1
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
2
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Li L, Peng H, Tan S, Zhou J, Fang Z, Hu Z, Gao L, Li T, Zhang W, Chen L. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 2019; 112:1128-1138. [PMID: 31251979 DOI: 10.1016/j.ygeno.2019.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/03/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Cold stress imposes a great impact on the growth of nearly all photosynthetic organisms, including Chlamydomonas reinhardtii (C. reinhardtii). Despite prior studies on the mechanism of stress acclimation in plants, little has been done on the early events of cold sensing in C. reinhardtii. Here, we used C. reinhardtii as a model to study early events of cold signal transduction. By analyzing transcriptomic changes of C. reinhardtii exposed to cold, we found that 3471 genes were differentially expressed after 1 h of cold exposure. These genes were associated with a wide range of biological events and processes such as protein synthesis, cell cycle and protein kinase-based phosphorylation. Besides, the promoter of one gene (named as crAP2) which belongs to AP2/EREBP family and was significantly induced by cold was cloned, and functional analysis was conducted using GUS activity analysis through Agrobacterium-mediated transient assay in tobacco leaves.
Collapse
Affiliation(s)
- Lun Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Hai Peng
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Shenglong Tan
- School of Information and Communication Engineering, Hubei University of Economics, Wuhan 430205, China.
| | - Junfei Zhou
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Zhiwei Fang
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Zhangfeng Hu
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Lifen Gao
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Tiantian Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Weixiong Zhang
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China; Department of Computer Science and Engineering, Washington University, St. Louis, MO 36130, USA.
| | - Lihong Chen
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol Adv 2016; 34:550-564. [DOI: 10.1016/j.biotechadv.2016.01.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
|
5
|
Wang W, Li H, Lin X, Yang S, Wang Z, Fang B. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro. Sci Rep 2015; 5:17099. [PMID: 26657019 PMCID: PMC4675990 DOI: 10.1038/srep17099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.
Collapse
Affiliation(s)
- Wenlei Wang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| | - Huanqin Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Shanjun Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Baishan Fang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP. Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:717-729. [PMID: 25846675 DOI: 10.1111/tpj.12844] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
A significantly improved viral 2A peptide system for dependable high-level expression of dicistronic genes in Chlamydomonas reinhardtii has been developed. Data are presented demonstrating that use of an especially proficient 'extended FMDV 2A' coding region allows production of two independent protein products from a dicistronic gene with almost complete efficiency. Importantly, results are also presented that demonstrate the utility of this 2A system for efficient high-level expression of foreign genes in C. reinhardtii, which has not previously been reliably achievable in this algal model system. To expand the versatility of the 2A expression system, a number of commonly used selectable marker proteins were assessed for their compatibility with the extended FMDV 2A peptide. Additional experiments demonstrate the feasibility and utility of 2A-containing dicistronic systems that rely on a strong conditional promoter for transcriptional control and a low-expression marker gene for selection. This strategy allows easy and efficient delivery of genes of interest whose expression levels require regulation either to mitigate potential toxicity or allow differential expression under controlled experimental conditions. Finally, as an additional practical demonstration of the utility of the extended FMDV 2A system, confocal fluorescence microscopy is used to demonstrate that native and foreign proteins of interest bearing post-translational remnants of the extended FMDV 2A peptide localize correctly to various cellular compartments, including a striking demonstration of the almost exclusive localization of the Rubisco small subunit protein to the pyrenoid of the C. reinhardtii chloroplast in cells maintained under ambient CO2 concentrations.
Collapse
Affiliation(s)
- Thomas M Plucinak
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Kempton M Horken
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Wenzhi Jiang
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Jessica Fostvedt
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Sanh Tan Nguyen
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| |
Collapse
|
7
|
Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. PHOTOSYNTHESIS RESEARCH 2015; 123:255-63. [PMID: 24627032 DOI: 10.1007/s11120-014-9989-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/17/2014] [Indexed: 05/10/2023]
Abstract
Rapid advances in "omic" technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.
Collapse
Affiliation(s)
- Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, MS 3323, Golden, CO, 80401, USA,
| | | |
Collapse
|
8
|
Aksmann A, Pokora W, Baścik-Remisiewicz A, Dettlaff-Pokora A, Wielgomas B, Dziadziuszko M, Tukaj Z. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:31-40. [PMID: 25193882 DOI: 10.1016/j.ecoenv.2014.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for mitochondrion protection. The progressive increase in SOD and CAT activities seems to be involved in the recovery of photosynthesis within 12-24h after the application of the toxicants.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Małgorzata Dziadziuszko
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
9
|
Misra N, Panda PK, Parida BK. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:537-49. [PMID: 24044362 DOI: 10.1089/omi.2013.0025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- 1 Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology , Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
10
|
Vlachakis D, Pavlopoulou A, Kazazi D, Kossida S. Unraveling microalgal molecular interactions using evolutionary and structural bioinformatics. Gene 2013; 528:109-19. [PMID: 23900196 DOI: 10.1016/j.gene.2013.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Microalgae are unicellular microorganisms indispensible for environmental stability and life on earth, because they produce approximately half of the atmospheric oxygen, with simultaneously feeding on the harmful greenhouse gas carbon dioxide. Using gene fusion analysis, a series of five fusion/fission events was identified, that provided the basis for critical insights to their evolutionary history. Moreover, the three-dimensional structures of both the fused and the component proteins were predicted, allowing us to envisage putative protein-protein interactions that are invaluable for the efficient usage, handling and exploitation of microalgae. Collectively, our proposed approach on the five fusion/fission alga protein events contributes towards the expansion of the microalgae knowledgebase, bridging protein evolution of the ancient microalgal species and the rapidly evolving, modern, bioinformatics field.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece
| | | | | | | |
Collapse
|
11
|
Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, Qin S. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genomics 2013; 14:457. [PMID: 23834441 PMCID: PMC3728230 DOI: 10.1186/1471-2164-14-457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. RESULTS Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. CONCLUSIONS Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals 2013; 26:731-40. [DOI: 10.1007/s10534-013-9648-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 06/12/2013] [Indexed: 12/01/2022]
|
13
|
Affiliation(s)
- María V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| | - Julieta Barchiesi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| |
Collapse
|
14
|
Díaz-Santos E, de la Vega M, Vila M, Vigara J, León R. Efficiency of different heterologous promoters in the unicellular microalgaChlamydomonas reinhardtii. Biotechnol Prog 2013; 29:319-28. [DOI: 10.1002/btpr.1690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/27/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Encarnación Díaz-Santos
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta de la Vega
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta Vila
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Javier Vigara
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Rosa León
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| |
Collapse
|
15
|
Zhang X, Ye N, Liang C, Mou S, Fan X, Xu J, Xu D, Zhuang Z. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genomics 2012; 13:565. [PMID: 23098051 PMCID: PMC3532339 DOI: 10.1186/1471-2164-13-565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 10/20/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta) is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. RESULTS De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC) numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur) were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins, such as glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase and heat-shock proteins, may also contribute to colonization of U. linza under stress conditions. CONCLUSIONS The transcriptome of U. linza uncovers some potential genomic mechanisms that might explain its ability to rapidly and successfully colonize coastal ecosystems, including the land-specific genes; special photoprotective mechanism based on both LhcSR and PsbS; development of C4-like carbon-concentrating mechanisms; muti-origin transporters for essential inorganic nutrients; multiple and complex P450s; and glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase, and heat-shock proteins that are related to stress resistance.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chengwei Liang
- Qingdao University of Science > Technology, Qingdao, 266042, China
| | - Shanli Mou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianfang Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic administration (SOA), Qingdao, 266061, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
16
|
Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 2011; 10:91. [PMID: 22047615 PMCID: PMC3234195 DOI: 10.1186/1475-2859-10-91] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/02/2011] [Indexed: 01/03/2023] Open
Abstract
Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae.
Collapse
Affiliation(s)
- Wei-Luen Yu
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
17
|
Waterborg JH. Evolution of histone H3: emergence of variants and conservation of post-translational modification sites. Biochem Cell Biol 2011; 90:79-95. [PMID: 21910587 DOI: 10.1139/o11-036] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone H3 proteins are highly conserved across all eukaryotes and are dynamically modified by many post-translational modifications (PTMs). Here we describe a method that defines the evolution of the family of histone H3 proteins, including the emergence of functionally distinct variants. It combines information from histone H3 protein sequences in eukaryotic species with the evolution of these species as described by the tree of life (TOL) project. This so-called TOL analysis identified the time when the few observed protein sequence changes occurred and when distinct, co-existing H3 protein variants arose. Four distinct ancient duplication events were identified where replication-coupled (RC) H3 variants diverged from replication-independent (RI) forms, like histone H3.3 in animals. These independent events occurred in ancestral lineages leading to the clades of metazoa, viridiplantae, basidiomycota, and alveolata. The proto-H3 sequence in the last eukaryotic common ancestor (LECA) was expanded to at least 133 of its 135 residues. Extreme conservation of known acetylation and methylation sites of lysines and arginines predicts that these PTMs will exist across the eukaryotic crown phyla and in protists with canonical chromatin structures. Less complete conservation was found for most serine and threonine phosphorylation sites. This study demonstrates that TOL analysis can determine the evolution of slowly evolving proteins in sequence-saturated datasets.
Collapse
Affiliation(s)
- Jakob H Waterborg
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
18
|
Chepurnov VA, Chaerle P, Roef L, Van Meirhaeghe A, Vanhoutte K. Classical Breeding in Diatoms: Scientific Background and Practical Perspectives. THE DIATOM WORLD 2011. [DOI: 10.1007/978-94-007-1327-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Ohnuma M, Kuroiwa T, Tanaka K. Optimization of cryopreservation conditions for the unicellular red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2011; 57:137-43. [DOI: 10.2323/jgam.57.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. THE PLANT CELL 2010; 22:2943-55. [PMID: 20852019 PMCID: PMC2965543 DOI: 10.1105/tpc.110.076406] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 05/18/2023]
Abstract
Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.
Collapse
Affiliation(s)
- Guillaume Blanc
- Centre National de la Recherche Scientifique, Laboratoire Information Génomique et Structurale UPR2589, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie 2010; 93:91-100. [PMID: 20709142 DOI: 10.1016/j.biochi.2010.07.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 01/08/2023]
Abstract
Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms' lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | | |
Collapse
|
22
|
Bullerjahn GS, Boyanapalli R, Rozmarynowycz MJ, McKay RML. Cyanobacterial bioreporters as sensors of nutrient availability. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 118:165-188. [PMID: 20091289 DOI: 10.1007/10_2009_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to their ubiquity in aquatic environments and their contribution to total biomass, especially in oligotrophic systems, cyanobacteria can be viewed as a proxy for primary productivity in both marine and fresh waters. In this chapter we describe the development and use of picocyanobacterial bioreporters to measure the bioavailability of nutrients that may constrain total photosynthesis in both lacustrine and marine systems. Issues pertaining to bioreporter construction, performance and field applications are discussed. Specifically, luminescent Synechococcus spp. and Synechocystis spp. bioreporters are described that allow the bioavailability of phosphorus, nitrogen and iron to be accurately measured in environmental samples.
Collapse
Affiliation(s)
- George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | | | |
Collapse
|
23
|
Lapidot M, Shrestha RP, Weinstein Y, Arad S. Red Microalgae: From Basic Know-How to Biotechnology. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Bangiophytes: From one Class to Six; Where Do We Go from Here? CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Wagner V, Gessner G, Mittag M. Functional Proteomics: A Promising Approach to Find Novel Components of the Circadian System. Chronobiol Int 2009; 22:403-15. [PMID: 16076645 DOI: 10.1081/cbi-200062348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the postgenome era, the analysis of entire subproteomes in correlation with their function has emerged due to high throughput technologies. Early approaches have been initiated to identify novel components of the circadian system. For example, in the marine dinoflagellate Lingulodinium polyedra, a chronobiological proteome assay was performed, which resulted in the identification of already known circadian expressed proteins as well as novel temporal controlled proteins involved in metabolic pathways. In the green alga Chlamydomonas reinhardtii, two circadian expressed proteins (a protein disulfide isomerase and a tetratricopeptide repeat protein) were identified by functional proteomics. Also, the first hints of temporal control within chloroplast proteins of Arabidopsis thaliana were identified by proteome analysis.
Collapse
Affiliation(s)
- Volker Wagner
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität-Jena, Germany
| | | | | |
Collapse
|
26
|
Osaki Y, Shirabe T, Nakanishi H, Wakagi T, Yoshimura E. Characterization of phytochelatin synthase produced by the primitive red alga Cyanidioschyzon merolae. Metallomics 2009; 1:353-8. [PMID: 21305133 DOI: 10.1039/b823013g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochelatins (PCs), non-protein peptides with the general structure [(γ-Glu-Cys)n-Gly (n≥ 2)], are involved in the detoxification of toxic heavy metals mainly in higher plants. The synthesis of the peptides is mediated by phytochelatin synthase (PCS), which is activated by a range of heavy metals. CmPCS, a PCS-like gene found in the genomic DNA of the primitive red alga Cyanidioschyzon merolae, was isolated and a recombinant protein (rCmPCS) fused with a hexahistidine tag at the N-terminus of CmPCS was produced. The finding that this protein mediated PC synthesis from glutathione in a metal-dependent way clearly establishes that rCmPCS is functional. The maximum activity was attained at a reaction temperature of 50 °C, considerably higher than the temperature required for the maximal activity of PCS isolated from the higher plant Silene cucubalus, probably due to the alga being a thermophile. CmPCS showed optimal pH in a slightly higher region than higher plant PCSs, probably due to the less effective charge relay network in the catalytic triad. In addition, the pattern of enzyme activation by metal ions was specific to rCmPCS, with Ag+, Cu2+, and Hg2+ showing only limited activation. In contrast to other eukaryotic PCSs, CmPCS has an extra domain in the N-terminal region from residues 1 to 109, and contains fewer cysteine residues in the C-terminal domain. These differences may be responsible for the metal specificity of the activation of CmPCS. Although the enzyme preparation lost PCS activity progressively when stored at 4 °C, the inclusion of Cd2+ in the preparation effectively prevented the reduction of activity. Furthermore, Cd2+ effectively restored the activity of the inactivated enzyme. These results indicate that Cd2+ ions bind the enzyme to maintain the structural integrity of the peptides.
Collapse
Affiliation(s)
- Yuko Osaki
- Department of Applied Biological Chemistry, School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
27
|
Ramachandra TV, Mahapatra DM, B K, Gordon R. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 2009. [DOI: 10.1021/ie900044j] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T. V. Ramachandra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Durga Madhab Mahapatra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Karthick B
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Richard Gordon
- Department of Radiology, University of Manitoba, Room GA216, HSC, 820 Sherbrook Street, Winnipeg MB R3A 1R9, Canada
| |
Collapse
|
28
|
Wagner V, Boesger J, Mittag M. Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii. J Basic Microbiol 2009; 49:32-41. [PMID: 19253330 DOI: 10.1002/jobm.200800292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past years, research on the flagellate unicellular alga Chlamydomonas reinhardtii has entered a new era based on the availability of its complete genome. Since this green alga can be grown relatively easy in a short time-range, sufficient biological material is available to efficiently establish biochemical purification procedures of sub-cellular fractions. Combined with the available genome sequences, this paved the way to perform analysis of specific sub-proteomes by mass spectrometry. In this review, several approaches that provided comprehensive lists of components of certain sub-cellular compartments and their biological relevance will be described. These include proteins of chloroplast ribosomes, of flagella, of the eyespot as well as posttranslational and environmentally modified sub-proteomes. The power of such proteome approaches lies in the identification of novel components and modifications of a given sub-proteome that have not been discovered before. Information is usually gained at a large scale and is very valuable to further understand biological processes of a given cellular sub-compartment. But clearly the arduous task has then to be performed to further analyze the function of specific proteins/genes by RNA interference technology, mutant analyses or methods for identifying the protein interaction network within a sub-proteome.
Collapse
Affiliation(s)
- Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
29
|
Tsuji Y, Suzuki I, Shiraiwa Y. Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): Evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction. PLANT & CELL PHYSIOLOGY 2009; 50:318-329. [PMID: 19109302 DOI: 10.1093/pcp/pcn200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The coccolithophorid Emiliania huxleyi (Haptophyta) is a representative and unique marine phytoplankton species that fixes inorganic carbon by photosynthesis and calci-fication. We examined the initial process of photosynthetic carbon assimilation by analyses of metabolites, enzymes and genes. When the cells were incubated with a radioactive substrate (2.3 mM NaH(14)CO(3)) for 10 s under illumination, 70% of the (14)C was incorporated into the 80% methanol-soluble fraction. Eighty-five and 15% of (14)C in the soluble fraction was incorporated into phosphate esters (P-esters), including the C(3) cycle intermediates and a C(4) compound, aspartate, respectively. A pulse-chase experiment showed that (14)C in P-esters was mainly transferred into lipids, while [(14)C]aspartate, [(14)C]alanine and [(14)C]glutamate levels remained almost constant. These results indicate that the C(3) cycle functions as the initial pathway of carbon assimilation and that beta-carboxylation contributes to the production of amino acids in subsequent metabolism. Transcriptional analysis of beta-carboxylases such as pyruvate carboxylase (PYC), phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK) revealed that PYC and PEPC transcripts were greatly increased under illumination, whereas the PEPCK transcript decreased remarkably. PEPC activity was higher in light-grown cells than in dark-adapted cells. PYC activity was detected in isolated chloroplasts of light-grown cells. According to analysis of their deduced N-terminal sequence, PYC and PEPC are predicted to be located in the chloroplasts and mitochondria, respectively. These results suggest that E. huxleyi possesses unique carbon assimila-tion mechanisms in which beta-carboxylation by both PYC and PEPC plays important roles in different organelles.
Collapse
|
30
|
Abstract
In the unicellular flagellated green alga Chlamydomonas reinhardtii several processes are regulated by the circadian clock. To study circadian controlled processes, the cell's clock is synchronized in a 12 h light-12 h dark cycle (LD12:12) before the cells are released into constant conditions of dim light and temperature. Under these free-running conditions circadian rhythms will continue with a period of about 24 h and cells can be harvested during specific time-points of subjective day and night. These cells were then used for isolating basic proteins by heparin-affinity chromatography, separating them on two-dimensional PAGE and comparing the amount of their expression at four different time-points of subjective day and night. Among 230 proteins, we could find two proteins whose expression level changed more than fourfold throughout the circadian cycle. These proteins were identified as a protein disulfide isomerase (PDI)-like protein and a tetratricopeptide repeat (TPR) protein by liquid-chromatography-electrospray ionization mass spectrometry (LC-ESI-MS).
Collapse
|
31
|
Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:1-11. [PMID: 18161486 DOI: 10.1007/978-0-387-75532-8_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transformation of microalgae is a first step in their use for biotechnological applications involving foreign protein production or molecular modifications of specific cell metabolic pathways. Since the first reliable achievements of nuclear transformation in Chlamydomonas, other eukaryotic microalgae have become transformed with molecular markers that allow a direct selection. Different methods--glass beads, electroporation, particle bombardment, or Agrobacterium--and constructions have been set up in several organisms and successfully used. However, some problems associated with efficiency, integration, or stability of the transgenes still persist and are analysed herein. Though the number of microalgae species successfully transformed is not very high, prospects for transformation of many more are good enough on the basis of what has been achieved so far.
Collapse
|
32
|
Aksmann A, Tukaj Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. CHEMOSPHERE 2008; 74:26-32. [PMID: 18980775 DOI: 10.1016/j.chemosphere.2008.09.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/11/2008] [Accepted: 09/23/2008] [Indexed: 05/27/2023]
Abstract
Short-term (24h) experiments were performed to examine the effect of anthracene (ANT) on Chlamydomonas reinhardtii cw92 grown in a batch culture system aerated with 2.5% CO(2). At concentrations ranging from 0.7 to 5.6 microM, ANT inhibited the growth of population in a concentration-dependent manner and EC(50) calculated amounted to 1.6 microM. At concentrations from 0.7 to 4.2 microM ANT stimulated respiration and inhibited the intensity of photosynthesis but did not affect chlorophyll content in the cells. ANT influenced chlorophyll a fluorescence parameters, measured by OJIP test (O, J, I and P are the different steps of fluorescence induction curve). ANT diminished the performance index (PI), the yield of primary photochemistry (phi(Po)), the yield of electron transport (phi(Epsilonomicron), the efficiency of moving the electron beyond Qa(-) (Psi(0)) and the fraction of active oxygen evolving complexes (OEC). The fraction of active PS II reaction centres in the treated samples dramatically dropped. The most pronounced changes in ANT-treated cells were observed in the stimulation of energy dissipation parameter (DI(0)/RC). The only OJIP parameter that was not influenced by ANT was energy absorption by photosynthetic antennae (ABS). The results lead to a conclusion that the inhibition of photosynthesis may be a consequence of unspecific ANT-membrane interaction, resulting from hydrophobic character of this hydrocarbon.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology, University of Gdańsk, Gdynia, Poland
| | | |
Collapse
|
33
|
Chepurnov VA, Mann DG, von Dassow P, Vanormelingen P, Gillard J, Inzé D, Sabbe K, Vyverman W. In search of new tractable diatoms for experimental biology. Bioessays 2008; 30:692-702. [PMID: 18536039 DOI: 10.1002/bies.20773] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diatoms are a species-rich group of photosynthetic eukaryotes, with enormous ecological significance and great potential for biotechnology. During the last decade, diatoms have begun to be studied intensively using modern molecular techniques and the genomes of four diatoms have been wholly or partially sequenced. Although new insights into the biology and evolution of diatoms are accumulating rapidly due to the availability of reverse genetic tools, the full potential of these molecular biological approaches can only be fully realized if experimental control of sexual crosses becomes firmly established and widely accessible to experimental biologists. Here we discuss the issue of choosing new models for diatom research, by taking into account the broader context of diatom mating systems and the place of sex in relation to the intricate cycle of cell size reduction and restitution that is characteristic of most diatoms. We illustrate the results of our efforts to select and develop experimental systems in diatoms, using species with typical life cycle attributes, which could be used as future model organisms to complement existing ones.
Collapse
|
34
|
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:621-39. [PMID: 18476868 DOI: 10.1111/j.1365-313x.2008.03492.x] [Citation(s) in RCA: 1724] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Applied Biological Sciences, Arizona State University Polytechnic Campus, Mesa, AZ 85212, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Shi J, Pan K, Yu J, Zhu B, Yang G, Yu W, Zhang X. ANALYSIS OF EXPRESSED SEQUENCE TAGS FROM THE MARINE MICROALGA NANNOCHLOROPSIS OCULATA (EUSTIGMATOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2008; 44:99-102. [PMID: 27041046 DOI: 10.1111/j.1529-8817.2007.00444.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nannochloropsis oculata (Droop) D. J. Hibberd (Eustigmatophyceae), a marine eukaryotic unicellular alga, is widely used in mariculture as live feed. It is considered to be of high nutritional value owing to its high content of proteins; polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA, C20:5n3); and diverse pigments. Previous studies of this microalga focused on its taxonomy, culture, and biochemistry, but little is known at the molecular level. Establishing a molecular base is vital to understand the biological processes of this alga. Therefore, we constructed a cDNA library using algal cells grown at exponential growth phase and carried out expressed sequence tag (EST) analysis. A total of 1,960 nonredundant sequences (NRSs) were generated for N. oculata clone CS-179. Only 32.5% of NRSs showed significant similarity (E < 1e-04) to proteins registered in the GenBank nonredundant protein database. The KOG (clusters of euKaryotic Orthologous Groups) profile database returned significant hits for 490 NRSs. Analysis revealed that a large proportion of NRSs could be unique to this microalga.
Collapse
Affiliation(s)
- Juan Shi
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Kehou Pan
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Jianzhong Yu
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Baohua Zhu
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Guanpin Yang
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Wengong Yu
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Xinyu Zhang
- Ministry of Education Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Marine Drugs, Ocean University of China, Qingdao 266003, ChinaMinistry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
37
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Hernàndez-Sebastiá C, Varin L, Marsolais F. Sulfotransferases from Plants, Algae and Phototrophic Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Serpins in plants and green algae. Funct Integr Genomics 2007; 8:1-27. [PMID: 18060440 DOI: 10.1007/s10142-007-0059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/06/2007] [Accepted: 09/15/2007] [Indexed: 01/02/2023]
Abstract
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.
Collapse
|
40
|
Kopriva S, Wiedemann G, Reski R. Sulfate assimilation in basal land plants - what does genomic sequencing tell us? PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:556-64. [PMID: 17853355 DOI: 10.1055/s-2007-965430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sulfate assimilation is a pathway providing reduced sulfur for the synthesis of cysteine, methionine, co-enzymes such as iron-sulfur centres, thiamine, lipoic acid, or Coenzyme A, and many secondary metabolites, e.g., glucosinolates or alliins. The pathway is relatively well understood in flowering plants, but very little information exists on sulfate assimilation in basal land plants. Since the finding of a putative 3'-phosphoadenosine 5'-phosphosulfate reductase in PHYSCOMITRELLA PATENS, an enigmatic enzyme thought to exist in fungi and some bacteria only, it has been evident that sulfur metabolism in lower plants may substantially differ from seed plant models. The genomic sequencing of two basal plant species, the Bryophyte PHYSCOMITRELLA PATENS, and the Lycophyte SELAGINELLA MOELLENDORFFII, opens up the possibility to search for differences between lower and higher plants at the genomic level. Here we describe the similarities and differences in the organisation of the sulfate assimilation pathway between basal and advanced land plants derived from genome comparisons of these two species with ARABIDOPSIS THALIANA and ORYZA SATIVA, two seed plants with sequenced genomes. We found differences in the number of genes encoding sulfate transporters, adenosine 5'-phosphosulfate reductase, and sulfite reductase between the lower and higher plants. The consequences for regulation of the pathway and evolution of sulfate assimilation in plants are discussed.
Collapse
Affiliation(s)
- S Kopriva
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
41
|
Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy P, Udayakumar M. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. PLANTA 2007; 226:655-70. [PMID: 17431668 DOI: 10.1007/s00425-007-0514-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 03/13/2007] [Indexed: 05/02/2023]
Abstract
Stress tolerance is a multigenic character and there are many stress responsive genes, which are stress specific. Although many of these have been cloned, their functional significance remains fragmentary. Hence it is important to identify the relevant stress genes involved in altering the metabolism for adaptation. Overexpression is one of the several approaches and Chlamydomonas is a suitable system to study the functional relevance of stress genes. Stress responses can only be assessed on prior exposure to sublethal induction stress. In this study the acclimation response of Chlamydomonas was assessed for different abiotic stresses using physiological screens like chlorophyll stability, membrane damage, cell viability, accumulation of free radicals, survival and recovery growth. We demonstrate that Chlamydomonas responds to diverse stresses and is a potential system to study the relevance of stress genes. The relevance of choline oxidase A (codA), a key enzyme in glycinebetaine biosynthesis, was examined by developing transformants expressing codA gene from Arthrobacter globiformis. Southern positive transformants showed enhanced accumulation of glycinebetaine. The transformants also showed enhanced growth under salinity, high light coupled with methylviologen-induced oxidative stress, high temperature and cold stress. However the transgenics were not tolerant to PEG-mediated simulated osmotic stress, LiCl, menadione and UV stress. Increased cell survival and decreased chlorophyll degradation in transformants under acclimated conditions further confirmed the relevance of codA in imparting stress tolerance. Our results indicated that the relevance of stress responsive genes can be efficiently validated for diverse abiotic stresses using Chlamydomonas system.
Collapse
Affiliation(s)
- R Hema
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
42
|
Maruyama S, Kuroiwa H, Miyagishima SY, Tanaka K, Kuroiwa T. Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:1122-9. [PMID: 17319844 DOI: 10.1111/j.1365-313x.2006.03024.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Centromeres are universally conserved functional units in eukaryotic linear chromosomes, but little is known about the structure and dynamics of the centromere in lower photosynthetic eukaryotes. Here we report the identification of a centromere marker protein CENH3 and visualization of centromere dynamics in the ultra-small primitive red alga Cyanidioschyzon merolae. Immunoblotting and immunofluorescence microscopy showed that CENH3 increased rapidly during S phase, followed by a drastic reconstitution into two discrete foci adjacent to the spindle poles at metaphase, suggesting the cell-cycle-regulated expression of CENH3. Immunoelectron microscopy revealed that the CENH3 signals were associated with the nuclear envelope, implying interplay between the kinetochore complex and the nuclear envelope. These results demonstrate dynamic centromere reconstitution during the cell cycle in an organism in which the chromosomes do not condense at metaphase.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Rasmussen RS, Morrissey MT. Marine biotechnology for production of food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 52:237-92. [PMID: 17425947 DOI: 10.1016/s1043-4526(06)52005-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.
Collapse
Affiliation(s)
- Rosalee S Rasmussen
- Seafood Laboratory, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA
| | | |
Collapse
|
45
|
Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary Processes During the Formation of the Plant-Specific Dof Transcription Factor Family. ACTA ACUST UNITED AC 2007; 48:179-85. [PMID: 17132629 DOI: 10.1093/pcp/pcl044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We found 19 putative genes for plant-specific Dof transcription factors in the moss Physcomitrella patens and one Dof gene in the green alga Chlamydomonas reinhardtii, but no identifiable Dof gene in the red alga Cyanidioschyzon merolae and the diatom Thalassiosira pseudonana, suggesting that the origin of the Dof transcription factors pre-dates the divergence of the green algae and the ancestors of terrestrial plants. The phylogenetic analyses contended that the Dof family in angiosperms formed through a series of evolutionary processes, including intensive duplications of a specific ancestral gene after the divergence of the moss and the angiosperm lineages.
Collapse
Affiliation(s)
- Mikao Shigyo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | |
Collapse
|
46
|
Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M. A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. PLANT PHYSIOLOGY 2006; 142:797-806. [PMID: 16920878 PMCID: PMC1586056 DOI: 10.1104/pp.106.085944] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The RNA-binding protein CHLAMY1 from the green alga Chlamydomonas reinhardtii consists of two subunits. One (named C1) contains three lysine homology motifs and the other (named C3) has three RNA recognition motifs. CHLAMY1 binds specifically to uridine-guanine-repeat sequences and its circadian-binding activity is controlled at the posttranslational level, presumably by time-dependent formation of protein complexes consisting of C1 and C3 or C1 alone. Here we have characterized the role of the two subunits within the circadian system by measurements of a circadian rhythm of phototaxis in strains where C1 or C3 are either up- or down-regulated. Further, we have measured the rhythm of nitrite reductase activity in strains with reduced levels of C1 or C3. In case of changes in the C3 level (both increases and decreases), the acrophase of the phototaxis rhythm and of the nitrite reductase rhythm (C3 decrease) was shifted by several hours from subjective day (maximum in wild-type cells) back towards the night. In contrast, both silencing and overexpression of C1 resulted in disturbed circadian rhythms and arrhythmicity. Interestingly, the expression of C1 is interconnected with that of C3. Our data suggest that CHLAMY1 is involved in the control of the phase angle and period of the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Dobromir Iliev
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
47
|
La Claire JW. Analysis of expressed sequence tags from the harmful alga, Prymnesium parvum (Prymnesiophyceae, Haptophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:534-46. [PMID: 16896534 DOI: 10.1007/s10126-005-5182-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/19/2006] [Indexed: 05/11/2023]
Abstract
A cDNA library was constructed from late log-phase cultures of the ichthyotoxin-producing haptophyte, Prymnesium parvum. Approximately 6,300 single-pass 5' nucleotide sequences (out of nearly 8,000 randomly isolated clones) achieved length and quality criteria for incorporation into an expressed sequence tag (EST) database. Collectively, 3,415 unique genes (tentative unigenes [TUGs]) were assembled. Database searches revealed approximately 1,100 TUG (34%) that encode proteins of known or putative function (expect values E < or = 1.0 x 10(-10)), representing most functional classes of proteins and many metabolic pathways. In addition to proteins involved in photosynthesis and protein synthesis/degradation, one of the most frequently encountered transcripts putatively encodes an ABC-type phosphate transport system component. Active (and efficient?) phosphate transport may correlate with rapid growth, perhaps explaining how this alga out-competes other species when it blooms and becomes toxic under low-phosphate conditions. The majority of TUGs, including 12 of the 50 most commonly encountered transcripts, encode potentially novel proteins, some of which are probably involved in synthesis and secretion of the unique prymnesin toxins. This work suggests that future studies on the expression of many of these genes during rapid growth should provide insight into the genetic basis of bloom formation and toxicity.
Collapse
Affiliation(s)
- John W La Claire
- Section of MCD Biology (A6700), University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
48
|
Wagner V, Gessner G, Heiland I, Kaminski M, Hawat S, Scheffler K, Mittag M. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. EUKARYOTIC CELL 2006; 5:457-68. [PMID: 16524901 PMCID: PMC1398068 DOI: 10.1128/ec.5.3.457-468.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular flagellated green alga Chlamydomonas reinhardtii has emerged as a model organism for the study of a variety of cellular processes. Posttranslational control via protein phosphorylation plays a key role in signal transduction, regulation of gene expression, and control of metabolism. Thus, analysis of the phosphoproteome of C. reinhardtii can significantly enhance our understanding of various regulatory pathways. In this study, we have grown C. reinhardtii cultures in the presence of an inhibitor of Ser/Thr phosphatases to increase the phosphoprotein pool. Phosphopeptides from these cells were enriched by immobilized metal-ion affinity chromatography and analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry (MS) with MS-MS as well as neutral-loss-triggered MS-MS-MS spectra. In this way, we were able to identify 360 phosphopeptides from 328 different phosphoproteins of C. reinhardtii, thus providing new insights into a variety of cellular processes, including metabolic and signaling pathways. Comparative analysis of the phosphoproteome also yielded new functional information on proteins controlled by redox regulation (thioredoxin target proteins) and proteins of the chloroplast 70S ribosome, the centriole, and especially the flagella, for which 32 phosphoproteins were identified. The high yield of phosphoproteins of the latter correlates well with the presence of several flagellar kinases and indicates that phosphorylation/dephosphorylation represents one of the key regulatory mechanisms of eukaryotic cilia. Our data also provide new insights into certain cilium-related mammalian diseases.
Collapse
Affiliation(s)
- Volker Wagner
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, Am Planetarium 1, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
McIntosh KB, Bonham-Smith PC. Ribosomal protein gene regulation: what about plants? ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome is an intricate ribonucleoprotein complex with a multitude of protein constituents present in equimolar amounts. Coordination of the synthesis of these ribosomal proteins (r-proteins) presents a major challenge to the cell. Although most r-proteins are highly conserved, the mechanisms by which r-protein gene expression is regulated often differ widely among species. While the primary regulatory mechanisms coordinating r-protein synthesis in bacteria, yeast, and animals have been identified, the mechanisms governing the coordination of plant r-protein expression remain largely unexplored. In addition, plants are unique among eukaryotes in carrying multiple (often more than two) functional genes encoding each r-protein, which substantially complicates coordinate expression. A survey of the current knowledge regarding coordinated systems of r-protein gene expression in different model organisms suggests that vertebrate r-protein gene regulation provides a valuable comparison for plants.
Collapse
Affiliation(s)
- Kerri B. McIntosh
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Peta C. Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
50
|
Otero A, Goto K. Microalgae: the "self-synchronized" eukaryotes. Trends Biotechnol 2005; 23:448-9. [PMID: 15955582 DOI: 10.1016/j.tibtech.2005.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 05/04/2005] [Accepted: 05/31/2005] [Indexed: 11/22/2022]
|