1
|
Cui H, Zhou G, Ruan H, Zhao J, Hasi A, Zong N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:369. [PMID: 36679082 PMCID: PMC9865268 DOI: 10.3390/plants12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.
Collapse
Affiliation(s)
- Hongwei Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Guyi Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqiang Ruan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Na Zong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Chen B, Li C, Chen Y, Chen S, Xiao Y, Wu Q, Zhong L, Huang K. Proteome profiles during early stage of somatic embryogenesis of two Eucalyptus species. BMC PLANT BIOLOGY 2022; 22:558. [PMID: 36460945 PMCID: PMC9716740 DOI: 10.1186/s12870-022-03956-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Somatic embryogenesis (SE) was recognized as an important tool for plants to propagate. However, our knowledge about the proteins involved in early SE including the callus dedifferentiation is still limited, especially in the economic woody tree - Eucalyptus. RESULTS We used the data-independent acquisition mass-spectrometry to study the different proteome profiles of early SE of two Eucalyptus species-E. camaldulensis (high regeneratively potential) and E. grandis x urophylla (low regenerative potential). Initially, 35,207 peptides and 7,077 proteins were identified in the stem and tissue-culture induced callus of the two Eucalyptus species. MSstat identified 2,078 and 2,807 differentially expressed proteins (DEPs) in early SE of E. camaldulensis and E. grandis x urophylla, respectively. They shared 760 upregulated and 420 downregulated proteins, including 4 transcription factors, 31 ribosomal proteins, 1 histone, 3 zinc finger proteins (ZFPs), 16 glutathione transferases, 10 glucosyltransferases, ARF19, WOX8 and PIN1. These proteins might be involved in the early SE of Eucalyptus. By combining the miRNA and RNA-Seq results, some miRNA ~ gene/protein regulatory networks were identified in early SE of Eucalyptus, such as miR160 ~ TPP2, miR164 ~ UXS2, miR169 ~ COX11 and miR535 ~ Eucgr.E01067. Further, we found SERK, WRKY, ZFP and ABC transporter might be related with high SE potential. CONCLUSIONS Overall, our study identified proteins involved in the early SE and related to the high regeneration potential of Eucalyptus. It greatly enhanced our understanding of the early SE and the SE capacity of Eucalyptus.
Collapse
Affiliation(s)
- Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Changrong Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Yingying Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Shengkan Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Qi Wu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Kaiyong Huang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China.
| |
Collapse
|
3
|
Wu Z, Chang P, Zhao J, Li D, Wang W, Cui X, Li M. Physiological and transcriptional responses of seed germination to moderate drought in Apocynum venetum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.975771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apocynum venetum L. is an endangered perennial species mainly distributed in the semi-arid lands and plays an important role in protecting ecological environment; meanwhile, it is also widely used as a traditional Chinese medicine. While physiological changes of seed germination under drought stress have been conducted, the adaptive mechanism to semi-arid environment is still unknown. Here, the physiological and transcriptional changes during seed germination of A. venetum under different PEG-6000 treatments (5 to 20%) were examined. The germination characteristics (germination rate, radicle length and fresh weight) were promoted under moderate drought (5% PEG). The activities of antioxidant enzymes (SOD and POD) and contents of osmolytes (soluble sugar, MDA and Pro) were increased while the CAT and APX activities and the protein content decreased with the increase of PEG concentrations. A total of 2159 (1846 UR, 313 DR) and 1530 (1038 UR, 492 DR) DEGs were observed during seed germination at 5 and 25% PEG vs. CK, respectively; and 834 co-expressed DEGs were classified into 10 categories including stress response (67), primary metabolism (189), photosynthesis and energy (83), cell morphogenesis (62), secondary metabolism (21), transport (93), TF (24), transcription (42), translation (159) and bio-signaling (94). The RELs of representative genes directly associated with drought stress and seed germination were coherent with the changes of antioxidant enzymes activities and osmolytes contents. These findings will provide useful information for revealing adaptive mechanism of A. venetum to semi-arid environment.
Collapse
|
4
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Chen Y, Zhang H, Zhang C, Kong X, Hua Y. Characterization of endogenous endopeptidases and exopeptidases and application for the limited hydrolysis of peanut proteins. Food Chem 2020; 345:128764. [PMID: 33310254 DOI: 10.1016/j.foodchem.2020.128764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
Research concerning the utilization of oilseed endogenous proteases is scarce. Herein, we investigated the peanut proteases and their effects on peanut proteins. Liquid chromatography tandem mass spectrometry analysis showed that peanut contained several endopeptidases and exopeptidases. Protease inhibitor assay and analysis of cleavage sites showed that the obvious proteolytic activity at pH 2-5 and 20-60 °C was from aspartic endopeptidases (optimal at pH 3) and one legumain (pH 4). The above endopeptidases destroyed five and six IgE-binding epitopes of Ara h 1 at pH 3 and 4, respectively. Ara h 1 (>95%) and arachin (50-60%) could be hydrolyzed to generate 10-20 kDa and <4 kDa peptides at pH 3, which was enhanced by the pH 3 → 4 incubation. Further, the limited hydrolysis improved the gel-forming ability and in vitro digestibility (approximately 15%) of peanut proteins. Free amino acid analysis showed that the activity of exopeptidases was low at pH 2-5.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hongsheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Greenfield LM, Hill PW, Paterson E, Baggs EM, Jones DL. Do plants use root-derived proteases to promote the uptake of soil organic nitrogen? PLANT AND SOIL 2020; 456:355-367. [PMID: 33087989 PMCID: PMC7567722 DOI: 10.1007/s11104-020-04719-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
AIMS The capacity of plant roots to directly acquire organic nitrogen (N) in the form of oligopeptides and amino acids from soil is well established. However, plants have poor access to protein, the central reservoir of soil organic N. Our question is: do plants actively secrete proteases to enhance the breakdown of soil protein or are they functionally reliant on soil microorganisms to undertake this role? METHODS Growing maize and wheat under sterile hydroponic conditions with and without inorganic N, we measured protease activity on the root surface (root-bound proteases) or exogenously in the solution (free proteases). We compared root protease activities to the rhizosphere microbial community to estimate the ecological significance of root-derived proteases. RESULTS We found little evidence for the secretion of free proteases, with almost all protease activity associated with the root surface. Root protease activity was not stimulated under N deficiency. Our findings suggest that cereal roots contribute one-fifth of rhizosphere protease activity. CONCLUSIONS Our results indicate that plant N uptake is only functionally significant when soil protein is in direct contact with root surfaces. The lack of protease upregulation under N deficiency suggests that root protease activity is unrelated to enhanced soil N capture.
Collapse
Affiliation(s)
| | - Paul W. Hill
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW UK
| | - Eric Paterson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH UK
| | - Elizabeth M. Baggs
- Global Academy of Agriculture and Food Security, the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW UK
- SoilsWest, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
7
|
Rong H, Wang C, Liu H, Zhang M, Yuan Y, Pu Y, Huang J, Yu J. Biochemical Toxicity and Potential Detoxification Mechanisms in Earthworms Eisenia fetida Exposed to Sulfamethazine and Copper. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:255-260. [PMID: 32632463 DOI: 10.1007/s00128-020-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the biochemical toxicity and potential detoxification mechanisms in earthworms Eisenia fetida exposed to sulfamethazine (SMZ) (7.5, 15 and 30 mg kg-1) either alone or in combination with Copper (Cu) (100 mg kg-1) in soil. The results showed that increasing concentrations of SMZ in soil activated superoxide dismutase, catalase and glutathione peroxidase isozymes, suggesting reactive oxygen species (ROS) burst in earthworms. Treatment with SMZ and Cu separately or in combination caused protein oxidation and damage, elevating the synthesis of ubiquitin, the 20S proteasome, cytochrome P450 (CYP450), and heat shock protein 70 (HSP70). Such treatments also induced the activities of proteases, endoproteinase (EP) and glutathione S-transferases (GSTs). The results suggested that the ubiquitin-20S proteasome, proteases, EP and HSP70 were involved in degradation or remediation of oxidatively damaged proteins. Elevated levels of CYP450 and GSTs also participated in the detoxification of the earthworms.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, China.
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China.
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Min Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yueting Yuan
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yanjie Pu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jin Huang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jinyu Yu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
8
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
9
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Balakireva AV, Deviatkin AA, Zgoda VG, Kartashov MI, Zhemchuzhina NS, Dzhavakhiya VG, Golovin AV, Zamyatnin AA. Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in Triticum aestivum L. Int J Mol Sci 2018; 19:ijms19123991. [PMID: 30544979 PMCID: PMC6320887 DOI: 10.3390/ijms19123991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
Plants, including Triticum aestivum L., are constantly attacked by various pathogens which induce immune responses. Immune processes in plants are tightly regulated by proteases from different families within their degradome. In this study, a wheat degradome was characterized. Using profile hidden Markov model (HMMer) algorithm and Pfam database, comprehensive analysis of the T. aestivum genome revealed a large number of proteases (1544 in total) belonging to the five major protease families: serine, cysteine, threonine, aspartic, and metallo-proteases. Mass-spectrometry analysis revealed a 30% difference between degradomes of distinct wheat cultivars (Khakasskaya and Darya), and infection by biotrophic (Puccinia recondita Rob. ex Desm f. sp. tritici) or necrotrophic (Stagonospora nodorum) pathogens induced drastic changes in the presence of proteolytic enzymes. This study shows that an early immune response to biotic stress is associated with the same core of proteases from the C1, C48, C65, M24, M41, S10, S9, S8, and A1 families. Further liquid chromatography-mass spectrometry (LC-MS) analysis of the detected protease-derived peptides revealed that infection by both pathogens enhances overall proteolytic activity in wheat cells and leads to activation of proteolytic cascades. Moreover, sites of proteolysis were identified within the proteases, which probably represent targets of autocatalytic activation, or hydrolysis by another protease within the proteolytic cascades. Although predicted substrates of metacaspase-like and caspase-like proteases were similar in biotrophic and necrotrophic infections, proteolytic activation of proteases was not found to be associated with metacaspase-like and caspase-like activities. These findings indicate that the response of T. aestivum to biotic stress is regulated by unique mechanisms.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Andrei A Deviatkin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bld. 8, Moscow 119121, Russia.
| | - Maxim I Kartashov
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Natalia S Zhemchuzhina
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Vitaly G Dzhavakhiya
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Andrey V Golovin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
11
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
12
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
13
|
Wang C, Rong H, Liu H, Wang X, Gao Y, Deng R, Liu R, Liu Y, Zhang D. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:442-449. [PMID: 28863375 DOI: 10.1016/j.scitotenv.2017.08.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The widespread application of antibiotics poses health risks for agro-ecosystems. This study examined the effects of ciproflaxin (CIP)-polluted soils (0-51.2mgCIP/kg) on the earthworm Eisenia foetida. The enhanced activities and isozyme levels of superoxide dismutase (SOD) and ascorbate peroxidase after 15days of CIP exposure suggested reactive oxygen species overproduction and thus the generation of oxidatively damaged proteins (e.g., carbonylated proteins) in the earthworms. Under mild CIP stress, the 20S proteasome was capable of degrading most of the damaged proteins independent of ubiquitin. Under severe stress, proteases and endoproteases were up-regulated and maintained the proteolysis as 20S proteasome activity diminished. These observations suggested that, together with glutathione S-transferases, which also participated in the detoxification, 20S proteasome, proteases, endoproteases, and antioxidant enzymes constituted a detoxification and defense system in the earthworms. The biphasic dose responses of these cellular components confirmed that the dose range tested was reasonable for the bioassay of CIP-polluted soils. Our results also demonstrated the potential utility of SOD and ubiquitin as highly sensitive biomarkers in the early bioassay of CIP-polluted soils. Bases on the results, a toxicity threshold for CIP-polluted soils of 3.2-6.4mgCIP/kg soil can be proposed.
Collapse
Affiliation(s)
- Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China.
| | - Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Xiaofei Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Yixin Gao
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Ruhua Deng
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Ruiyu Liu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Yun Liu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Di Zhang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
14
|
Majsec K, Bhuiyan NH, Sun Q, Kumari S, Kumar V, Ware D, van Wijk KJ. The Plastid and Mitochondrial Peptidase Network in Arabidopsis thaliana: A Foundation for Testing Genetic Interactions and Functions in Organellar Proteostasis. THE PLANT CELL 2017; 29:2687-2710. [PMID: 28947489 PMCID: PMC5728138 DOI: 10.1105/tpc.17.00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 05/17/2023]
Abstract
Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.
Collapse
Affiliation(s)
- Kristina Majsec
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nazmul H Bhuiyan
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Sunita Kumari
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Vivek Kumar
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Doreen Ware
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
15
|
Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, Eeckhout D, Kawa D, De Jaeger G, Beeckman T, Madder A, Van Breusegem F, Hilson P. The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4877-87. [PMID: 27315833 PMCID: PMC4983112 DOI: 10.1093/jxb/erw241] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The GOLVEN (GLV) gene family encode small secreted peptides involved in important plant developmental programs. Little is known about the factors required for the production of the mature bioactive GLV peptides. Through a genetic suppressor screen in Arabidopsis thaliana, two related subtilase genes, AtSBT6.1 and AtSBT6.2, were identified that are necessary for GLV1 activity. Root and hypocotyl GLV1 overexpression phenotypes were suppressed by mutations in either of the subtilase genes. Synthetic GLV-derived peptides were cleaved in vitro by the affinity-purified SBT6.1 catalytic enzyme, confirming that the GLV1 precursor is a direct subtilase substrate, and the elimination of the in vitro subtilase recognition sites through alanine substitution suppressed the GLV1 gain-of-function phenotype in vivo Furthermore, the protease inhibitor Serpin1 bound to SBT6.1 and inhibited the cleavage of GLV1 precursors by the protease. GLV1 and its homolog GLV2 were expressed in the outer cell layers of the hypocotyl, preferentially in regions of rapid cell elongation. In agreement with the SBT6 role in GLV precursor processing, both null mutants for sbt6.1 and sbt6.2 and the Serpin1 overexpression plants had shorter hypocotyls. The biosynthesis of the GLV signaling peptides required subtilase activity and might be regulated by specific protease inhibitors. The data fit with a model in which the GLV1 signaling pathway participates in the regulation of hypocotyl cell elongation, is controlled by SBT6 subtilases, and is modulated locally by the Serpin1 protease inhibitor.
Collapse
Affiliation(s)
- Sarieh Ghorbani
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Kurt Hoogewijs
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tamara Pečenková
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Ana Fernandez
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Annelies Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dorota Kawa
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Pierre Hilson
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Saclay Plant Science, F-78026 Versailles, France
| |
Collapse
|
16
|
Poret M, Chandrasekar B, van der Hoorn RAL, Avice JC. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:139-153. [PMID: 26993244 DOI: 10.1016/j.plantsci.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom.
| | - Jean-Christophe Avice
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| |
Collapse
|
17
|
Fesenko IA, Arapidi GP, Skripnikov AY, Alexeev DG, Kostryukova ES, Manolov AI, Altukhov IA, Khazigaleeva RA, Seredina AV, Kovalchuk SI, Ziganshin RH, Zgoda VG, Novikova SE, Semashko TA, Slizhikova DK, Ptushenko VV, Gorbachev AY, Govorun VM, Ivanov VT. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC PLANT BIOLOGY 2015; 15:87. [PMID: 25848929 PMCID: PMC4365561 DOI: 10.1186/s12870-015-0468-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. RESULTS We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. CONCLUSION We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.
Collapse
Affiliation(s)
- Igor A Fesenko
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Georgij P Arapidi
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Alexander Yu Skripnikov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Biology Department, Lomonosov Moscow State University, Moscow, 199234 Russian Federation
| | - Dmitry G Alexeev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Elena S Kostryukova
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Alexander I Manolov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Ilya A Altukhov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Regina A Khazigaleeva
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Anna V Seredina
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Sergey I Kovalchuk
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Rustam H Ziganshin
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Viktor G Zgoda
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Svetlana E Novikova
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Tatiana A Semashko
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Darya K Slizhikova
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Vasilij V Ptushenko
- />A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Moscow, 119992 Russian Federation
| | - Alexey Y Gorbachev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Vadim M Govorun
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Vadim T Ivanov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| |
Collapse
|
18
|
Svozil J, Gruissem W, Baerenfaller K. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:376. [PMID: 26074939 PMCID: PMC4446536 DOI: 10.3389/fpls.2015.00376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions.
Collapse
Affiliation(s)
| | | | - Katja Baerenfaller
- *Correspondence: Katja Baerenfaller, Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
19
|
Karmous I, Chaoui A, Jaouani K, Sheehan D, El Ferjani E, Scoccianti V, Crinelli R. Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 76:77-85. [PMID: 24486582 DOI: 10.1016/j.plaphy.2013.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/30/2013] [Indexed: 05/12/2023]
Abstract
The role of the ubiquitin (Ub)-proteasome pathway and some endo- and aminopeptidases (EPs and APs, respectively) was studied in cotyledons of germinating bean seeds (Phaseolus vulgaris L.). The Ub system appeared to be important both in the early (3 days) and late (9 days) phases of germination. In the presence of copper, an increase in protein carbonylation and a decrease in reduced -SH pool occurred, indicating protein damage. This was associated with an enhancement in accumulation of malondialdehyde, a major product of lipid peroxidation, and an increase in content of hydrogen peroxide (H2O2), showing oxidative stress generation. Moreover, copper induced inactivation of the Ub-proteasome (EC 3.4.25) pathway and inhibition of leucine and proline aminopeptidase activities (EC 3.4.11.1 and EC 3.4.11.5, respectively), thus limiting their role in modulating essential metabolic processes, such as the removal of regulatory and oxidatively-damaged proteins. By contrast, total trypsin and chymotrypsin-like activities (EC 3.4.21.4 and EC 3.4.21.1, respectively) increased after copper exposure, in parallel with a decrease in their inhibitor capacities (i.e. trypsin inhibitor and chymotrypsin inhibitor activity), suggesting that these endoproteases are part of the protective mechanisms against copper stress.
Collapse
Affiliation(s)
- Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - Khadija Jaouani
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - David Sheehan
- Proteomics Research Group, Department of Biochemistry and Environmental Research Institute University College Cork, Lee Maltings, Prospect Row, Mardyke, Cork, Ireland.
| | - Ezzedine El Ferjani
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - Valeria Scoccianti
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Biologia Vegetale, Università di Urbino "Carlo Bo", Via Bramante 28, 61029 Urbino, Italy.
| | - Rita Crinelli
- Dipartimento di Scienze Biomolecolari, Sezione di Biochimica e Biologia Molecolare, Università di Urbino "Carlo Bo", Via Saffi 2, 61029 Urbino, Italy.
| |
Collapse
|
20
|
Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC, Shi K, Ma S, Dinesh-Kumar SP, O'Doherty I, Schroeder FC, van Wijk KJ, Klessig DF. Identification of multiple salicylic acid-binding proteins using two high throughput screens. FRONTIERS IN PLANT SCIENCE 2014; 5:777. [PMID: 25628632 PMCID: PMC4290489 DOI: 10.3389/fpls.2014.00777] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [(3)H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays.
Collapse
Affiliation(s)
- Murli Manohar
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Magali Moreau
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Sang-Wook Park
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
- Plant, Soil, and Nutrition Laboratory, United States Department of AgricultureIthaca, NY, USA
| | - Giulia Friso
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Muhammed Asif
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | | | - Kai Shi
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Shisong Ma
- Department of Plant Biology and Genome Center, University of California, DavisDavis, CA, USA
| | | | - Inish O'Doherty
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
- *Correspondence: Daniel F. Klessig, Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA e-mail:
| |
Collapse
|
21
|
van der Hoorn RAL, Kaiser M. Probes for activity-based profiling of plant proteases. PHYSIOLOGIA PLANTARUM 2012; 145:18-27. [PMID: 21985675 DOI: 10.1111/j.1399-3054.2011.01528.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Proteases are key players in plant development and immunity. When and where these proteases act during these processes is difficult to predict from proteomic or transcriptomic data because proteases are tightly regulated by post-translational mechanisms such as processing, phosphorylation and the presence of cofactors or inhibitors. Protease activities can be displayed using activity-based probes that react with the catalytic site of proteases in a mechanism-dependent manner. Plant proteomes have been labeled with probes for caspases, vacuolar processing enzymes, papain-like cysteine proteases, the proteasome, subtilases, prolyloligopeptidases, serine carboxypeptidases and matrix metalloproteases. Here, we review these protease probes with a focus on the specificity determinants that reside in the probe and the detection methods dictated by the reporter tag.
Collapse
Affiliation(s)
- Renier A L van der Hoorn
- Plant Chemetics lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | |
Collapse
|
22
|
Schaller A, Stintzi A, Graff L. Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. PHYSIOLOGIA PLANTARUM 2012; 145:52-66. [PMID: 21988125 DOI: 10.1111/j.1399-3054.2011.01529.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Subtilases (SBTs) constitute a large family of serine peptidases. They are commonly found in Archaea, Bacteria and Eukarya, with many more SBTs in plants as compared to other organisms. The expansion of the SBT family in plants was accompanied by functional diversification, and novel, plant-specific physiological roles were acquired in the course of evolution. In addition to their contribution to general protein turnover, plant SBTs are involved in the development of seeds and fruits, the manipulation of the cell wall, the processing of peptide growth factors, epidermal development and pattern formation, plant responses to their biotic and abiotic environment, and in programmed cell death. Plant SBTs share many properties with their bacterial and mammalian homologs, but the adoption of specific roles in plant physiology is also reflected in the acquisition of unique biochemical and structural features that distinguish SBTs in plants from those in other organisms. In this article we provide an overview of the earlier literature on the discovery of the first SBTs in plants, and highlight recent findings with respect to their physiological relevance, structure and function.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany.
| | | | | |
Collapse
|
23
|
Lin JS, Lee SK, Chen Y, Lin WD, Kao CH. Purification and characterization of a novel extracellular tripeptidyl peptidase from Rhizopus oligosporus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11330-11337. [PMID: 21905725 DOI: 10.1021/jf201879e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel extracellular tripeptidyl peptidase (TPP) was homogenously purified from the culture supernatant of Rhizopus oligosporus by sequential fast protein liquid chromatography. The purified enzyme was a 136.5 kDa dimer composed of identical subunits. The effects of inhibitors and metal ions indicated that TPP is a metallo- and serine protease. TPP was activated by divalent cations, such as Co(2+) and Mn(2+), and completely inhibited by Cu(2+). Enzyme activity was optimal at pH 7.0 and 45 °C with a specific activity of 281.9 units/mg for the substrate Ala-Ala-Phe-pNA. The purified enzyme catalyzed cleavage of various synthetic tripeptides but not when proline occupied the P1 position. Purified TPP cleaved the pentapeptide Ala-Ala-Phe-Tyr-Tyr and tripeptide Ala-Ala-Phe, confirming the TPP activity of the enzyme.
Collapse
Affiliation(s)
- Jia-Shin Lin
- Department of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Taichung 43302, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Boulila-Zoghlami L, Gallusci P, Holzer FM, Basset GJ, Djebali W, Chaïbi W, Walling LL, Brouquisse R. Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. PLANTA 2011; 234:857-863. [PMID: 21744092 DOI: 10.1007/s00425-011-1468-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3-300 μM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-μM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed.
Collapse
Affiliation(s)
- Latifa Boulila-Zoghlami
- Département de Biologie, Faculté des Sciences de Tunis El Manar, Unité de Recherche de Biologie et Physiologie Cellulaires Végétales, 1060 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Remmerie N, De Vijlder T, Valkenborg D, Laukens K, Smets K, Vreeken J, Mertens I, Carpentier SC, Panis B, De Jaeger G, Blust R, Prinsen E, Witters E. Unraveling tobacco BY-2 protein complexes with BN PAGE/LC-MS/MS and clustering methods. J Proteomics 2011; 74:1201-17. [PMID: 21443973 DOI: 10.1016/j.jprot.2011.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/13/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
To understand physiological processes, insight into protein complexes is very important. Through a combination of blue native gel electrophoresis and LC-MS/MS, we were able to isolate protein complexes and identify their potential subunits from Nicotiana tabacum cv. Bright Yellow-2. For this purpose, a bioanalytical approach was used that works without a priori knowledge of the interacting proteins. Different clustering methods (e.g., k-means and hierarchical clustering) and a biclustering approach were evaluated according to their ability to group proteins by their migration profile and to correlate the proteins to a specific complex. The biclustering approach was identified as a very powerful tool for the exploration of protein complexes of whole cell lysates since it allows for the promiscuous nature of proteins. Furthermore, it searches for associations between proteins that co-occur frequently throughout the BN gel, which increases the confidence of the putative associations between co-migrating proteins. The statistical significance and biological relevance of the profile clusters were verified using functional gene ontology annotation. The proof of concept for identifying protein complexes by our BN PAGE/LC-MS/MS approach is provided through the analysis of known protein complexes. Both well characterized long-lived protein complexes as well as potential temporary sequential multi-enzyme complexes were characterized.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tao L, Zhou H, Guo X, Long R, Zhu Y, Cheng W. Contribution of exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa. J Dairy Sci 2011; 94:3928-35. [DOI: 10.3168/jds.2010-3752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 04/25/2011] [Indexed: 11/19/2022]
|
28
|
Rockel B, Kopec KO, Lupas AN, Baumeister W. Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:237-45. [PMID: 21771670 DOI: 10.1016/j.bbapap.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 01/25/2023]
Abstract
Tripeptidyl peptidase II is the largest known eukaryotic peptidase. It has been described as a multi-purpose peptidase, which, in addition to its house-keeping function in intracellular protein degradation, plays a role in several vital cellular processes such as antigen processing, apoptosis, or cell division, and is involved in diseases like muscle wasting, obesity, and in cancer. Biochemical studies and bioinformatics have identified TPPII as a subtilase, but its structure is very unusual: it forms a large homooligomeric complex (6 MDa) with a spindle-like shape. Recently, the high-resolution structure of TPPII homodimers (300 kDa) was solved and a hybrid structure of the holocomplex built of 20 dimers was obtained by docking it into the EM-density. Here, we summarize our current knowledge about TPPII with a focus on structural aspects. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Beate Rockel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | |
Collapse
|
29
|
van der Hoorn RAL, Colby T, Nickel S, Richau KH, Schmidt J, Kaiser M. Mining the Active Proteome of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:89. [PMID: 22639616 PMCID: PMC3355598 DOI: 10.3389/fpls.2011.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 05/20/2023]
Abstract
Assigning functions to the >30,000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied activity-based protein profiling (ABPP). ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed activities of 76 Arabidopsis proteins. These proteins represent over 10 different protein classes that contain over 250 Arabidopsis proteins, including cysteine, serine, and metalloproteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed additional protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities, e.g., of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry, and proteomics.
Collapse
Affiliation(s)
- Renier A. L. van der Hoorn
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Renier A. L. van der Hoorn, Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. e-mail:
| | - Tom Colby
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Sabrina Nickel
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| | - Kerstin H. Richau
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Jürgen Schmidt
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Markus Kaiser
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
30
|
The Enigma of Tripeptidyl-Peptidase II: Dual Roles in Housekeeping and Stress. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20847939 PMCID: PMC2933905 DOI: 10.1155/2010/128478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 05/25/2010] [Accepted: 07/12/2010] [Indexed: 12/02/2022]
Abstract
The tripeptidyl-peptidase II complex consists of repeated 138 kDa subunits, assembled into two twisted strands that form a high molecular weight complex (>5 MDa). TPPII, like many other cytosolic peptidases, plays a role in the ubiquitin-proteasome pathway downstream of the proteasome as well as in the production and destruction of MHC class I antigens and degradation of neuropeptides. Tripeptidyl-peptidase II activity is increased in cells with an increased demand for protein degradation, but whether degradation of cytosolic peptides is the only cell biological role for TPPII has remained unclear. Recent data indicated that TPPII translocates into the nucleus to control DNA damage responses in malignant cells, supporting that cytosolic “housekeeping peptidases” may have additional roles in cell biology, besides their contribution to protein turnover. Overall, TPPII has an emerging importance in several cancer-related fields, such as metabolism, cell death control, and control of genome integrity; roles that are not understood in detail. The present paper reviews the cell biology of TPPII and discusses distinct roles for TPPII in the nucleus and cytosol.
Collapse
|
31
|
Book AJ, Gladman NP, Lee SS, Scalf M, Smith LM, Vierstra RD. Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem 2010; 285:25554-69. [PMID: 20516081 DOI: 10.1074/jbc.m110.136622] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.
Collapse
Affiliation(s)
- Adam J Book
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kołodziejek I, van der Hoorn RAL. Mining the active proteome in plant science and biotechnology. Curr Opin Biotechnol 2010; 21:225-33. [DOI: 10.1016/j.copbio.2010.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/29/2022]
|
33
|
Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28:239-60. [PMID: 19811323 DOI: 10.1080/08830180902978120] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IFN-gamma up-regulates MHC class I expression and antigen processing and presentation on cells, since IFN-gamma can induce multiple gene expressions that are related to MHC class I antigen processing and presentation. MHC class I antigen presentation-associated gene expression is initiated by IRF-1. IRF-1 expression is initiated by phosphorylated STAT1. IFN-gamma binds to IFN receptors, and then activates JAK1/JAK2/STAT1 signal transduction via phosphorylation of JAK and STAT1 in cells. IFN-gamma up-regulates MHC class I antigen presentation via activation of JAK/STAT1 signal transduction pathway. Mechanisms of IFN-gamma to enhance MHC class I antigen processing and presentation were summarized in this literature review.
Collapse
Affiliation(s)
- Fang Zhou
- Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
34
|
Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway: ACTIVATION IN RESPONSE TO CADMIUM. J Biol Chem 2009; 284:35412-24. [PMID: 19822524 PMCID: PMC2790970 DOI: 10.1074/jbc.m109.035394] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/09/2009] [Indexed: 11/06/2022] Open
Abstract
Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 mum cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress.
Collapse
Affiliation(s)
- Cécile Polge
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Michel Jaquinod
- Etude de la Dynamique des Protéomes, F-38054 Grenoble, France and
| | - Frances Holzer
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Jacques Bourguignon
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Linda Walling
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Renaud Brouquisse
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| |
Collapse
|
35
|
Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3. Proc Natl Acad Sci U S A 2009; 106:17223-8. [PMID: 19805099 DOI: 10.1073/pnas.0907587106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Subtilases are serine proteases found in Archae, Bacteria, yeasts, and higher eukaryotes. Plants possess many more of these subtilisin-like endopeptidases than animals, e.g., 56 identified genes in Arabidopsis compared with only 9 in humans, indicating important roles for subtilases in plant biology. We report the first structure of a plant subtilase, SBT3 from tomato, in the active apo form and complexed with a chloromethylketone (cmk) inhibitor. The domain architecture comprises an N-terminal protease domain displaying a 132 aa protease-associated (PA) domain insertion and a C-terminal seven-stranded jelly-roll fibronectin (Fn) III-like domain. We present the first structural evidence for an explicit function of PA domains in proteases revealing a vital role in the homo-dimerization of SBT3 and in enzyme activation. Although Ca(2+)-binding sites are conserved and critical for stability in other subtilases, SBT3 was found to be Ca(2+)-free and its thermo stability is Ca(2+)-independent.
Collapse
|
36
|
Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, Stintzi A, Schaller A. The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). J Biol Chem 2009; 284:14068-78. [PMID: 19332543 PMCID: PMC2682855 DOI: 10.1074/jbc.m900370200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/25/2009] [Indexed: 11/06/2022] Open
Abstract
A transgenic plant cell suspension culture was established as a versatile and efficient expression system for the subtilase SlSBT3 from tomato. The recombinant protease was purified to homogeneity from culture supernatants by fractionated ammonium sulfate precipitation, batch adsorption to cation exchange material, and anion exchange chromatography. Purified SlSBT3 was identified as a 79-kDa glycoprotein with both complex and paucimannosidic type glycan chains at Asn(177), Asn(203), Asn(376), Asn(697), and Asn(745). SlSBT3 was found to be a very stable enzyme, being fully active at 60 degrees C and showing highest activity at alkaline conditions with a maximum between pH 7.5 and 8.0. Substrate specificity of SlSBT3 was analyzed in detail, revealing a preference for Gln and Lys in the P(1) and P(2) positions of oligopeptide substrates, respectively. Similar to bacterial, yeast, and mammalian subtilases, SlSBT3 is synthesized as a preproenzyme, and processing of the prodomain in the endoplasmic reticulum is a prerequisite for passage through the secretory pathway. SlSBT3 S538A and S538C active site mutants accumulated intracellularly as unprocessed zymogens, indicating that prodomain cleavage occurs autocatalytically. The wild-type SlSBT3 protein failed to cleave the prodomain of the S538A mutant in trans, demonstrating that zymogen maturation is an intramolecular process. Distinguishing features of plant as compared with mammalian subtilases include the insertion of a large protease-associated domain between the His and Ser residues of the catalytic triad and the C-terminal extension to the catalytic domain. Both features were found to be required for SlSBT3 activity and, consequently, for prodomain processing and secretion.
Collapse
Affiliation(s)
- Anna Cedzich
- Institute of Plant Physiology and Biotechnology, Life Science Center, and Institute of Physiology, Department of Biosensorics, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RAL. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 2009; 8:1082-93. [PMID: 19136719 PMCID: PMC2689769 DOI: 10.1074/mcp.m800494-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/08/2009] [Indexed: 11/06/2022] Open
Abstract
Activity-based protein profiling is a powerful method to display enzyme activities in proteomes and provides crucial information on enzyme activity rather than protein or transcript abundance. We applied activity-based protein profiling using fluorophosphonate-based probes to display the activities of Ser hydrolases in the model plant Arabidopsis thaliana. Multidimensional protein identification technology and in-gel analysis of fluorophosphonate-labeled leaf extracts revealed over 50 Ser hydrolases, including dozens of proteases, esterases, and lipases, representing over 10 different enzyme families. Except for some well characterized Ser hydrolases like subtilases TPP2 and ARA12, prolyl oligopeptidase acylamino acid-releasing enzyme, serine carboxypeptidase-like SNG1 and BRS1, carboxylesterase-like CXE12, methylesterases MES2 and MES3, and S-formylglutathione hydrolase, the majority of these serine hydrolases have not been described before. We studied transiently expressed SNG1 and investigated plants infected with the fungal pathogen Botrytis cinerea. Besides the down-regulation of several Arabidopsis Ser hydrolase activities during Botrytis infection, we detected the activities of Botrytis-derived cutinases and lipases, which are thought to contribute to pathogenicity.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Eriksson S, Gutiérrez OA, Bjerling P, Tomkinson B. Development, evaluation and application of tripeptidyl-peptidase II sequence signatures. Arch Biochem Biophys 2009; 484:39-45. [PMID: 19467630 DOI: 10.1016/j.abb.2009.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a cytosolic peptidase that has been implicated in fat formation and cancer, apparently independent of the enzymatic activity. In search for alternative functional regions, conserved motifs were identified and eleven signatures were constructed. Seven of the signatures covered previously investigated residues, whereas the functional importance of the other motifs is unknown. This provides directions for future investigations of alternative activities of TPP II. The obtained signatures provide an efficient bioinformatic tool for the identification of TPP II homologues. Hence, a TPP II sequence homologue from fission yeast, Schizosaccharomyces pombe, was identified and demonstrated to encode the TPP II-like protein previously reported as multicorn. Furthermore, an homologous protein was found in the prokaryote Blastopirellula marina, albeit the TPP II function was apparently not conserved. This gene is probably the result of a rare gene transfer from eukaryote to prokaryote.
Collapse
Affiliation(s)
- Sandra Eriksson
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
39
|
Srivastava R, Liu JX, Howell SH. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:219-227. [PMID: 18643977 PMCID: PMC2667306 DOI: 10.1111/j.1365-313x.2008.03598.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 05/18/2023]
Abstract
Phytosulfokines (PSKs) are secreted, sulfated peptide hormones derived from larger prepropeptide precursors. Proteolytic processing of one of the precursors, AtPSK4, was demonstrated by cleavage of a preproAtPSK4-myc transgene product to AtPSK4-myc. Cleavage of proAtPSK4 was induced by placing root explants in tissue culture. The processing of proAtPSK4 was dependent on AtSBT1.1, a subtilisin-like serine protease, encoded by one of 56 subtilase genes in Arabidopsis. The gene encoding AtSBT1.1 was up-regulated following the transfer of root explants to tissue culture, suggesting that activation of the proteolytic machinery that cleaves proAtPSK4 is dependent on AtSBT1.1 expression. We also demonstrated that a fluorogenic peptide representing the putative subtilase recognition site in proAtPSK4 is cleaved in vitro by affinity-purified AtSBT1.1. An alanine scan through the recognition site peptide indicated that AtSBT1.1 is fairly specific for the AtPSK4 precursor. Thus, this peptide growth factor, which promotes callus formation in culture, is proteolytically cleaved from its precursor by a specific plant subtilase encoded by a gene that is up-regulated during the process of transferring root explants to tissue culture.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Arabidopsis Proteins/metabolism
- DNA, Bacterial/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Microscopy, Confocal
- Mutagenesis, Insertional
- Plant Roots/enzymology
- Plant Roots/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plasmids
- Protein Precursors/genetics
- Protein Precursors/isolation & purification
- Protein Precursors/metabolism
- Protein Processing, Post-Translational
- RNA, Plant/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Subtilisins/genetics
- Subtilisins/isolation & purification
- Subtilisins/metabolism
- Tandem Mass Spectrometry
- Tissue Culture Techniques
Collapse
|
40
|
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008; 3:e1994. [PMID: 18431481 PMCID: PMC2291561 DOI: 10.1371/journal.pone.0001994] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/06/2008] [Indexed: 01/24/2023] Open
Abstract
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Andrea Rudella
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Olof Emanuelsson
- Stockholm Bioinformatics Center, AlbaNova, Stockholm University, Stockholm, Sweden
| | - Qi Sun
- Computation Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, New York, United States of America
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. PLANTA 2008; 227:625-39. [PMID: 17952456 DOI: 10.1007/s00425-007-0644-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/28/2007] [Indexed: 05/13/2023]
Abstract
The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants.
Collapse
Affiliation(s)
- Wahbi Djebali
- Département de Biologie, Faculté des Sciences de Tunis El Manar, Unité de Recherche de Biologie et Physiologie Cellulaires Végétales, 1060 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. ANNALS OF BOTANY 2007; 99:787-822. [PMID: 17220175 PMCID: PMC2802907 DOI: 10.1093/aob/mcl255] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. SCOPE This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. CONCLUSIONS The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses.
Collapse
Affiliation(s)
- Kate Dreher
- Section of Molecular and Cellular Biology, Plant Biology Graduate Group Program, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
43
|
Pena LB, Pasquini LA, Tomaro ML, Gallego SM. 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. PHYTOCHEMISTRY 2007; 68:1139-46. [PMID: 17399749 DOI: 10.1016/j.phytochem.2007.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 02/08/2007] [Accepted: 02/19/2007] [Indexed: 05/14/2023]
Abstract
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.
Collapse
Affiliation(s)
- Liliana B Pena
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires (C1113AAC), Argentina
| | | | | | | |
Collapse
|
44
|
Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 2007; 282:12298-309. [PMID: 17322301 DOI: 10.1074/jbc.m611824200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
45
|
Meinnel T, Serero A, Giglione C. Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem 2006; 387:839-51. [PMID: 16913833 DOI: 10.1515/bc.2006.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The N-terminus of any protein may be used as a destabilization signal for targeted protein degradation. In the eukaryotic cytosol, the signal - the so-called N-degron--is recognized for degradation by (i) the N-end rule, a well-described degradation process involving epsilon-ubiquitination; or (ii) N-terminal ubiquitination, a more recently described pathway. Dedicated E3 ubiquitin ligases known as N-recognins then act on the protein. The proteolytic pathways involve ATP-dependent chambered proteases, such as the 26S proteasome in the cytosol, which generate short oligopeptides. The N-terminus of the polypeptide chain is also important for post-proteasome degradation by specific aminopeptidases, which complete peptide cleavage to generate free amino acids. Finally, in each compartment of the eukaryotic cell, N-terminal methionine excision creates a variety of N-termini for mature proteins. It has recently been shown that the N-terminal methionine excision pathway has a major impact early in targeted protein degradation.
Collapse
Affiliation(s)
- Thierry Meinnel
- Protein Maturation, Cell Fate and Therapeutics, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France.
| | | | | |
Collapse
|
46
|
Seyit G, Rockel B, Baumeister W, Peters J. Size Matters for the Tripeptidylpeptidase II Complex from Drosophila. J Biol Chem 2006; 281:25723-33. [PMID: 16799156 DOI: 10.1074/jbc.m602722200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripeptidylpeptidase II (TPP II) is an exopeptidase of the subtilisin type of serine proteases, a key component of the protein degradation cascade in many eukaryotes, which cleaves tripeptides from the N terminus of proteasome-released products. The Drosophila TPP II is a large homooligomeric complex (approximately 6 MDa) that is organized in a unique repetitive structure with two strands each composed of ten stacked homodimers; two strands intertwine to form a spindle-shaped structure. We report a novel procedure of preparing an active, structurally homogeneous TPP II holo-complex overexpressed in Escherichia coli. Assembly studies revealed that the specific activity of TPP II increases with oligomer size, which in turn is strongly concentration-dependent. At a TPP II concentration such as prevailing in Drosophila, equilibration of size and activity proceeds on a time scale of hours and leads to spindle formation at a TPP II concentration of > or =0.03 mg/ml. Before equilibrium is reached, activation lags behind assembly, suggesting that activation occurs in a two-step process consisting of (i) assembly and (ii) a subsequent conformational change leading to a switch from basal to full activity. We propose a model consistent with the hyperbolic increase of activity with oligomer size. Spindle formation by strand pairing causes both significant thermodynamic and kinetic stabilization. The strands inherently heterogeneous in length are thus locked into a discrete oligomeric state. Our data indicate that the unique spindle form of the holo-complex represents an assembly motif stabilizing a highly active state.
Collapse
Affiliation(s)
- Gönül Seyit
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
47
|
Walling LL. Recycling or regulation? The role of amino-terminal modifying enzymes. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:227-33. [PMID: 16597508 DOI: 10.1016/j.pbi.2006.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
Post-translational modifications are essential for a variety of functions, such as the translocation, activation, regulation, and, ultimately, degradation of proteins. The amino-terminal (N-terminal) region is a particularly active area for such alterations. Three types of reactions predominate: limited proteolysis to remove one or more amino acids; modification of the alpha-amino group; and side-chain-specific changes. The N-terminal peptidases expose penultimate residues, providing new substrates for peptidase or transferase action. These enzymes can act sequentially or competitively to influence a protein's longevity, location or activity. N-terminal modifying enzymes (NTMEs) might target a protein for ubiquitination and degradation or protect a protein from rapid turnover. The N-terminal peptidases might also have important roles in processing the peptides that are released from the proteasome. Plant NTMEs have roles in senescence, meiosis and defense, and proposed roles in polar auxin transport.
Collapse
Affiliation(s)
- Linda L Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| |
Collapse
|