne
- Oryzon Genomics Diagnóstico SLCornellà de Llobregat–Barcelona, Spain
| | - María M. Catalá
- Ebre Field Station, Institut de Recerca i Tecnologia AgroalimentariesAmposta, Spain
| | - Eva Pla
- Ebre Field Station, Institut de Recerca i Tecnologia AgroalimentariesAmposta, Spain
| | - Juan L. Reig-Valiente
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Manuel Talón
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| |
Collapse
|
43
|
Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L, Guan R. GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl - Exclusion Prior to Na + Exclusion But Does Not Improve Early Vigor under Salinity. FRONTIERS IN PLANT SCIENCE 2016; 7:1485. [PMID: 27746805 PMCID: PMC5043451 DOI: 10.3389/fpls.2016.01485] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/20/2016] [Indexed: 05/18/2023]
Abstract
Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3) has the potential to improve soybean yields in salinized conditions. Here we evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions. Three sets of near isogenic lines (NILs), with genetic similarity of 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties 85-140 (salt-sensitive, S) and Tiefeng 8 (salt-tolerant, T) by using marker-assisted selection. Each NIL-T; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigor under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl- in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl- than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl- accumulation in soybean, and contributes to improved soybean yield through maintaining a higher seed weight under saline stress.
Collapse
Affiliation(s)
- Ying Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Lili Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yue Qu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, University of AdelaideGlen Osmond, SA, Australia
| | - Jingjing Chen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiexiang Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhangxiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Ruzhen Chang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, University of AdelaideGlen Osmond, SA, Australia
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Lijuan Qiu, Rongxia Guan,
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Lijuan Qiu, Rongxia Guan,
| |
Collapse
|
44
|
Wang L, Wu X, Liu Y, Qiu QS. AtNHX5 and AtNHX6 Control Cellular K+ and pH Homeostasis in Arabidopsis: Three Conserved Acidic Residues Are Essential for K+ Transport. PLoS One 2015; 10:e0144716. [PMID: 26650539 PMCID: PMC4674129 DOI: 10.1371/journal.pone.0144716] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
AtNHX5 and AtNHX6, the endosomal Na+,K+/H+ antiporters in Arabidopsis, play an important role in plant growth and development. However, their function in K+ and pH homeostasis remains unclear. In this report, we characterized the function of AtNHX5 and AtNHX6 in K+ and H+ homeostasis in Arabidopsis. Using a yeast expression system, we found that AtNHX5 and AtNHX6 recovered tolerance to high K+ or salt. We further found that AtNHX5 and AtNHX6 functioned at high K+ at acidic pH while AtCHXs at low K+ under alkaline conditions. In addition, we showed that the nhx5 nhx6 double mutant contained less K+ and was sensitive to low K+ treatment. Overexpression of AtNHX5 or AtNHX6 gene in nhx5 nhx6 recovered root growth to the wild-type level. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for K+ homeostasis and plant growth. nhx5 nhx6 had a reduced vacuolar and cellular pH as measured with the fluorescent pH indicator BCECF or semimicroelectrode. We further show that AtNHX5 and AtNHX6 are localized to Golgi and TGN. Taken together, AtNHX5 and AtNHX6 play an important role in K+ and pH homeostasis in Arabidopsis. Three conserved acidic residues are essential for K+ transport.
Collapse
Affiliation(s)
- Liguang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Xuexia Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Yafen Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| |
Collapse
|
45
|
Trono D, Laus MN, Soccio M, Alfarano M, Pastore D. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria-An Amazing Defense Tool Against Hyperosmotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1072. [PMID: 26648958 PMCID: PMC4664611 DOI: 10.3389/fpls.2015.01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 05/03/2023]
Abstract
In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K(+)/H(+) antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress (mannitol or NaCl), PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defense under stress.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Cerealicoltura, Foggia, Italy
| | - Maura N. Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Michela Alfarano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| |
Collapse
|
46
|
Zhao J, Li P, Motes CM, Park S, Hirschi KD. CHX14 is a plasma membrane K-efflux transporter that regulates K(+) redistribution in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:2223-38. [PMID: 25754420 DOI: 10.1111/pce.12524] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/19/2015] [Indexed: 05/22/2023]
Abstract
Potassium (K(+) ) is essential for plant growth and development, yet the molecular identity of many K(+) transporters remains elusive. Here we characterized cation/H(+) exchanger (CHX) 14 as a plasma membrane K(+) transporter. CHX14 expression was induced by elevated K(+) and histochemical analysis of CHX14 promoter::GUS transgenic plants indicated that CHX14 was expressed in xylem parenchyma of root and shoot vascular tissues of seedlings. CHX14 knockout (chx14) and CHX14 overexpression seedlings displayed different growth phenotypes during K(+) stress as compared with wild-type seedlings. Roots of mutant seedlings displayed higher K(+) uptake rates than wild-type roots. CHX14 expression in yeast cells deficient in K(+) uptake renders the mutant cells more sensitive to deficiencies of K(+) in the medium. CHX14 mediates K(+) efflux in yeast cells loaded with high K(+) . Uptake experiments using (86) Rb(+) as a tracer for K(+) with both yeast and plant mutants demonstrated that CHX14 expression in yeast and in planta mediated low-affinity K(+) efflux. Functional green fluorescent protein (GFP)-tagged versions of CHX14 were localized to both the yeast and plant plasma membranes. Taken together, we suggest that CHX14 is a plasma membrane K(+) efflux transporter involved in K(+) homeostasis and K(+) recirculation.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Research Service Children's Nutrition Research Center, United States Department of Agriculture, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christy M Motes
- Plant Biology Division, Samuel Roberts Noble Foundation Inc, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Kendal D Hirschi
- Agricultural Research Service Children's Nutrition Research Center, United States Department of Agriculture, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
47
|
Khan MS, Ahmad D, Khan MA. Trends in genetic engineering of plants with (Na+/H+) antiporters for salt stress tolerance. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1060868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Rutley N, Twell D. A decade of pollen transcriptomics. PLANT REPRODUCTION 2015; 28:73-89. [PMID: 25761645 PMCID: PMC4432081 DOI: 10.1007/s00497-015-0261-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/24/2015] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Overview of pollen transcriptome studies. Pollen development is driven by gene expression, and knowledge of the molecular events underlying this process has undergone a quantum leap in the last decade through studies of the transcriptome. Here, we outline historical evidence for male haploid gene expression and review the wealth of pollen transcriptome data now available. Knowledge of the transcriptional capacity of pollen has progressed from genetic studies to the direct analysis of RNA and from gene-by-gene studies to analyses on a genomic scale. Microarray and/or RNA-seq data can now be accessed for all phases and cell types of developing pollen encompassing 10 different angiosperms. These growing resources have accelerated research and will undoubtedly inspire new directions and the application of system-based research into the mechanisms that govern the development, function and evolution of angiosperm pollen.
Collapse
Affiliation(s)
- Nicholas Rutley
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| | - David Twell
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| |
Collapse
|
49
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
50
|
Sinha P, Pazhamala LT, Singh VK, Saxena RK, Krishnamurthy L, Azam S, Khan AW, Varshney RK. Identification and Validation of Selected Universal Stress Protein Domain Containing Drought-Responsive Genes in Pigeonpea (Cajanus cajan L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1065. [PMID: 26779199 PMCID: PMC4701917 DOI: 10.3389/fpls.2015.01065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models (HMM) those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755, and ICPL 227) having different levels of drought tolerance. Gene expression analysis using qRT-PCR revealed 6, 8, and 18 genes to be ≥2-fold differentially expressed in ICPL 151, ICPL 8755, and ICPL 227, respectively. A total of 10 differentially expressed genes showed ≥2-fold up-regulation in the more drought tolerant genotype, which encoded four different classes of proteins. These include plant U-box protein (four genes), universal stress protein A-like protein (four genes), cation/H(+) antiporter protein (one gene) and an uncharacterized protein (one gene). Genes C.cajan_29830 and C.cajan_33874 belonging to uspA, were found significantly expressed in all the three genotypes with ≥2-fold expression variations. Expression profiling of these two genes on the four other legume crops revealed their specific role in pigeonpea. Therefore, these genes seem to be promising candidates for conferring drought tolerance specifically to pigeonpea.
Collapse
Affiliation(s)
- Pallavi Sinha
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Lekha T. Pazhamala
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Vikas K. Singh
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Rachit K. Saxena
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - L. Krishnamurthy
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Sarwar Azam
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Aamir W. Khan
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
- School of Plant Biology and the Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
- *Correspondence: Rajeev K. Varshney
| |
Collapse
|