1
|
Lee OJ, Han K, Lee HE, Jeong HB, Yu N, Chae W. Identification of Genomic Regions Associated with Powdery Mildew Resistance in Watermelon through Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2708. [PMID: 39409578 PMCID: PMC11479075 DOI: 10.3390/plants13192708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Watermelon (Citrullus spp.) is an economically important crop globally, but it is susceptible to various diseases, including powdery mildew. Previous studies have identified genetic factors associated with powdery mildew resistance. However, further research using diverse genetic approaches is necessary to elucidate the underlying genetic mechanisms of this resistance. In this study, the germplasm collection comprising highly homozygous inbred lines was employed, which enabled the accumulation of consistent data and improved the reliability of the genome-wide association study (GWAS) findings. Our investigation identified two significant single-nucleotide polymorphisms (SNPs), pm2.1 and pm3.1, which were strongly associated with disease resistance. Moreover, several candidate genes were revealed within the linkage disequilibrium (LD) blocks surrounding the significant SNPs. In conclusion, the identification of significant SNPs and their additive effects, combined with the discovery of relevant candidate genes, expanded our understanding of the genetic basis of disease resistance and can pave the way for the development of more resilient watermelon cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Oak-Jin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
- Department of Environmental Horticulture, Dankook University, Cheonan 31116, Republic of Korea;
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Hyo-Bong Jeong
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Nari Yu
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Wonbyoung Chae
- Department of Environmental Horticulture, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
2
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
3
|
Kim D, Jeon SJ, Hong JK, Kim MG, Kim SH, Kadam US, Kim WY, Chung WS, Stacey G, Hong JC. The Auto-Regulation of ATL2 E3 Ubiquitin Ligase Plays an Important Role in the Immune Response against Alternaria brassicicola in Arabidopsis thaliana. Int J Mol Sci 2024; 25:2388. [PMID: 38397062 PMCID: PMC10889567 DOI: 10.3390/ijms25042388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Su Jeong Jeon
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea;
- Agri-Food Bio Convergence Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea;
| | - Sang Hee Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Ulhas S. Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
4
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
5
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
6
|
Wang F, Song W, Huang C, Wei Z, Li Y, Chen J, Zhang H, Sun Z. A Rice Receptor-like Protein Negatively Regulates Rice Resistance to Southern Rice Black-Streaked Dwarf Virus Infection. Viruses 2023; 15:v15040973. [PMID: 37112953 PMCID: PMC10141149 DOI: 10.3390/v15040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Plants rely on various receptor-like proteins and receptor-like kinases to recognize and defend against invading pathogens. However, research on the role of receptor-like proteins in plant antiviral defense, particularly in rice-virus interactions, is limited. In this study, we identified a receptor-like gene, OsBAP1, which was significantly induced upon infection with southern rice black-streaked dwarf virus (SRBSDV) infection. A viral inoculation assay showed that the OsBAP1 knockout mutant exhibited enhanced resistance to SRBSDV infection, indicating that OsBAP1 plays a negatively regulated role in rice resistance to viral infection. Transcriptome analysis revealed that the genes involved in plant-pathogen interactions, plant hormone signal transduction, oxidation-reduction reactions, and protein phosphorylation pathways were significantly enriched in OsBAP1 mutant plants (osbap1-cas). Quantitative real-time PCR (RT-qPCR) analysis further demonstrated that some defense-related genes were significantly induced during SRBSDV infection in osbap1-cas mutants. Our findings provide new insights into the role of receptor-like proteins in plant immune signaling pathways, and demonstrate that OsBAP1 negatively regulates rice resistance to SRBSDV infection.
Collapse
Affiliation(s)
- Fengmin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Weiqi Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chaorui Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
RING-Type E3 Ubiquitin Ligases AtRDUF1 and AtRDUF2 Positively Regulate the Expression of PR1 Gene and Pattern-Triggered Immunity. Int J Mol Sci 2022; 23:ijms232314525. [PMID: 36498851 PMCID: PMC9739713 DOI: 10.3390/ijms232314525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.
Collapse
|
8
|
Yuan Z, Zhao Y, Mo Z, Liu H. A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP. Int J Mol Sci 2022; 23:ijms232214435. [PMID: 36430908 PMCID: PMC9697650 DOI: 10.3390/ijms232214435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Glycoside hydrolases from pathogens have often been reported as inducers of immune responses. However, the roles of glycoside hydrolase from plant-growth-promoting rhizobacteria (PGPR) in the resistance of plants against pathogens is not well studied. In this study, we identified a glycoside hydrolase 43 protein, H1AD43, produced by Bacillus licheniformis BL06 that can trigger defense responses, including cell death. Ion-exchange and size-exclusion chromatography were used for separation, and the amino acid sequence was identified by mass spectrometry. The recombinant protein generated by prokaryotic expression was able to elicit a hypersensitive response (HR) in Nicotiana benthamiana and trigger early defense responses, including reactive oxygen species (ROS) burst, callose accumulation, and the induction of defense genes. In addition, the protein could induce resistance in N. benthamiana, in which it inhibited infection by Phytophthora capsici Leonian and tobacco mosaic virus-green fluorescent protein (TMV-GFP) expression. H1AD43 thus represents a microbe-associated molecular pattern (MAMP) of PGPR that induces plant disease resistance and may provide a new method for the biological control of plant disease.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhitong Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5240
| |
Collapse
|
9
|
Li W, Lu J, Yang C, Xia S. Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:944763. [PMID: 36061811 PMCID: PMC9429810 DOI: 10.3389/fpls.2022.944763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Heightening the resistance of plants to microbial infection is a widely concerned issue, especially for economical crops. Receptor-like proteins (RLPs), typically with tandem leucine-rich repeats (LRRs) domain, play a crucial role in mediating immune activation, being an indispensable constituent in the first layer of defense. Based on an analysis of orthologs among Brassica rapa, Brassica oleracea, and Brassica napus using Arabidopsis thaliana RLPs as a reference framework, we found that compared to A. thaliana, there were some obvious evolutionary diversities of RLPs among the three Brassicaceae species. BnRLP encoding genes were unevenly distributed on chromosomes, mainly on chrA01, chrA04, chrC03, chrC04, and chrC06. The orthologs of five AtRLPs (AtRLP3, AtRLP10, AtRLP17, AtRLP44, and AtRLP51) were highly conserved, but retrenchment and functional centralization occurred in Brassicaceae RLPs during evolution. The RLP proteins were clustered into 13 subgroups. Ten BnRLPs presented expression specificity between R and S when elicited by Sclerotinia sclerotiorum, which might be fabulous candidates for S. sclerotiorum resistance research.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Thieffry A, López-Márquez D, Bornholdt J, Malekroudi MG, Bressendorff S, Barghetti A, Sandelin A, Brodersen P. PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. THE PLANT CELL 2022; 34:2615-2637. [PMID: 35404429 PMCID: PMC9252474 DOI: 10.1093/plcell/koac108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Simon Bressendorff
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Andrea Barghetti
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
11
|
Barragán-Fonseca KY, Nurfikari A, van de Zande EM, Wantulla M, van Loon JJA, de Boer W, Dicke M. Insect frass and exuviae to promote plant growth and health. TRENDS IN PLANT SCIENCE 2022; 27:646-654. [PMID: 35248491 DOI: 10.1016/j.tplants.2022.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Beneficial soil microorganisms can contribute to biocontrol of plant pests and diseases, induce systemic resistance (ISR) against attackers, and enhance crop yield. Using organic soil amendments has been suggested to stimulate the abundance and/or activity of beneficial indigenous microbes in the soil. Residual streams from insect farming (frass and exuviae) contain chitin and other compounds that may stimulate beneficial soil microbes that have ISR and biocontrol activity. Additionally, changes in plant phenotype that are induced by beneficial microorganisms may directly influence plant-pollinator interactions, thus affecting plant reproduction. We explore the potential of insect residual streams derived from the production of insects as food and feed to promote plant growth and health, as well as their potential benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Katherine Y Barragán-Fonseca
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Azkia Nurfikari
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Els M van de Zande
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Max Wantulla
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Hudson J, Deshpande N, Leblanc C, Egan S. Pathogen exposure leads to a transcriptional downregulation of core cellular functions that may dampen the immune response in a macroalga. Mol Ecol 2022; 31:3468-3480. [PMID: 35445473 PMCID: PMC9325437 DOI: 10.1111/mec.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Diseases in marine eukaryotic organisms caused by opportunistic pathogens represent a serious threat to our oceans with potential downstream consequences for ecosystem functioning. Disease outbreaks affecting macroalgae are of particular concern due to their critical role as habitat‐forming organisms. However, there is limited understanding of the molecular strategies used by macroalgae to respond to opportunistic pathogens. In this study, we used mRNA‐sequencing analysis to investigate the early antipathogen response of the model macroalga Delisea pulchra (Rhodophyta) under the environmental conditions that are known to promote the onset of disease. Using de novo assembly methods, 27,586 unique transcripts belonging to D. pulchra were identified that were mostly affiliated with stress response and signal transduction processes. Differential gene expression analysis between a treatment with the known opportunistic pathogen, Aquimarina sp. AD1 (Bacteroidota), and a closely related benign strain (Aquimarina sp. AD10) revealed a downregulation of genes coding for predicted protein metabolism, stress response, energy generation and photosynthesis functions. The rapid repression of genes coding for core cellular processes is likely to interfere with the macroalgal antipathogen response, later leading to infection, tissue damage and bleaching symptoms. Overall, this study provides valuable insight into the genetic features of D. pulchra, highlighting potential antipathogen response mechanisms of macroalgae and contributing to an improved understanding of host–pathogen interactions in a changing environment.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
| | - Nandan Deshpande
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Catherine Leblanc
- CNRS, Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Giovannoni M, Lironi D, Marti L, Paparella C, Vecchi V, Gust AA, De Lorenzo G, Nürnberger T, Ferrari S. The Arabidopsis thaliana LysM-containing Receptor-Like Kinase 2 is required for elicitor-induced resistance to pathogens. PLANT, CELL & ENVIRONMENT 2021; 44:3545-3562. [PMID: 34558681 PMCID: PMC9293440 DOI: 10.1111/pce.14192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 05/12/2023]
Abstract
In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM-containing Receptor-Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin-induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor-induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence-related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.
Collapse
Affiliation(s)
- Moira Giovannoni
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Damiano Lironi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Lucia Marti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Chiara Paparella
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Valeria Vecchi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Andrea A. Gust
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Thorsten Nürnberger
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| |
Collapse
|
15
|
Ramakrishna B, Sarma PVSRN, Ankati S, Bhuvanachandra B, Podile AR. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr Res 2021; 510:108459. [PMID: 34700217 DOI: 10.1016/j.carres.2021.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and β -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.
Collapse
Affiliation(s)
- Bellamkonda Ramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Sravani Ankati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
16
|
The Pleiades are a cluster of fungal effectors that inhibit host defenses. PLoS Pathog 2021; 17:e1009641. [PMID: 34166468 PMCID: PMC8224859 DOI: 10.1371/journal.ppat.1009641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/13/2021] [Indexed: 01/07/2023] Open
Abstract
Biotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate. In the maize pathogen Ustilago maydis, effector-coding genes frequently organize in clusters. Here we describe the functional characterization of the pleiades, a cluster of ten effector genes, by analyzing the micro- and macroscopic phenotype of the cluster deletion and expressing these proteins in planta. Deletion of the pleiades leads to strongly impaired virulence and accumulation of reactive oxygen species (ROS) in infected tissue. Eight of the Pleiades suppress the production of ROS upon perception of pathogen associated molecular patterns (PAMPs). Although functionally redundant, the Pleiades target different host components. The paralogs Taygeta1 and Merope1 suppress ROS production in either the cytoplasm or nucleus, respectively. Merope1 targets and promotes the auto-ubiquitination activity of RFI2, a conserved family of E3 ligases that regulates the production of PAMP-triggered ROS burst in plants.
Collapse
|
17
|
Yu RM, Suo YY, Yang R, Chang YN, Tian T, Song YJ, Wang HJ, Wang C, Yang RJ, Liu HL, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via it's primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110877. [PMID: 33902863 DOI: 10.1016/j.plantsci.2021.110877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcription coactivator that has a general defense response to pathogens. However, the regulatory mechanisms of MBF1 resistance bacterial wilt remain largely unknown. Here, the role of StMBF1c in potato resistance to Ralstonia solanacearum infection was characterized. qRT-PCR assays indicated that StMBF1c could was elicited by SA, MJ and ABA and the time-course expression pattern of the StMBF1c gene induced by R. solanacearum was found to be twice significant upregulated expression during the early and middle stages of bacterial wilt. Combined with the co-expression analysis of disease-resistant marker genes, gain-of-function and loss-of-function assays demonstrated that StMBF1c was associated with defence priming. Overexpression or silencing the MBF1c could enhance plants resistance or sensitivity to R. solanacearum through inducing or reducing NPR and PR genes related to SA signal pathway. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiment results confirmed the interaction of StMBF1c with StTPS5 which played a key role in ABA signal pathway in potato. It is speculated that by combining StTPS5 and resistance marker genes, StMBF1c is activated twice to participate in potato bacterial wilt resistance, in which EPI, PTI involved.
Collapse
Affiliation(s)
- Rui-Min Yu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Yun Suo
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Rui Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Nan Chang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Tian Tian
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Jie Song
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Huan-Jun Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Cong Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Ru-Jie Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Hong-Liang Liu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Gang Gao
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| |
Collapse
|
18
|
Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R, Kurata T, Demura T, Yoshida S, Ichihashi Y, Schaller A, Shirasu K. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. PLANT PHYSIOLOGY 2021; 185:1381-1394. [PMID: 33793894 PMCID: PMC8133603 DOI: 10.1093/plphys/kiaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 05/11/2023]
Abstract
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Present address: Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tetsuya Kurata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Author for communication: , Present address: Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Wang X, Ren M, Liu D, Zhang D, Zhang C, Lang Z, Macho AP, Zhang M, Zhu JK. Large-scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1469-1484. [PMID: 32246811 DOI: 10.1111/jipb.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/17/2023]
Abstract
The extensive phenotypic diversity within natural populations of Arabidopsis is associated with differences in gene expression. Transcript levels can be considered as inheritable quantitative traits, and used to map expression quantitative trait loci (eQTL) in genome-wide association studies (GWASs). In order to identify putative genetic determinants for variations in gene expression, we used publicly available genomic and transcript variation data from 665 Arabidopsis accessions and applied the single nucleotide polymorphism-set (Sequence) Kernel Association Test (SKAT) method for the identification of eQTL. Moreover, we used the penalized orthogonal-components regression (POCRE) method to increase the power of statistical tests. Then, gene annotations were used as test units to identify genes that are associated with natural variations in transcript accumulation, which correspond to candidate regulators, some of which may have a broad impact on gene expression. Besides increasing the chances to identify real associations, the analysis using POCRE and SKAT significantly reduced the computational cost required to analyze large datasets. As a proof of concept, we used this approach to identify eQTL that represent novel candidate regulators of immune responses. The versatility of this approach allows its application to any process that is subjected to natural variation among Arabidopsis accessions.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Min Ren
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Danni Liu
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Cuijun Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Shanghai, 200032, China
| |
Collapse
|
20
|
Patavardhan SS, Subba P, Najar A, Awasthi K, D'Souza L, Prasad TSK, Nivas SK. Plant-Pathogen Interactions: Broad Mite ( Polyphagotarsonemus latus)-Induced Proteomic Changes in Chili Pepper Plant ( Capsicum frutescens). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:714-725. [PMID: 32780627 DOI: 10.1089/omi.2020.0080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plant-pathogen interactions are key biological events that shape ecological dynamics, food production, agriculture and economy. In this context, Capsicum frutescens is an economically and culturally significant chili pepper plant grown widely across the globe as an essential ingredient of hot sauces, chili concentrates, oleoresin flavors, and also in traditional medicines. An important pathogen that limits chili cultivation causing low yield and economic loss is the broad mite, Polyphagotarsonemus latus. Broad mite-infested chili plants have stunted growth and leaves appear coppery and dark, which show symptoms of leaf curl and more importantly the smaller fruits unfit for consumption. The molecular mechanisms of how broad mite affect chili remain poorly understood. In this study, we report a tandem mass tag (TMT)-labeled mass spectrometry-based quantitative proteomic analysis of leaves and apical meristems of healthy and infected chili pepper plants. In total, we identified 5799 proteins, of which 1677 proteins were found to be differentially regulated in infested plants. Related signaling pathways of the differentially expressed proteins were examined using bioinformatics tools. Predominantly, we identified pathways associated with jasmonic acid synthesis, mitogen-activated protein kinase, and plant defense and hormone signal transduction. We also observed upregulation of several enzymes of the phenylpropanoid and carotenoid biosynthetic pathways. This study provides the first in-depth proteomic analysis that correlates broad mite infestation in chili and dysregulation of various pathways that take part in plant defense. In the future, data can be extrapolated for innovation in pest management methods whose ecological footprints are better understood.
Collapse
Affiliation(s)
- Sachin S Patavardhan
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India.,Department of Biotechnology, Mangalore University, Mangalore, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Kriti Awasthi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Leo D'Souza
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India
| | | | - Shashi Kiran Nivas
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India
| |
Collapse
|
21
|
Harvey S, Kumari P, Lapin D, Griebel T, Hickman R, Guo W, Zhang R, Parker JE, Beynon J, Denby K, Steinbrenner J. Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathog 2020; 16:e1008835. [PMID: 32785253 PMCID: PMC7446885 DOI: 10.1371/journal.ppat.1008835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.
Collapse
Affiliation(s)
- Sarah Harvey
- Department of Biology, University of York, York, United Kingdom
| | - Priyanka Kumari
- Institut für Phytopathologie, Universität Gießen, Gießen, Germany
| | - Dmitry Lapin
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Thomas Griebel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Berlin, Germany
| | - Richard Hickman
- Department of Biology, University of York, York, United Kingdom
| | - Wenbin Guo
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Runxuan Zhang
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Jane E. Parker
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Katherine Denby
- Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
22
|
Xu Q, Wang J, Zhao J, Xu J, Sun S, Zhang H, Wu J, Tang C, Kang Z, Wang X. A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1830-1842. [PMID: 31981296 PMCID: PMC7336287 DOI: 10.1111/pbi.13345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 05/22/2023]
Abstract
The cell wall of filamentous fungi, comprised of chitin, polysaccharide and glycoproteins, maintains the integrity of hyphae and protect them from defence responses by potential host plants. Here, we report that one polysaccharide deacetylase of Puccinia striiformis f. sp. tritici (Pst), Pst_13661, suppresses Bax-induced cell death in plants and Pst_13661 is highly induced during early stages of the interaction between wheat and Pst. Importantly, the transgenic wheat expressing the RNA interference (RNAi) construct of Pst_13661 exhibits high resistance to major Pst epidemic races CYR31, CYR32 and CYR33 by inhibiting growth and development of Pst, indicating that Pst_13661 is an available pathogenicity factor and is a potential target for generating broad-spectrum resistance breeding material of wheat. It forms a homo-polymer and has high affinity for chitin and germ tubes of Pst compared with the control. Besides, Pst_13661 suppresses chitin-induced plant defence in plants. Hence, we infer that Pst_13661 may modify the fungal cell wall to prevent recognition by apoplastic surveillance systems in plants. This study opens new approaches for developing durable disease-resistant germplasm by disturbing the growth and development of fungi and develops novel strategies to control crop diseases.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinghua Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shutian Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Huifei Zhang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anShandongChina
| | - JiaJie Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anShandongChina
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
23
|
CaCML13 Acts Positively in Pepper Immunity Against Ralstonia solanacearum Infection Forming Feedback Loop with CabZIP63. Int J Mol Sci 2020; 21:ijms21114186. [PMID: 32545368 PMCID: PMC7312559 DOI: 10.3390/ijms21114186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains largely uninvestigated. In the present study, CaCML13, a calmodulin-like protein of pepper that was originally found to be upregulated by Ralstonia solanacearum inoculation (RSI) in RNA-seq, was functionally characterized in immunity against RSI. CaCML13 was found to target the whole epidermal cell including plasma membrane, cytoplasm and nucleus. We also confirmed that CaCML13 was upregulated by RSI in pepper roots by quantitative real-time PCR (qRT-PCR). The silencing of CaCML13 significantly enhanced pepper plants’ susceptibility to RSI accompanied with downregulation of immunity-related CaPR1, CaNPR1, CaDEF1 and CabZIP63. In contrast, CaCML13 transient overexpression induced clear hypersensitivity-reaction (HR)-mimicked cell death and upregulation of the tested immunity-related genes. In addition, we also revealed that the G-box-containing CaCML13 promoter was bound by CabZIP63 and CaCML13 was positively regulated by CabZIP63 at transcriptional level. Our data collectively indicate that CaCML13 act as a positive regulator in pepper immunity against RSI forming a positive feedback loop with CabZIP63.
Collapse
|
24
|
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family. THE NEW PHYTOLOGIST 2020; 226:1492-1505. [PMID: 31990988 PMCID: PMC7318236 DOI: 10.1111/nph.16455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/19/2020] [Indexed: 05/11/2023]
Abstract
●Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine-rich repeat receptor-like kinases (LRR-RLKs) are signal receptors critical in development and defense. LRR-RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well-resolved LRR-RLK gene tree has remained elusive. ●To resolve the LRR-RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR-RLK subclades and reconstructed the deepest nodes of the full gene family. ●We discovered that the LRR-RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR-RLK variants as members of other gene families. Our work corrects this misclassification. ●Our results reveal ongoing structural evolution generating novel LRR-RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family.
Collapse
Affiliation(s)
- Jarrett Man
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Joseph P. Gallagher
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Madelaine Bartlett
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| |
Collapse
|
25
|
Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, Choi ES, Lee E, Man Kim K, Yang SH, Jeon JS, Lee SC, Kim SH. Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. THE PLANT CELL 2020; 32:1081-1101. [PMID: 32086363 PMCID: PMC7145493 DOI: 10.1105/tpc.19.00631] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.
Collapse
Affiliation(s)
- Ho Won Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Gagan Kumar Panigrahi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
- School of Applied Sciences, Centurion University of Technology and Management, Odisha 752050, India
| | - Ga Young Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Yu Jeong Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ki Hun Shin
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Annapurna Sahoo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Eun Su Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Eunji Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Kyung Man Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang Hyon Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
26
|
Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q. Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110379. [PMID: 32005384 DOI: 10.1016/j.plantsci.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant defensins have been implicated in the plant defense system, but their role in poplar immunity is still unclear. In the present study, we present evidence that PtDefensin, a putative plant defensin, participates in the defense of poplar plants against Septotis populiperda infection. After the construction of recombinant plasmid PET-32a-PtDefensin, PtDefensin protein was expressed in Escherichia coli strain BL21 (DE3) and purified through Ni-IDA resin affinity chromatography. The Trx-PtDefensin fusion protein displayed no cytotoxic activity against RAW264.7 cells but had cytotoxic activity against E. coli K12D31 cells. Analyses of PtDefensin transcript abundance showed that the expression levels of PtDefensin responded to abiotic and biotic stresses. Overexpression of PtDefensin in 'Nanlin 895' poplars (Populus × euramericana cv 'Nanlin895') increased resistance to Septotis populiperda, coupled with upregulation of MYC2 (basic helix-loop-helix (bHLH) transcription factor) related to jasmonic acid (JA) signal transduction pathways and downregulation of Jasmonate-zim domain (JAZ), an inhibitor in the JA signal transduction pathway. We speculate that systemic acquired resistance (SAR) was activated in non-transgenic poplars after S. populiperda incubation, and that induced systemic resistance (ISR) was activated more obviously in transgenic poplars after S. populiperda incubation. Hence, overexpression of PtDefensin may improve the resistance of poplar plants to pathogens.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Xiaoli Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China.
| |
Collapse
|
27
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|
28
|
Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. Int J Biol Macromol 2019; 151:1322-1331. [PMID: 31751746 DOI: 10.1016/j.ijbiomac.2019.10.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
Chitin, an N-acetyl-D-glucosamine polymer, has been known to enhance plant growth. However, this polysaccharide has not been used extensively in experimental work or agriculture practices because its hydrophobic nature makes it difficult to handle. Chitin nanofiber (CNF), which disperses well in water, can feasibly be used to evaluate the effect of chitin on the promotion of plant growth. In this study, we analysed the contents of inorganic elements and global gene expression to obtain an overview of the growth-promoting action of chitins in plants. Significant increases in the biomass of aerial parts and concentration of chlorophyll following treatment with CNF or short-chain chitin oligomers were observed in tomatoes that were hydroponically cultivated under ultralow nutrient concentrations. The results of the quantification of inorganic elements demonstrated that concentrations of nitrogen and carbon significantly increased in whole tomato plant under chitin treatment. Transcriptome analysis of CNF-treated tomatoes by RNA sequencing showed that the expression levels of genes related to nitrogen acquisition and assimilation, nutrient allocation and photosynthesis were altered. These results indicate that the growth-promoting action of chitin treatment is caused by an improvement in nitrogen uptake efficiency and that CNF could be a useful material for nutrient management in tomato production.
Collapse
|
29
|
Li T, Wu Q, Zhu H, Zhou Y, Jiang Y, Gao H, Yun Z. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel. BMC PLANT BIOLOGY 2019; 19:289. [PMID: 31262259 PMCID: PMC6604187 DOI: 10.1186/s12870-019-1855-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/29/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Banana anthracnose, caused by Colletotrichum musae, is one of the most severe postharvest diseases in banana. Melatonin is widely known for its role in enhancing plant stress tolerance. However, little is known about the control of melatonin on anthracnose in postharvest banana fruit. RESULTS In this study, exogenous melatonin treatment could significantly reduce the incidence of anthracnose in ripe yellow banana fruit and delay fruit senescence. However, melatonin treatment did not affect the growth of Colletotrichum musae in vitro. Transcriptomic analysis of banana peel showed that 339 genes were up-regulated and 241 were down-regulated in the peel after melatonin treatment, compared with the control. Based on GO terms and KEGG pathway, these up-regulated genes were mainly categorized into signal transduction, cell wall formation, secondary metabolism, volatile compounds synthesis and response to stress, which might be related to the anti-anthracnose of banana fruit induced by melatonin treatment. This view was also supported by the increase of volatile compounds, cell wall components and IAA content in the melatonin-treated fruit peel via the metabolomic analysis. After melatonin treatment, auxin, ethylene and mitogen-activated protein kinase (MAPK) signaling pathways were enhanced, which might be involved in the enhanced fruit resistance by regulating physiological characteristics, disease-resistant proteins and metabolites. CONCLUSIONS Our results provide a better understanding of the molecular processes in melatonin treatment delaying banana fruit senescence and anthracnose incidence.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qixian Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yijie Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ze Yun
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
30
|
Ormskirk MM, Narciso J, Hampton JG, Glare TR. Endophytic ability of the insecticidal bacterium Brevibacillus laterosporus in Brassica. PLoS One 2019; 14:e0216341. [PMID: 31116753 PMCID: PMC6530831 DOI: 10.1371/journal.pone.0216341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
Brevibacillus laterosporus (Bl), is an insecticidal bacterium recorded as toxic to a range of invertebrates after ingestion. Isolates of Bl, which were initially recovered from surface-sterilised cabbage (Brassica oleracea var. capitata) seeds, were able to colonise brassica plants in the laboratory and field. The bacterium was recovered from surface-sterilised leaf, stem and root sections of seedlings after inoculation with Bl vegetative cells under laboratory conditions, and from mature cabbage plants sprayed with Bl in a field trial. The identity of the recovered bacterial isolates was confirmed by PCR through amplification of 16S rDNA and two strain-specific regions. The effect on diamondback moth (DBM) insect herbivory was tested with cabbage seedlings treated with one isolate (Bl 1951) as the strains are toxic to DBM after direct ingestion. While no effect on DBM larval herbivory was observed, there was a significant reduction of DBM pupation on the Bl 1951 colonised plants. The presence of Bl 1951 wild type cells within cabbage root tissue was confirmed by confocal microscopy, establishing the endophytic nature of the bacterium. The bacterium was also endophytic in three other brassica species tested, Chinese kale (Brassica oleracea var. alboglabra), oilseed rape (Brassica napus var. oleifera) and radish (Raphanus sativus).
Collapse
Affiliation(s)
- M. Marsha Ormskirk
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- * E-mail:
| | - Josefina Narciso
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - John G. Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Travis R. Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
31
|
Huang PY, Zhang J, Jiang B, Chan C, Yu JH, Lu YP, Chung K, Zimmerli L. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1033-1047. [PMID: 30462256 PMCID: PMC6363091 DOI: 10.1093/jxb/ery414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) derived from invading pathogens by plant pattern recognition receptors (PRRs) initiates a subset of defense responses known as pattern-triggered immunity (PTI). Transcription factors (TFs) orchestrate the onset of PTI through complex signaling networks. Here, we characterized the function of ERF19, a member of the Arabidopsis thaliana ethylene response factor (ERF) family. ERF19 was found to act as a negative regulator of PTI against Botrytis cinerea and Pseudomonas syringae. Notably, overexpression of ERF19 increased plant susceptibility to these pathogens and repressed MAMP-induced PTI outputs. In contrast, expression of the chimeric dominant repressor ERF19-SRDX boosted PTI activation, conferred increased resistance to the fungus B. cinerea, and enhanced elf18-triggered immunity against bacteria. Consistent with a negative role for ERF19 in PTI, MAMP-mediated growth inhibition was weakened or augmented in lines overexpressing ERF19 or expressing ERF19-SRDX, respectively. Using biochemical and genetic approaches, we show that the transcriptional co-repressor Novel INteractor of JAZ (NINJA) associates with and represses the function of ERF19. Our work reveals ERF19 as a novel player in the mitigation of PTI, and highlights a potential role for NINJA in fine-tuning ERF19-mediated regulation of Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, USA
| | - Jingsong Zhang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Beier Jiang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ching Chan
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Jhong-He Yu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Pin Lu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Correspondence:
| |
Collapse
|
32
|
Zhang C, Gao H, Li R, Han D, Wang L, Wu J, Xu P, Zhang S. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection. MOLECULAR PLANT PATHOLOGY 2019; 20:78-91. [PMID: 30113770 PMCID: PMC6430474 DOI: 10.1111/mpp.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytophthora sojae is a destructive pathogen of soybean [Glycine max (L.) Merr.] which causes stem and root rot on soybean plants worldwide. However, the pathogenesis and molecular mechanism of plant defence responses against P. sojae are largely unclear. Herein, we document the underlying mechanisms and function of a novel BTB/POZ protein, GmBTB/POZ, which contains a BTB/POZ domain found in certain animal transcriptional regulators, in host soybean plants in response to P. sojae. It is located in the cell nucleus and is transcriptionally up-regulated by P. sojae. Overexpression of GmBTB/POZ in soybean resulted in enhanced resistance to P. sojae. The activities and expression levels of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants were significantly higher in GmBTB/POZ-overexpressing (GmBTB/POZ-OE) transgenic soybean plants than in wild-type (WT) plants treated with sterile water or infected with P. sojae. The transcript levels of defence-associated genes were also higher in overexpressing plants than in WT on infection. Moreover, salicylic acid (SA) levels and the transcript levels of SA biosynthesis-related genes were markedly higher in GmBTB/POZ-OE transgenic soybean than in WT, but there were almost no differences in jasmonic acid (JA) levels or JA biosynthesis-related gene expression between GmBTB/POZ-OE and WT soybean lines. Furthermore, exogenous SA application induced the expression of GmBTB/POZ and inhibited the increase in P. sojae biomass in both WT and GmBTB/POZ-OE transgenic soybean plants. Taken together, these results suggest that GmBTB/POZ plays a positive role in P. sojae resistance and the defence response in soybean via a process that might be dependent on SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Hong Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Rongpeng Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Dan Han
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural SciencesKey Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. ChinaHarbin150086PR China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| |
Collapse
|
33
|
Qiu A, Lei Y, Yang S, Wu J, Li J, Bao B, Cai Y, Wang S, Lin J, Wang Y, Shen L, Cai J, Guan D, He S. CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2221-2235. [PMID: 29683552 PMCID: PMC6638151 DOI: 10.1111/mpp.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 05/10/2023]
Abstract
Tandem CCCH zinc finger (TZnF) proteins have been implicated in plant defence, but their role in pepper (Capsicum annuum) is unclear. In the present study, the role of CaC3H14, a pepper TZnF protein, in the immune response of pepper plants to Ralstonia solanacearum infection was characterized. When fused to the green fluorescent protein, CaC3H14 was localized exclusively to the nuclei in leaf cells of Nicotiana benthamiana plants transiently overexpressing CaC3H14. Transcript abundance of CaC3H14 was up-regulated by inoculation with R. solanacearum. Virus-induced silencing of CaC3H14 increased the susceptibility of the plants to R. solanacearum and down-regulated the genes associated with the hypersensitive response (HR), specifically HIR1 and salicylic acid (SA)-dependent PR1a. By contrast, silencing resulted in the up-regulation of jasmonic acid (JA)-dependent DEF1 and ethylene (ET) biosynthesis-associated ACO1. Transient overexpression of CaC3H14 in pepper triggered an intensive HR, indicated by cell death and hydrogen peroxide (H2 O2 ) accumulation, up-regulated PR1a and down-regulated DEF1 and ACO1. Ectopic overexpression of CaC3H14 in tobacco plants significantly decreased the susceptibility of tobacco plants to R. solanacearum. It also up-regulated HR-associated HSR515, immunity-associated GST1 and the SA-dependent marker genes NPR1 and PR2, but down-regulated JA-dependent PR1b and ET-dependent EFE26. The CaC3H14 promoter and was bound and its transcription was up-regulated by CaWRKY40. Collectively, these results indicate that CaC3H14 is transcriptionally targeted by CaWRKY40, is a modulator of the antagonistic interaction between SA and JA/ET signalling, and enhances the defence response of pepper plants to infection by R. solanacearum.
Collapse
Affiliation(s)
- Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yufen Lei
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Ji Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Bingjin Bao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yiting Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Song Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinhui Lin
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yuzhu Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinsen Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| |
Collapse
|
34
|
Jamieson PA, Shan L, He P. Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:242-251. [PMID: 30080610 PMCID: PMC6297115 DOI: 10.1016/j.plantsci.2018.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 05/21/2023]
Abstract
Plant receptor-like proteins (RLPs) are a family of transmembrane receptors which are distinguished from receptor-like kinases (RLKs) by their lack of a cytoplasmic kinase domain. RLPs continue to be implicated in a broad range of plant immunological and developmental processes as critical sensors or participants in receptor complexes on the plasma membrane. RLPs often associate with RLKs to activate or attenuate signal perception and relay. Some RLPs also physically cluster with RLKs and bear similar expression patterns. Here, we discuss the characteristics, function, and expression of characterized RLPs in the context of their associated RLKs in plant immunity and development.
Collapse
Affiliation(s)
- Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
35
|
Mayer D, Mithöfer A, Glawischnig E, Georgii E, Ghirardo A, Kanawati B, Schmitt-Kopplin P, Schnitzler JP, Durner J, Gaupels F. Short-Term Exposure to Nitrogen Dioxide Provides Basal Pathogen Resistance. PLANT PHYSIOLOGY 2018; 178:468-487. [PMID: 30076223 PMCID: PMC6130038 DOI: 10.1104/pp.18.00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Nitrogen dioxide (NO2) forms in plants under stress conditions, but little is known about its physiological functions. Here, we explored the physiological functions of NO2 in plant cells using short-term fumigation of Arabidopsis (Arabidopsis thaliana) for 1 h with 10 µL L-1 NO2. Although leaf symptoms were absent, the expression of genes related to pathogen resistance was induced. Fumigated plants developed basal disease resistance, or pattern-triggered immunity, against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae Functional salicylic acid and jasmonic acid (JA) signaling pathways were both required for the full expression of NO2-induced resistance against B. cinerea An early peak of salicylic acid accumulation immediately after NO2 exposure was followed by a transient accumulation of oxophytodienoic acid. The simultaneous NO2-induced expression of genes involved in jasmonate biosynthesis and jasmonate catabolism resulted in the complete suppression of JA and JA-isoleucine (JA-Ile) accumulation, which was accompanied by a rise in the levels of their catabolic intermediates 12-OH-JA, 12-OH-JA-Ile, and 12-COOH-JA-Ile. NO2-treated plants emitted the volatile monoterpene α-pinene and the sesquiterpene longifolene (syn. junipene), which could function in signaling or direct defense against pathogens. NO2-triggered B. cinerea resistance was dependent on enhanced early callose deposition and CYTOCHROME P450 79B2 (CYP79B2), CYP79B3, and PHYTOALEXIN DEFICIENT3 gene functions but independent of camalexin, CYP81F2, and 4-OH-indol-3-ylmethylglucosinolate derivatives. In sum, exogenous NO2 triggers basal pathogen resistance, pointing to a possible role for endogenous NO2 in defense signaling. Additionally, this study revealed the involvement of jasmonate catabolism and volatiles in pathogen immunity.
Collapse
Affiliation(s)
- Dörte Mayer
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, D-07745 Jena, Germany
| | - Erich Glawischnig
- Department of Plant Sciences, Technical University of Munich, D-85354 Freising, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Basem Kanawati
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| |
Collapse
|
36
|
Zhong C, Ren Y, Qi Y, Yu X, Wu X, Tian Z. PAMP-responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:47-57. [PMID: 29576086 DOI: 10.1016/j.plantsci.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/11/2023]
Abstract
Ubiquitination is a post-translational modification that plays a crucial role during the regulation of plant immune signalling. The plant ATL family consists of a large number of putative RING type ubiquitin ligases. We show that potato ATL family gene StRFP1 and its orthologue NbATL60 from N. benthamiana both respond to Phytophthora infestans culture filtrate (CF) and flg22 induction. StRFP1 positively regulates immunity against P. infestans in potato. Ectopic transient expression of StRFP1 or expression of NbATL60 in N. benthamiana also enhances late blight resistance. By contrast, silencing NbATL60 in N. benthamiana reduces late blight resistance and leads to plant growth inhibition. Both StRFP1 and NbATL60 localize to the plasma membrane and intracellular puncta and possess E3 Ligase activity in vitro. Furthermore we demonstrate that the RING finger domain mutants of StRFP1 and NbATL60 lost E3 ligase activity and fail to suppress P. infestans colonization in N. benthamiana, indicating that E3 ligase activity is critical for StRFP1 and NbATL60 to regulate immunity. Overexpression or RNA interference of StRFP1 in transgenic potato led to increased or decreased expression of PTI maker genes (WRKY7, WRKY8, ACRE31 and Pti5) respectively. Similarly silencing of NbATL60 in N. benthamiana decreases expression of these PTI marker genes. Moreover, VIGS of NbATL60 in N. benthamiana did not compromise P. infestans PAMP INF1 or R2/Avr2, R3a/AVR3a, Rx/Cp and Pto/AvrPto triggered cell death. These results indicate that ATL genes StRFP1 and NbATL60 contribute to basal immunity (PTI) in Solanaceous plants.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Kaili University, Kaili, Guizhou, 556011, People's Republic of China.
| | - Yajuan Ren
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoling Yu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
37
|
Piao Y, Jin K, He Y, Liu J, Liu S, Li X, Piao Z. Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa. PLoS One 2018; 13:e0191015. [PMID: 29444111 PMCID: PMC5812557 DOI: 10.1371/journal.pone.0191015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/27/2017] [Indexed: 11/29/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.
Collapse
Affiliation(s)
- Yinglan Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Kaining Jin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying He
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiaxiu Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- * E-mail: (ZP); (XL)
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- * E-mail: (ZP); (XL)
| |
Collapse
|
38
|
Goff KE, Ramonell KM. The Role and Regulation of Receptor-Like Kinases in Plant Defense. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor-like kinases (RLKs) in plants are a large superfamily of proteins that are structurally similar. RLKs are involved in a diverse array of plant responses including development, growth, hormone perception and the response to pathogens. Current studies have focused attention on plant receptor-like kinases as an important class of sentinels acting in plant defense responses. RLKs have been identified that act in both broad-spectrum, elicitor-initiated defense responses and as dominant resistance (R) genes in race-specific pathogen defense. Most defense-related RLKs are of the leucine-rich repeat (LRR) subclass although new data are highlighting other classes of RLKs as important players in defense responses. As our understanding of RLK structure, activation and signaling has expanded, the role of the ubiquitin/proteasome system in the regulation of these receptors has emerged as a central theme.
Collapse
Affiliation(s)
- Kerry E. Goff
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| | - Katrina M. Ramonell
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| |
Collapse
|
39
|
Jiang L, Wan Y, Anderson JC, Hou J, Islam SM, Cheng J, Peck SC. Genetic dissection of Arabidopsis MAP kinase phosphatase 1-dependent PAMP-induced transcriptional responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5207-5220. [PMID: 29045691 PMCID: PMC5853853 DOI: 10.1093/jxb/erx335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Plant immunity is initiated by extracellular detection of pathogen-associated molecular patterns (PAMPs) through surface-localized pattern recognition receptors (PRRs). PRR activation induces many responses including the activation of mitogen-activated protein kinases (MAPKs) that ultimately limit bacterial growth. Previous work identified Arabidopsis MAP kinase phosphatase 1 (MKP1) as a negative regulator of signaling pathways required for some, but not all, of PAMP-initiated responses. Specifically, loss of MAPK MPK6 in an mkp1 background suppressed a subset of the mkp1-dependent biological phenotypes, indicating the requirement for MPK6 in MKP1-dependent signaling. To further genetically separate the outputs of PAMP-responsive signaling pathways, we performed a transcriptome analysis in Arabidopsis wild type, mkp1 and mkp1 mpk6 seedlings treated with the bacterially derived PAMP elf26 for 0, 30, and 90 min. Using differential genetic and temporal clustering analyses between and within genotypes, we identified and separated 6963 elf26-responsive transcripts based on both genetic requirements of MKP1 (with or without a requirement for MPK6) and temporal transcriptional accumulation patterns, and some of these novel response markers were validated by qRT-PCR over a more extended time course. Taken together, our transcriptome analysis provides novel information for delineating PAMP signaling pathways.
Collapse
Affiliation(s)
- Lingyan Jiang
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Ying Wan
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - Soliman M Islam
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Scott C Peck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Correspondence:
| |
Collapse
|
40
|
Che Z, Liu H, Yi F, Cheng H, Yang Y, Wang L, Du J, Zhang P, Wang J, Yu D. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel. FRONTIERS IN PLANT SCIENCE 2017; 8:1771. [PMID: 29075282 PMCID: PMC5641574 DOI: 10.3389/fpls.2017.01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 05/29/2023]
Abstract
Soybean mosaic virus (SMV) is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L.) Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants derived from two soybean parents was used in this study. There were 104 SNPs identified significantly associated with resistance to SC7, some of which were located within previous reported quantitative trait loci. Three putative genes on chromosome 1, 9, and 12 were homologous to WRKY72, eEF1Bβ, and RLP9, which were involved in defense response to insect and disease in Arabidopsis. Moreover, the expression levels of these three genes changed in resistance and susceptible soybean accessions after SMV infection. These three putative genes may involve in the resistance to SC7 and be worthy to further research. Collectively, markers significantly associated with resistance to SC7 will be helpful in molecular marker-assisted selection for breeding resistant soybean accessions to SMV, and the candidate genes identified would advance the functional study of resistance to SMV in soybean.
Collapse
Affiliation(s)
- Zhijun Che
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Hailun Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fanglei Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Hao Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Yuming Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Li Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Jingyi Du
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Peipei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Jiao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Cheng W, Xiao Z, Cai H, Wang C, Hu Y, Xiao Y, Zheng Y, Shen L, Yang S, Liu Z, Mou S, Qiu A, Guan D, He S. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. MOLECULAR PLANT PATHOLOGY 2017; 18:1089-1100. [PMID: 27438958 PMCID: PMC6638248 DOI: 10.1111/mpp.12462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
The leucine-rich repeat (LRR) proteins play important roles in the recognition of corresponding ligands and signal transduction networks in plant defence responses. Herein, a novel LRR protein from Capsicum annuum, CaLRR51, was identified and characterized. It was localized to the plasma membrane and transcriptionally up-regulated by Ralstonia solanacearum infection (RSI), as well as the exogenous application of salicylic acid (SA), jasmonic acid (JA) and ethephon (ETH). Virus-induced gene silencing of CaLRR51 significantly increased the susceptibility of pepper to RSI. By contrast, transient overexpression of CaLRR51 in pepper plants activated hypersensitive response (HR)-like cell death, and up-regulated the defence-related marker genes, including PO2, HIR1, PR1, DEF1 and ACO1. Moreover, ectopic overexpression of CaLRR51 in transgenic tobacco plants significantly enhanced the resistance to RSI. Transcriptional expression of the corresponding defence-related marker genes in transgenic tobacco plants was also found to be enhanced by the overexpression of CaLRR51, which was potentiated by RSI. These loss- and gain-of-function assays suggest that CaLRR51 acts as a positive regulator in the response of pepper to RSI. In addition, the putative signal peptide and transmembrane region were found to be required for plasma membrane targeting of CaLRR51, which is indispensable for the role of CaLRR51 in plant immunity.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Chuanqing Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yang Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yueping Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yuxing Zheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| |
Collapse
|
42
|
Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection. Int J Mol Sci 2017; 18:E1661. [PMID: 28763001 PMCID: PMC5578051 DOI: 10.3390/ijms18081661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3-712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box-466 to -461 bp in pChiIV3-712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youquan Lin
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Tang D, Wang G, Zhou JM. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. THE PLANT CELL 2017; 29:618-637. [PMID: 28302675 PMCID: PMC5435430 DOI: 10.1105/tpc.16.00891] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to "hide" microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis.
Collapse
Affiliation(s)
- Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxun Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Comparison of Effects of Chitin and Chitosan for Control of Colletotrichum sp. on Cucumbers. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Tsai AYL, Chan K, Ho CY, Canam T, Capron R, Master ER, Bräutigam K. Transgenic expression of fungal accessory hemicellulases in Arabidopsis thaliana triggers transcriptional patterns related to biotic stress and defense response. PLoS One 2017; 12:e0173094. [PMID: 28253318 PMCID: PMC5333852 DOI: 10.1371/journal.pone.0173094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
The plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves. Previously, we constructed transgenic Arabidopsis thaliana constitutively expressing the fungal hemicellulases: Phanerochaete carnosa glucurnoyl esterase (PcGCE) and Aspergillus nidulans α-arabinofuranosidase (AnAF54). While the PcGCE lines demonstrated improved xylan extractability, they also displayed chlorotic leaves leading to the hypothesis that expression of such enzymes in planta resulted in plant stress. The objective of this study is to investigate the impact of transgenic expression of the aforementioned microbial hemicellulases in planta on the host arabidopsis. More specifically, we investigated transcriptome profiles by short read high throughput sequencing (RNAseq) from developmentally distinct parts of the plant stem. When compared to non-transformed wild-type plants, a subset of genes was identified that showed differential transcript abundance in all transgenic lines and tissues investigated. Intriguingly, this core set of genes was significantly enriched for those involved in plant defense and biotic stress responses. While stress and defense-related genes showed increased transcript abundance in the transgenic plants regardless of tissue or genotype, genes involved in photosynthesis (light harvesting) were decreased in their transcript abundance potentially reflecting wide-spread effects of heterologous microbial transgene expression and the maintenance of plant homeostasis. Additionally, an increase in transcript abundance for genes involved in salicylic acid signaling further substantiates our finding that transgenic expression of microbial cell wall modifying enzymes induces transcriptome responses similar to those observed in defense responses.
Collapse
Affiliation(s)
- Alex Yi-Lin Tsai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kin Chan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chi-Yip Ho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
| | - Resmi Capron
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Emma R. Master
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katharina Bräutigam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Winkler AJ, Dominguez-Nuñez JA, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, Berrocal-Lobo M. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Mar Drugs 2017; 15:md15020040. [PMID: 28212295 PMCID: PMC5334620 DOI: 10.3390/md15020040] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.
Collapse
Affiliation(s)
- Alexander J Winkler
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Department for Wood Biology, Centre for Wood Science and Technology, Universität Hamburg, Leuschnerstr. 91d, D-2103 Hamburg, Germany.
| | - Jose Alfonso Dominguez-Nuñez
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Inmaculada Aranaz
- Departamento de Físico-Química, Instituto de Estudios Bifuncionales, Facultad de Farmacia, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.
| | | | - Katrina Ramonell
- Department of Biological Sciences, P.O. Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Shauna Somerville
- Plant Biology, Carnegie Institution of Science, 260 Panama St., Stanford, CA 94305, USA.
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
47
|
Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porceddu A, Camiolo S, Wong D, Castellarin S, Vandelle E, Polverari A. Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members. Sci Rep 2016; 6:38260. [PMID: 27910910 PMCID: PMC5133618 DOI: 10.1038/srep38260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The Arabidopsis Tóxicos en Levadura (ATL) protein family is a class of E3 ubiquitin ligases with a characteristic RING-H2 Zn-finger structure that mediates diverse physiological processes and stress responses in plants. We carried out a genome-wide survey of grapevine (Vitis vinifera L.) ATL genes and retrieved 96 sequences containing the canonical ATL RING-H2 domain. We analysed their genomic organisation, gene structure and evolution, protein domains and phylogenetic relationships. Clustering revealed several clades, as already reported in Arabidopsis thaliana and rice (Oryza sativa), with an expanded subgroup of grapevine-specific genes. Most of the grapevine ATL genes lacked introns and were scattered among the 19 chromosomes, with a high level of duplication retention. Expression profiling revealed that some ATL genes are expressed specifically during early or late development and may participate in the juvenile to mature plant transition, whereas others may play a role in pathogen and/or abiotic stress responses, making them key candidates for further functional analysis. Our data offer the first genome-wide overview and annotation of the grapevine ATL family, and provide a basis for investigating the roles of specific family members in grapevine physiology and stress responses, as well as potential biotechnological applications.
Collapse
Affiliation(s)
- Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alice Regaiolo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Arianna Lovato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alejandro Giorgetti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Andrea Porceddu
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Salvatore Camiolo
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Darren Wong
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
48
|
Mei S, Hou S, Cui H, Feng F, Rong W. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2016; 17:1331-1343. [PMID: 26724785 PMCID: PMC6638524 DOI: 10.1111/mpp.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 05/03/2023]
Abstract
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector-triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA-independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2-2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.
Collapse
Affiliation(s)
- Shuangshuang Mei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
- College of Environment and Plant ProtectionHainan UniversityHaikouHainan 570228China
| | - Shuguo Hou
- School of Municipal and Environmental EngineeringShandong Jianzhu University, Ligang Developmental ZoneJinanShandong 250100China
| | - Haitao Cui
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829KölnGermany
| | - Feng Feng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing100101China
| | - Wei Rong
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
| |
Collapse
|
49
|
Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:179-192. [PMID: 27304416 DOI: 10.1111/tpj.13238] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are a major class of small non-coding RNAs with emerging functions in biotic and abiotic interactions. Here, we report on a new functional role of Arabidopsis miR827 and its NITROGEN LIMITATION ADAPTATION (NLA) target gene in mediating plant susceptibility to the beet cyst nematode Heterodera schachtii. Cyst nematodes are sedentary endoparasites that induce the formation of multinucleated feeding structures termed syncytia in the roots of host plants. Using promoter:GUS fusion assays we established that miR827 was activated in the initial feeding cells and this activation was maintained in the syncytium during all sedentary stages of nematode development. Meanwhile, the NLA target gene, which encodes an ubiquitin E3 ligase enzyme, was post-transcriptionally silenced in the syncytium to permanently suppress its activity during all nematode parasitic stages. Overexpression of miR827 in Arabidopsis resulted in hyper-susceptibility to H. schachtii. In contrast, inactivation of miR827 activity through target mimicry or by overexpression a miR827-resistant cDNA of NLA produced the opposite phenotype of reduced plant susceptibility to H. schachtii. Gene expression analysis of several pathogenesis-related genes together with Agrobacterium-mediated transient expression in Nicotiana benthamiana provided strong evidence that miR827-mediated downregulation of NLA to suppress basal defense pathways. In addition, using yeast two-hybrid screens we identified several candidates of NLA-interacting proteins that are involved in a wide range of biological processes and molecular functions, including three pathogenesis-related proteins. Taken together, we conclude that nematode-activated miR827 in the syncytium is necessary to suppress immune responses in order to establish infection and cause disease.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | | | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
50
|
Kissen R, Øverby A, Winge P, Bones AM. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana. BMC Genomics 2016; 17:740. [PMID: 27639974 PMCID: PMC5027104 DOI: 10.1186/s12864-016-3039-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023] Open
Abstract
Background Isothiocyanates (ITCs) are degradation products of the plant secondary metabolites glucosinolates (GSLs) and are known to affect human health as well as plant herbivores and pathogens. To investigate the processes engaged in plants upon exposure to isothiocyanate we performed a genome scale transcriptional profiling of Arabidopsis thaliana at different time points in response to an exogenous treatment with allyl-isothiocyanate. Results The treatment triggered a substantial response with the expression of 431 genes affected (P < 0.05 and log2 ≥ 1 or ≤ -1) already after 30 min and that of 3915 genes affected after 9 h of exposure, most of the affected genes being upregulated. These are involved in a considerable number of different biological processes, some of which are described in detail: glucosinolate metabolism, sulphate uptake and assimilation, heat stress response, oxidative stress response, elicitor perception, plant defence and cell death mechanisms. Conclusion Exposure of Arabidopsis thaliana to vapours of allyl-isothiocyanate triggered a rapid and substantial transcriptional response affecting numerous biological processes. These include multiple stress stimuli such as heat stress response and oxidative stress response, cell death and sulphur secondary defence metabolism. Hence, effects of isothiocyanates on plants previously reported in the literature were found to be regulated at the gene expression level. This opens some avenues for further investigations to decipher the molecular mechanisms underlying the effects of isothiocyanates on plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Anders Øverby
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.,Present address: Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| |
Collapse
|