1
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Nawaly H, Matsui H, Tsuji Y, Iwayama K, Ohashi H, Nakajima K, Matsuda Y. Multiple plasma membrane SLC4s contribute to external HCO3- acquisition during CO2 starvation in the marine diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:296-307. [PMID: 36124754 DOI: 10.1093/jxb/erac380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of CO2 is one of the restrictions on aquatic photosynthesis. Solute carrier (SLC) 4-2, a plasma membrane HCO3- transporter has previously been identified in the marine diatom Phaeodactylum tricornutum. In this study, we discovered two paralogs, PtSLC4-1 and PtSLC4-4, that are both localized at the plasma membrane. Their overexpression stimulated HCO3- uptake, and this was inhibited by the anion channel blocker 4,4´-diisothiocyanostilbene-2,2´-disulfonic (DIDS). Similarly to SLC4-2, PtSLC4-1 specifically required Na+ of ~100 mM for its maximum HCO3- transport activity. Unlike PtSLC4-1 and PtSLC4-2, the HCO3- transport of PtSLC4-4 depended equally on Na+, K+, or Li+, suggesting its broad selectivity for cations. Transcript analyses indicated that PtSLC4-1 was the most abundant HCO3- transporter under CO2 concentrations below atmospheric levels, while PtSLC4-4 showed little transcript induction under atmospheric CO2 but transient induction to comparable levels to PtSLC4-1 during the initial acclimation stage from high CO2 (1%) to very low CO2 (<0.002%). Our results strongly suggest a major HCO3- transport role of PtSLC4-1 with a relatively minor role of PtSLC4-2, and that PtSLC4-4 operates under severe CO2 limitation unselectively to cations when the other SLC4s do not function to support HCO3- uptake.
Collapse
Affiliation(s)
- Hermanus Nawaly
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroaki Matsui
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kazufumi Iwayama
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroki Ohashi
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
3
|
Erdene‐Ochir E, Shin B, Huda MN, Lee EH, Song D, Jung C, Pan C. Characterization of endogenous promoters of GapC1 and GS for recombinant protein expression in Phaeodactylum tricornutum. Microbiologyopen 2021; 10:e1239. [PMID: 34713604 PMCID: PMC8545674 DOI: 10.1002/mbo3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022] Open
Abstract
Although diatoms have been utilized as a cellular factory to produce biopharmaceuticals, recombinant proteins, and biofuels, only a few numbers of gene promoters are available. Therefore, the development of novel endogenous promoters is essential for the production of a range of bioactive substances. Here, we characterized the activities of endogenous promoters glyceraldehyde-3-phosphate dehydrogenase (GapC1) and glutamine synthetase (GS) of Phaeodactylum tricornutum using green fluorescent protein (GFP) under different culture conditions. Compared with the widely used fucoxanthin chlorophyll-binding protein A (fcpA) promoter, the GS promoter constitutively drove the expression of GFP throughout all growth phases of P. tricornutum, regardless of culture conditions. Additionally, the GFP level driven by the GapC1 promoter was the highest at the log phase, similar to the fcpA promoter, and increased light and nitrogen-starvation conditions reduced GFP levels by inhibiting promoter activity. These results suggested that the GS promoter could be utilized as a strong endogenous promoter for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Erdenedolgor Erdene‐Ochir
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
| | | | - Md Nazmul Huda
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
| | - Eun Ha Lee
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangRepublic of Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Cheol‐Ho Pan
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
- Microalgae Ask Us Co., Ltd.GangneungRepublic of Korea
| |
Collapse
|
4
|
Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020; 35:1060-1068. [PMID: 32314608 PMCID: PMC7191908 DOI: 10.1080/14756366.2020.1755852] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 01/30/2023] Open
Abstract
The carbonic anhydrases (CAs, EC 4.2.1.1) catalyse a simple but physiologically crucial reversible reaction, the carbon dioxide hydration with the production of bicarbonate and protons. In the last years, and especially, to the rapid emergence of the bacterial antibiotic resistance that is occurring worldwide, the understanding of the function of bacterial CAs has increased significantly. Recently, a new CA-class (ι-CA) was discovered in the marine diatom T. pseudonana. It has been reported that bacterial genomes may contain genes with relevant homology to the diatom ι-class CA. Still, the catalytic activity of the enzyme encoded by the gene was not investigated. Thus, herein, for the first time, we cloned, expressed, and purified the recombinant bacterial ι-CA (acronym BteCAι) identified in the genome of Burkholderia territorii. The recombinant BteCAι resulted in a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat of 3.0 × 105 s -1 and kcat/KM of 3.9 × 107 M -1 s -1, and is also sensitive to inhibition by the sulphonamide acetazolamide. Furthermore, with the aid of the protonography, it has been demonstrated that BteCAι can be present as a dimer. This result is corroborated by the construction of a molecular model of BteCAι, which showed that the enzyme is formed by two equivalent monomers having a structure similar to a butterfly.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
5
|
Huang W, Han S, Jiang H, Gu S, Li W, Gontero B, Maberly SC. External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6004-6014. [PMID: 32721017 DOI: 10.1093/jxb/eraa351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The freshwater monocot Ottelia alismoides is the only known species to operate three CO2-concentrating mechanisms (CCMs): constitutive bicarbonate (HCO3-) use, C4 photosynthesis, and facultative Crassulacean acid metabolism, but the mechanism of HCO3- use is unknown. We found that the inhibitor of an anion exchange protein, 4,4'-diisothio-cyanatostilbene-2,2'-disulfonate (DIDS), prevented HCO3- use but also had a small effect on CO2 uptake. An inhibitor of external carbonic anhydrase (CA), acetazolamide (AZ), reduced the affinity for CO2 uptake but also prevented HCO3- use via an effect on the anion exchange protein. Analysis of mRNA transcripts identified a homologue of solute carrier 4 (SLC4) responsible for HCO3- transport, likely to be the target of DIDS, and a periplasmic α-carbonic anhydrase 1 (α-CA1). A model to quantify the contribution of the three different pathways involved in inorganic carbon uptake showed that passive CO2 diffusion dominates inorganic carbon uptake at high CO2 concentrations. However, as CO2 concentrations fall, two other pathways become predominant: conversion of HCO3- to CO2 at the plasmalemma by α-CA1 and transport of HCO3- across the plasmalemma by SLC4. These mechanisms allow access to a much larger proportion of the inorganic carbon pool and continued photosynthesis during periods of strong carbon depletion in productive ecosystems.
Collapse
Affiliation(s)
- Wenmin Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Aix Marseille Univ CNRS, BIP UMR 7281, IMM, FR 3479, 31 Chemin Joseph Aiguier, Marseille Cedex 20, France
| | - Shijuan Han
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Shuping Gu
- Shanghai Sequen Bio-info Studio, Shanghai, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Brigitte Gontero
- Aix Marseille Univ CNRS, BIP UMR 7281, IMM, FR 3479, 31 Chemin Joseph Aiguier, Marseille Cedex 20, France
| | - Stephen C Maberly
- Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, UK
| |
Collapse
|
6
|
Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. BIOLOGY 2020; 9:E217. [PMID: 32785088 PMCID: PMC7464044 DOI: 10.3390/biology9080217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing.
Collapse
Affiliation(s)
- Deepak Sethi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Thomas O. Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Faqih Shuhaili
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| |
Collapse
|
7
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
8
|
Wei L, You W, Gong Y, El Hajjami M, Liang W, Xu J, Poetsch A. Transcriptomic and proteomic choreography in response to light quality variation reveals key adaption mechanisms in marine Nannochloropsis oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137667. [PMID: 32325597 DOI: 10.1016/j.scitotenv.2020.137667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic organisms need to respond frequently to the fluctuation of light quality and light quantity in their habitat. In response to the fluctuation of different single wavelength lights, these organisms have to adjust and optimize the employment of light energy by redistributing excitation energy and remodeling photosystem stoichiometry or light complex structure. However, the response of whole cellular processes to fluctuations in single wavelength light is mostly unknown. Here, we report the transcriptomic and proteomic dynamics and metabolic adaptation mechanisms of Nannochloropsis oceanica to blue and red light. Preferential exposure to different light spectra induces massive reprogramming of the Nannochloropsis transcriptome and proteome. Combined with physiological and biochemical investigation, the rewiring of many cellular processes was observed, including carbon/nitrogen assimilation, photosynthesis, chlorophyll and cartenoid biosynthesis, reactive oxygen species (ROS) scavenging systems, and chromatin state regulation. A strong and rapid regulation of genes or proteins related to nitrogen metabolism, photosynthesis, chlorophyll synthesis, ROS scavenging system, and carotenoid metabolism were observed during 12 h and 24 h of exposure under red light. Additionally, two light harvesting complex proteins induced by blue light and one by red light were observed. The differential responses of N. oceanica to red and blue irradiation reveal how marine microalgae adapt to change in light quality and can be exploited for biofuel feedstock development.
Collapse
Affiliation(s)
- Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wuxin You
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Mohamed El Hajjami
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wensi Liang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Jensen EL, Maberly SC, Gontero B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int J Mol Sci 2020; 21:E2922. [PMID: 32331234 PMCID: PMC7215798 DOI: 10.3390/ijms21082922] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrases (CAs) exist in all kingdoms of life. They are metalloenzymes, often containing zinc, that catalyze the interconversion of bicarbonate and carbon dioxide-a ubiquitous reaction involved in a variety of cellular processes. So far, eight classes of apparently evolutionary unrelated CAs that are present in a large diversity of living organisms have been described. In this review, we focus on the diversity of CAs and their roles in photosynthetic microalgae. We describe their essential role in carbon dioxide-concentrating mechanisms and photosynthesis, their regulation, as well as their less studied roles in non-photosynthetic processes. We also discuss the presence in some microalgae, especially diatoms, of cambialistic CAs (i.e., CAs that can replace Zn by Co, Cd, or Fe) and, more recently, a CA that uses Mn as a metal cofactor, with potential ecological relevance in aquatic environments where trace metal concentrations are low. There has been a recent explosion of knowledge about this well-known enzyme with exciting future opportunities to answer outstanding questions using a range of different approaches.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK;
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| |
Collapse
|
10
|
Falciatore A, Jaubert M, Bouly JP, Bailleul B, Mock T. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. THE PLANT CELL 2020; 32:547-572. [PMID: 31852772 PMCID: PMC7054031 DOI: 10.1105/tpc.19.00158] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.
Collapse
Affiliation(s)
- Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Marianne Jaubert
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Jean-Pierre Bouly
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Erdene-Ochir E, Shin BK, Kwon B, Jung C, Pan CH. Identification and characterisation of the novel endogenous promoter HASP1 and its signal peptide from Phaeodactylum tricornutum. Sci Rep 2019; 9:9941. [PMID: 31289300 PMCID: PMC6617621 DOI: 10.1038/s41598-019-45786-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Although diatoms have been extensively studied as bioreactors, only a limited number of efficient gene promoters are available. Therefore, the development of new endogenous promoters is important for the heterologous production of a variety of recombinant proteins. Herein, we identified the most abundant secreted protein in Phaeodactylum tricornutum, designated ‘highly abundant secreted protein 1’ (HASP1), and characterised the activities of its promoter and signal peptide using green fluorescent protein (GFP) as a reporter. The HASP1 promoter strongly drove GFP expression during all growth phases of P. tricornutum in culture, in contrast to the commonly used fcpA promoter, which is less active during the stationary phase. The HASP1 signal peptide was also sufficient for facilitating efficient secretion of GFP by P. tricornutum. Our findings suggest that both the promoter and the signal peptide of HASP1 can be utilized as novel tools for the overexpression and secretion of recombinant proteins in P. tricornutum.
Collapse
Affiliation(s)
- Erdenedolgor Erdene-Ochir
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bok-Kyu Shin
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Byeori Kwon
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Choonkyun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
12
|
Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:510-518. [PMID: 30688123 PMCID: PMC6352938 DOI: 10.1080/14756366.2018.1559840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, which started to be investigated in detail in pathogenic, as well as non-pathogenic species since their pivotal role is to accelerate the physiological CO2 hydration/dehydration reaction significantly. Here, we propose the marine unicellular diatom Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of CA inhibitors (CAIs). Seven inhibitors belonging to the sulphonamide type and possessing a diverse scaffold have been explored for their in vitro inhibition of the whole diatom CAs and the in vivo inhibitory effect on the growth of P. tricornutum. Interesting, inhibition of growth was observed, in vivo, demonstrating that this diatom is a good model for testing the cell wall penetrability of this class of pharmacological agents. Considering that many pathogens are difficult and dangerous to grow in the laboratory, the growth inhibition of P. tricornutum with different such CAIs may be subsequently used to design inhibition studies of CAs from pathogenic organisms.
Collapse
Affiliation(s)
- Alessandra Rogato
- a Institute of Bioscience and BioResources, CNR , Naples , Italy.,b Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples , Italy
| | - Sonia Del Prete
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| | - Alessio Nocentini
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | | | - Claudiu T Supuran
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | - Clemente Capasso
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| |
Collapse
|
13
|
Razzak MA, Lee J, Lee DW, Kim JH, Yoon HS, Hwang I. Expression of seven carbonic anhydrases in red alga Gracilariopsis chorda and their subcellular localization in a heterologous system, Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:147-159. [PMID: 30446790 DOI: 10.1007/s00299-018-2356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 05/07/2023]
Abstract
Red alga, Gracilariopsis chorda, contains seven carbonic anhydrases that can be grouped into α-, β- and γ-classes. Carbonic anhydrases (CAHs) are metalloenzymes that catalyze the reversible hydration of CO2. These enzymes are present in all living organisms and play roles in various cellular processes, including photosynthesis. In this study, we identified seven CAH genes (GcCAHs) from the genome sequence of the red alga Gracilariopsis chorda and characterized them at the molecular, cellular and biochemical levels. Based on sequence analysis, these seven isoforms were categorized into four α-class, one β-class, and two γ-class isoforms. RNA sequencing revealed that of the seven CAHs isoforms, six genes were expressed in G. chorda in light at room temperature. In silico analysis revealed that these seven isoforms localized to multiple subcellular locations such as the ER, mitochondria and cytosol. When expressed as green fluorescent protein fusions in protoplasts of Arabidopsis thaliana leaf cells, these seven isoforms showed multiple localization patterns. The four α-class GcCAHs with an N-terminal hydrophobic leader sequence localized to the ER and two of them were further targeted to the vacuole. GcCAHβ1 with no noticeable signal sequence localized to the cytosol. The two γ-class GcCAHs also localized to the cytosol, despite the presence of a predicted presequence. Based on these results, we propose that the red alga G. chorda also employs multiple CAH isoforms for various cellular processes such as photosynthesis.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul, 130-701, South Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
14
|
Heydarizadeh P, Veidl B, Huang B, Lukomska E, Wielgosz-Collin G, Couzinet-Mossion A, Bougaran G, Marchand J, Schoefs B. Carbon Orientation in the Diatom Phaeodactylum tricornutum: The Effects of Carbon Limitation and Photon Flux Density. FRONTIERS IN PLANT SCIENCE 2019; 10:471. [PMID: 31057578 PMCID: PMC6477932 DOI: 10.3389/fpls.2019.00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/28/2019] [Indexed: 05/03/2023]
Abstract
Diatoms adapt to changing environmental conditions in very efficient ways. Among the mechanisms that can be activated, the reorientation of carbon metabolism is crucial because it allows the storage of energy into energy-dense molecules, typically lipids. Beside their roles in physiology, lipids are commercially interesting compounds. Therefore studies dealing with this topic are relevant for both basic and applied science. Although the molecular mechanisms involved in the reorientation of carbon metabolism as a response to a deficiency in nutrients such as nitrogen or phosphorus has been partially elucidated, the impacts of carbon availability on the implementation of the reorientation mechanisms remain unclear. Indeed, it has not been determined if the same types of mechanisms are activated under carbon and other nutrient deficiencies or limitations. The first aim of this work was to get insights into the physiological, biological and molecular processes triggered by progressive carbon starvation in the model diatom Phaeodactylum tricornutum. The second aim was to investigate the effects of the growth light intensity on these processes. For such a purpose three different photon flux densities 30, 300, and 1000 μmol photons m-2 s-1 were used. The results presented here demonstrate that under carbon limitation, diatom cells still reorient carbon metabolism toward either phosphoenolpyruvate or pyruvate, which serves as a hub for the production of more complex molecules. The distribution of carbon atoms between the different pathways was partially affected by the growth photon flux density because low light (LL) provides conditions for the accumulation of chrysolaminarin, while medium light mostly stimulated lipid synthesis. A significant increase in the amount of proteins was observed under high light (HL).
Collapse
Affiliation(s)
- Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Brigitte Veidl
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Bing Huang
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Ewa Lukomska
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, France
| | | | | | - Gaël Bougaran
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
- *Correspondence: Benoît Schoefs,
| |
Collapse
|
15
|
Beszteri S, Thoms S, Benes V, Harms L, Trimborn S. The Response of Three Southern Ocean Phytoplankton Species to Ocean Acidification and Light Availability: A Transcriptomic Study. Protist 2018; 169:958-975. [DOI: 10.1016/j.protis.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 01/16/2023]
|
16
|
|
17
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
18
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
19
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
20
|
Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y. Mechanisms of carbon dioxide acquisition and CO 2 sensing in marine diatoms: a gateway to carbon metabolism. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160403. [PMID: 28717013 PMCID: PMC5516112 DOI: 10.1098/rstb.2016.0403] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 01/03/2023] Open
Abstract
Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO2 fixation. The evolution of a CO2-concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO2]aq in seawater relative to concentrations required by the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO2 in water and a limited CO2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO2 only in close proximity to RubisCO preventing unnecessary CO2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | | | - Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
21
|
Qu CF, Liu FM, Zheng Z, Wang YB, Li XG, Yuan HM, Li N, An ML, Wang XX, He YY, Li LL, Miao JL. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H. MARINE POLLUTION BULLETIN 2017; 120:184-191. [PMID: 28511941 DOI: 10.1016/j.marpolbul.2017.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Ocean acidification (OA) resulting from increasing atmospheric CO2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO2 levels. Elevated CO2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO2. Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean.
Collapse
Affiliation(s)
- Chang-Feng Qu
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Fang-Ming Liu
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Zhou Zheng
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Yi-Bin Wang
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Xue-Gang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Hua-Mao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Ning Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Mei-Ling An
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China; Qing Dao University, Qingdao 266071, Shandong, China
| | - Xi-Xi Wang
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Ying-Ying He
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Lu-Lu Li
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China
| | - Jin-Lai Miao
- First Institute of Oceanography, State Oceanic Administration, Qingdao 266071, Shandong, China.
| |
Collapse
|
22
|
Tsuji Y, Mahardika A, Matsuda Y. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3949-3958. [PMID: 28398591 PMCID: PMC5853789 DOI: 10.1093/jxb/erx102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 05/07/2023]
Abstract
The acquisition of dissolved inorganic carbon (DIC) in CO2-limited seawater is a central issue to understand in marine primary production. We previously demonstrated the occurrence of direct HCO3- uptake by solute carrier (SLC) 4 transporters in a diatom, a major marine primary producer. Homologs of SLC are found in both centric and pennate marine diatoms, suggesting that SLC transporters are generally conserved. Here, the generality of SLC-mediated DIC uptake in diatoms was examined using an SLC inhibitor, diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), and an inhibitor of external carbonic anhydrase, acetazolamide. DIDS suppressed high-DIC-affinity photosynthesis in the pennate diatom Phaeodactylum tricornutum and the centric diatom Chaetoceros muelleri, but there was no effect on either the pennate Cylindrotheca fusiformis or the centric Thalassiosira pseudonana. Interestingly, the DIC affinity of DIDS-insensitive strains was sensitive to treatment with up to 100 μM acetazolamide, displaying a 2-4-fold increase in K0.5[DIC]. In contrast, acetazolamide did not affect the DIDS-sensitive group. These results indicate the occurrence of two distinct strategies for DIC uptake-one primarily facilitated by SLC and the other being passive CO2 entry facilitated by external carbonic anhydrase. The phylogenetic independence of these strategies suggests that environmental demands drove the evolution of distinct DIC uptake mechanisms in diatoms.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Anggara Mahardika
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| |
Collapse
|
23
|
Clement R, Jensen E, Prioretti L, Maberly SC, Gontero B. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3925-3935. [PMID: 28369472 DOI: 10.1093/jxb/erx035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The presence of CO2-concentrating mechanisms (CCMs) is believed to be one of the characteristics that allows diatoms to thrive in many environments and to be major contributors to global productivity. Here, the type of CCM and the responses to variable CO2 concentration were studied in marine and freshwater diatoms. At 400 ppm, there was a large diversity in physiological and biochemical mechanisms among the species. While Phaeodactylum tricornutum mainly used HCO3-, Thalassiosira pseudonana mainly used CO2. Carbonic anhydrase was an important component of the CCM in all species and C4 metabolism was absent, even with T. weissflogii. For all species, at 20 000 ppm, the affinity for dissolved inorganic carbon was lower than at 400 ppm CO2 and the reliance on CO2 was higher. Despite the difference in availability of inorganic carbon in marine and fresh waters, there were only small differences in CCMs between species from the two environments, and Navicula pelliculosa behaved similarly when grown in the two environments. The results suggest that species-specific differences are great, and more important than environmental differences in determining the nature and effectiveness of the CCM in diatoms.
Collapse
Affiliation(s)
- Romain Clement
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13 402 Marseille Cedex 20, France
| | - Erik Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13 402 Marseille Cedex 20, France
| | - Laura Prioretti
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13 402 Marseille Cedex 20, France
| | - Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4APUK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13 402 Marseille Cedex 20, France
| |
Collapse
|
24
|
Tsuji Y, Nakajima K, Matsuda Y. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3763-3772. [PMID: 28633304 DOI: 10.1093/jxb/erx173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diatoms operate a CO2-concentrating mechanism (CCM) that drives upwards of 20% of annual global primary production. Recent progress in CCM research in the marine pennate diatom Phaeodactylum tricornutum revealed that this diatom directly takes up HCO3- from seawater through low-CO2-inducible plasma membrane HCO3- transporters, which belong to the solute carrier (SLC) 4 family. Apart from this, studies of carbonic anhydrases (CAs) in diatoms have revealed considerable diversity in classes and localization among species. This strongly suggests that the CA systems, which control permeability and flux of dissolved inorganic carbon (DIC) by catalysing reversible CO2 hydration, have evolved from diverse origins. Of particular interest is the occurrence of low-CO2-inducible external CAs in the centric marine diatom Thalassiosira pseudonana, offering a strategy of CA-catalysed initial CO2 entry via passive diffusion, contrasting with active DIC transport in P. tricornutum. Molecular mechanisms to transport DIC across chloroplast envelopes are likely also through specific HCO3- transporters, although details have yet to be elucidated. Furthermore, recent discovery of a luminal θ-CA in the diatom thylakoid implied a common strategy in the mechanism to supply CO2 to RubisCO in the pyrenoid, which is conserved among green algae and some heterokontophytes. These results strongly suggest an occurrence of convergent coevolution between the pyrenoid and thylakoid membrane in aquatic photosynthesis.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
25
|
Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3797-3814. [PMID: 28645178 DOI: 10.1093/jxb/erx201] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context.
Collapse
Affiliation(s)
- Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, 13 402 Marseille, Cedex 20, France
| |
Collapse
|
26
|
Alkaline phosphatase promoter as an efficient driving element for exogenic recombinant in the marine diatom Phaeodactylum tricornutum. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Li Y, Zhuang S, Wu Y, Ren H, Chen F, Lin X, Wang K, Beardall J, Gao K. Ocean acidification modulates expression of genes and physiological performance of a marine diatom. PLoS One 2017; 12:e0170970. [PMID: 28192486 PMCID: PMC5305191 DOI: 10.1371/journal.pone.0170970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/13/2017] [Indexed: 12/03/2022] Open
Abstract
Ocean Acidification (OA) is known to affect various aspects of physiological performances of diatoms, but little is known about the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum, the expression of key genes associated with photosynthetic light harvesting as well as those encoding Rubisco, carbonic anhydrase, NADH dehydrogenase and nitrite reductase, are modulated by OA (1000 μatm, pHnbs 7.83). Growth and photosynthetic carbon fixation were enhanced by elevated CO2. OA treatment decreased the expression of β-carbonic anhydrase (β-ca), which functions in balancing intracellular carbonate chemistry and the CO2 concentrating mechanism (CCM). The expression of the genes encoding fucoxanthin chlorophyll a/c protein (lhcf type (fcp)), mitochondrial ATP synthase (mtATP), ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene (rbcl) and NADH dehydrogenase subunit 2 (ndh2), were down-regulated during the first four days (< 8 generations) after the cells were transferred from LC (cells grown under ambient air condition; 390 μatm; pHnbs 8.19) to OA conditions, with no significant difference between LC and HC treatments with the time elapsed. The expression of nitrite reductase (nir) was up-regulated by the OA treatment. Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expression patterns. It appeared that the enhanced photosynthetic and growth rates under OA could be attributed to stimulated nitrogen assimilation, increased CO2 availability or saved energy from down-regulation of the CCM and consequently lowered cost of protein synthesis versus that of non-nitrogenous cell components.
Collapse
Affiliation(s)
- Yahe Li
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shufang Zhuang
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yaping Wu
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Responses of the marine diatom Thalassiosira pseudonana to changes in CO 2 concentration: a proteomic approach. Sci Rep 2017; 7:42333. [PMID: 28181560 PMCID: PMC5299434 DOI: 10.1038/srep42333] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom, Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins and enzyme activity. Low CO2 caused many metabolic pathways to be remodeled. Carbon acquisition enzymes, primarily carbonic anhydrase, stress, degradation and signaling proteins were more abundant while proteins associated with nitrogen metabolism, energy production and chaperones were less abundant. A protein with similarities to the Ca2+/ calmodulin dependent protein kinase II_association domain, having a chloroplast targeting sequence, was only present at low CO2. This protein might be a specific response to CO2 limitation since a previous study showed that other stresses caused its reduction. The protein sequence was found in other marine diatoms and may play an important role in their response to low CO2 concentration.
Collapse
|
29
|
DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles. MOLECULAR PLANT 2017; 10:30-46. [PMID: 27646307 PMCID: PMC5226100 DOI: 10.1016/j.molp.2016.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 05/19/2023]
Abstract
Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, βCAs, and γCAs, where each family is represented by multiple isoforms in all species. Alternative splicing of CA transcripts appears common; consequently, the number of functional CA isoforms in a species may exceed the number of genes. CAs are expressed in numerous plant tissues and in different cellular locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. This diversity in location is paralleled in the many physiological and biochemical roles that CAs play in plants. In this review, the number and types of CAs in C3, C4, and crassulacean acid metabolism (CAM) plants are considered, and the roles of the α and γCAs are briefly discussed. The remainder of the review focuses on plant βCAs and includes the identification of homologs between species using phylogenetic approaches, a consideration of the inter- and intracellular localization of the proteins, along with the evidence for alternative splice forms. Current understanding of βCA tissue-specific expression patterns and what controls them are reviewed, and the physiological roles for which βCAs have been implicated are presented.
Collapse
Affiliation(s)
- Robert J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Harmony Clayton
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009 Australia
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009 Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
30
|
Clement R, Dimnet L, Maberly SC, Gontero B. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2016; 209:1417-27. [PMID: 26529678 DOI: 10.1111/nph.13728] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/25/2015] [Indexed: 05/19/2023]
Abstract
Diatoms are widespread in aquatic ecosystems where they may be limited by the supply of inorganic carbon. Their carbon dioxide-concentrating mechanisms (CCMs) involving transporters and carbonic anhydrases (CAs) are well known, but the contribution of a biochemical CCM involving C4 metabolism is contentious. The CCM(s) present in the marine-centric diatom, Thalassiosira pseudonana, were studied in cells exposed to high or low concentrations of CO2 , using a range of approaches. At low CO2 , cells possessed a CCM based on active uptake of CO2 (70% contribution) and bicarbonate, while at high CO2 , cells were restricted to CO2 . CA was highly and rapidly activated on transfer to low CO2 and played a key role because inhibition of external CA produced uptake kinetics similar to cells grown at high CO2 . The activities of phosphoenolpyruvate (PEP) carboxylase (PEPC) and the PEP-regenerating enzyme, pyruvate phosphate dikinase (PPDK), were lower in cells grown at low than at high CO2 . The ratios of PEPC and PPDK to ribulose bisphosphate carboxylase were substantially lower than 1, even at low CO2 . Our data suggest that the kinetic properties of this species results from a biophysical CCM and not from C4 type metabolism.
Collapse
Affiliation(s)
- Romain Clement
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Laura Dimnet
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Stephen C Maberly
- Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Brigitte Gontero
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| |
Collapse
|
31
|
Tanaka A, Ohno N, Nakajima K, Matsuda Y. Light and CO2/cAMP Signal Cross Talk on the Promoter Elements of Chloroplastic β-Carbonic Anhydrase Genes in the Marine Diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2016; 170:1105-16. [PMID: 26662605 PMCID: PMC4734587 DOI: 10.1104/pp.15.01738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
Our previous study showed that three CO2/cAMP-responsive elements (CCRE) CCRE1, CCRE2, and CCRE3 in the promoter of the chloroplastic β-carbonic anhydrase 1 gene in the marine diatom Phaeodactylum tricornutum (Pptca1) were critical for the cAMP-mediated transcriptional response to ambient CO2 concentration. Pptca1 was activated under CO2 limitation, but the absence of light partially disabled this low-CO2-triggered transcriptional activation. This suppression effect disappeared when CCRE2 or two of three CCREs were replaced with a NotI restriction site, strongly suggesting that light signal cross-talks with CO2 on the cAMP-signal transduction pathway that targets CCREs. The paralogous chloroplastic carbonic anhydrase gene, ptca2 was also CO2/cAMP-responsive. The upstream truncation assay of the ptca2 promoter (Pptca2) revealed a short sequence of -367 to -333 relative to the transcription-start site to be a critical regulatory region for the CO2 and light responses. This core-regulatory region comprises one CCRE1 and two CCRE2 sequences. Further detailed analysis of Pptca2 clearly indicates that two CCRE2s are the cis-element governing the CO2/light response of Pptca2. The transcriptional activation of two Pptcas in CO2 limitation was evident under illumination with a photosynthetically active light wavelength, and an artificial electron acceptor from the reduction side of PSI efficiently inhibited Pptcas activation, while neither inhibition of the linear electron transport from PSII to PSI nor inhibition of ATP synthesis showed an effect on the promoter activity, strongly suggesting a specific involvement of the redox level of the stromal side of the PSI in the CO2/light cross talk.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Naoki Ohno
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Kensuke Nakajima
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Yusuke Matsuda
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| |
Collapse
|
32
|
Kira N, Ohnishi K, Miyagawa-Yamaguchi A, Kadono T, Adachi M. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment. Mar Genomics 2016; 25:49-56. [DOI: 10.1016/j.margen.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 11/29/2022]
|
33
|
KIRA N, YOSHIMATSU T, FUKUNAGA K, OKADA S, ADACHI M, KADONO T. Expression Profile of Genes Involved in Isoprenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum. ACTA ACUST UNITED AC 2016. [DOI: 10.2525/ecb.54.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nozomu KIRA
- The United Graduate School of Agricultural Sciences, Ehime University
| | - Takamichi YOSHIMATSU
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Kazunari FUKUNAGA
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Shigeru OKADA
- Department of Aquatic Biosciences, The University of Tokyo
| | - Masao ADACHI
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Takashi KADONO
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| |
Collapse
|
34
|
Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci Rep 2015; 5:18708. [PMID: 26692124 PMCID: PMC4686930 DOI: 10.1038/srep18708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023] Open
Abstract
Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.
Collapse
|
35
|
Russo MT, Annunziata R, Sanges R, Ferrante MI, Falciatore A. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion. Mar Genomics 2015; 24 Pt 1:69-79. [PMID: 26117181 DOI: 10.1016/j.margen.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study.
Collapse
Affiliation(s)
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France.
| |
Collapse
|
36
|
Yoshinaga R, Niwa-Kubota M, Matsui H, Matsuda Y. Characterization of iron-responsive promoters in the marine diatom Phaeodactylum tricornutum. Mar Genomics 2014; 16:55-62. [PMID: 24530214 DOI: 10.1016/j.margen.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
It is well established that iron is one of the major constraints of primary productivity of marine diatoms in world oceans. In the present study, changes in the transcript levels of the 20 iron related genes were profiled in the marine diatom Phaeodactylum tricornutum during an early stage of acclimation from iron replete to iron-limited conditions. The results clearly showed that the profiles differ depending on genes, suggesting the occurrence of several modes of iron-responsive regulation at the transcriptional level. Upstream DNA sequences of iron starvation induced protein1 (Isi1), ferrichrome binding protein1 (FBP1), and flavodoxin (Fld) genes were isolated, fused with the GUS reporter gene, uidA, and transformed into P. tricornutum. Obtained transformants were subjected to the GUS reporter assay and the result clearly revealed that the GUS activity of all transformants was significantly increased upon iron limitation. Iron responsive Cis-elements in each promoter region were determined by the promoter truncation technique, demonstrating the occurrence of the critical iron-responsive regulatory regions of about 30bp in the promoter regions of three genes, Isi1, FBP1, and Fld. Interestingly, these sequences were similar with each other revealing two conserved motifs, A; A(A/C)G(G/C)C(G/-)C(A/G)TG; and B; CACGTG(T/C)C, which are homologous to the iron responsive Cis-element in the green alga, Chlamydomonas reinhardtii. The impairment of the motif B in the Isi1 promoter resulted in the loss of iron response and the core regulatory region of the FBP1 promoter conferred an iron response on the constitutive cytomegalovirus promoter, PCMV, indicating that these conserved promoter sequences are iron-responsive elements. Finally, the inductive regulation of these promoters under iron-limited conditions was dissipated specifically by 5% CO2, strongly suggesting the participation of CO2 in the transcriptional regulation of the iron-related gene promoters.
Collapse
Affiliation(s)
- Ryo Yoshinaga
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Megumi Niwa-Kubota
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroaki Matsui
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
37
|
Del Prete S, Vullo D, De Luca V, Supuran CT, Capasso C. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. J Enzyme Inhib Med Chem 2014; 29:906-11. [PMID: 24456295 DOI: 10.3109/14756366.2013.868599] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Diatom genome sequences clearly reveal the presence of different systems for HCO3(-) uptake. Carbon-concentrating mechanisms (CCM) based on HCO3(-) transport and a plastid-localized carbonic anhydrase (CA, EC 4.2.1.1) appear to be more probable than the others because CAs have been identified in the genome of many diatoms. CAs are key enzymes involved in the acquisition of inorganic carbon for photosynthesis in phytoplankton, as they catalyze efficiently the interconversion between carbon dioxide and bicarbonate. Five genetically distinct classes of CAs exist, α-, β-, γ-, δ- and ζ and all of them are metalloenzymes. Recently we investigated for the first time the catalytic activity and inhibition of the δ-class CA from the marine diatom Thalassiosira weissflogii, named TweCA. This enzyme is an efficient catalyst for the CO2 hydration and its inhibition profile with sulfonamide/sulfamate and anions have also been investigated. Here, we report the detailed biochemical characterization and chemico-physical properties of the δ-CA of T. weissflogii. The δ-CA encoding gene was cloned and expressed in Artic Express cells and the recombinant protein purified to homogeneity. Interesting to note that TweCA has no intrinsic esterase activity with 4-nitrophenyl acetate (pNpA) as substrate although the phylogenetic analysis showed that δ-CAs are closer to the α-CAs than to the other classes of such enzymes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Biochimica delle Proteine (IBP) - CNR , Napoli , Italy
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Wang M, Zhang Q, Liu FC, Xie WF, Wang GD, Wang J, Gao QH, Duan K. Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and Promoter::GUS fusions. Biochimie 2013; 97:219-27. [PMID: 24211190 DOI: 10.1016/j.biochi.2013.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes found throughout the phylogenetic tree. The β-class carbonic anhydrases (β-CAs) are the predominating class of CAs in plants. Growing evidence underscores the importance of β-CAs in plant immunity and environmental adaptation in addition to their roles in photosynthesis. However, many fundamental problems in Arabidopsis βCAs expression remain unsolved. Here we examined the transcript abundance of AtβCAs in different tissues of Arabidopsis thaliana, and the accumulation of mRNA in response to CO2 and darkness. Histochemical analysis was performed to study the promoter activity of AtβCAs during post-germination seedling growth and in mature plants. All six members of the AtβCA subfamily showed a response to changed CO2 level and darkness, but each member showed a specific dynamic pattern. Although expression of each AtβCA was unique, in general most AtβCAs were synchronously expressed in green leaves since 5 days after germination until flowering. AtβCA1 and AtβCA2 were most highly expressed in leaves but AtβCA2 displayed weaker expression in roots. The level of AtβCA3 transcripts was highest in flowers, while AtβCA5 was most widely expressed and might be involved in more processes than other members. AtβCA6 was unique for increased expression in darkness and no expression in either the anther or pistil. The present study provides useful information for further functional investigation.
Collapse
Affiliation(s)
- Meng Wang
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; Biotech Research Institute, SAAS, Shanghai 201106, China; College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qiong Zhang
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; Biotech Research Institute, SAAS, Shanghai 201106, China; College of Horticultural Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Chun Liu
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Wei-Fa Xie
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Guang-Dong Wang
- College of Horticultural Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wang
- College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qing-Hua Gao
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China.
| | - Ke Duan
- Forestry and Fruit Tree Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; Biotech Research Institute, SAAS, Shanghai 201106, China.
| |
Collapse
|
40
|
Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. THE NEW PHYTOLOGIST 2013; 199:121-134. [PMID: 23496417 DOI: 10.1111/nph.12225] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/08/2013] [Indexed: 05/15/2023]
Abstract
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level.
Collapse
Affiliation(s)
- Lennart T Bach
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| | - Luke C M Mackinder
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Kai G Schulz
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Declan C Schroeder
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Ulf Riebesell
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| |
Collapse
|
41
|
Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. J Proteomics 2013; 83:47-59. [PMID: 23517717 DOI: 10.1016/j.jprot.2013.02.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
Abstract
UNLABELLED The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. BIOLOGICAL SIGNIFICANCE This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses.
Collapse
|
42
|
Nakajima K, Tanaka A, Matsuda Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci U S A 2013; 110:1767-72. [PMID: 23297242 PMCID: PMC3562803 DOI: 10.1073/pnas.1216234110] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis in marine diatoms is a vital fraction of global primary production empowered by CO(2)-concentrating mechanisms. Acquisition of HCO(3)(-) from seawater is a critical primary step of the CO(2)-concentrating mechanism, allowing marine photoautotrophic eukaryotes to overcome CO(2) limitation in alkaline high-salinity water. However, little is known about molecular mechanisms governing this process. Here, we show the importance of a plasma membrane-type HCO(3)(-) transporter for CO(2) acquisition in a marine diatom. Ten putative solute carrier (SLC) family HCO(3)(-) transporter genes were found in the genome of the marine pennate diatom Phaeodactylum tricornutum. Homologs also exist in marine centric species, Thalassiosira pseudonana, suggesting a general occurrence of SLC transporters in marine diatoms. Seven genes were found to encode putative mammalian-type SLC4 family transporters in P. tricornutum, and three of seven genes were specifically transcribed under low CO(2) conditions. One of these gene products, PtSLC4-2, was localized at the plasmalemma and significantly stimulated both dissolved inorganic carbon (DIC) uptake and photosynthesis in P. tricornutum. DIC uptake by PtSLC4-2 was efficiently inhibited by an anion-exchanger inhibitor, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, in a concentration-dependent manner and highly dependent on Na(+) ions at concentrations over 100 mM. These results show that DIC influx into marine diatoms is directly driven at the plasmalemma by a specific HCO(3)(-) transporter with a significant halophilic nature.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Research Centre for Environmental Bioscience, Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Yusuke Matsuda
- Research Centre for Environmental Bioscience, Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
43
|
Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2013; 197:177-185. [PMID: 23078356 DOI: 10.1111/j.1469-8137.2012.04375.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/06/2012] [Indexed: 05/16/2023]
Abstract
Diatoms are important players in the global carbon cycle. Their apparent photosynthetic affinity for ambient CO(2) is much higher than that of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), indicating that a CO(2)-concentrating mechanism (CCM) is functioning. However, the nature of the CCM, a biophysical or a biochemical C(4), remains elusive. Although (14)C labeling experiments and presence of complete sets of genes for C(4) metabolism in two diatoms supported the presence of C(4), other data and predicted localization of the decarboxylating enzymes, away from Rubisco, makes this unlikely. We used RNA-interference to silence the single gene encoding pyruvate-orthophosphate dikinase (PPDK) in Phaeodactylum tricornutum, essential for C(4) metabolism, and examined the photosynthetic characteristics. The mutants possess much lower ppdk transcript and PPDK activity but the photosynthetic K(1/2) (CO(2)) was hardly affected, thus clearly indicating that the C(4) route does not serve the purpose of raising the CO(2) concentration in close proximity of Rubisco in P. tricornutum. The photosynthetic V(max) was slightly reduced in the mutant, possibly reflecting a metabolic constraint that also resulted in a larger lipid accumulation. We propose that the C(4) metabolism does not function in net CO(2) fixation but helps the cells to dissipate excess light energy and in pH homeostasis.
Collapse
Affiliation(s)
- Maya Haimovich-Dayan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus - Givat Ram, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nitsan Garfinkel
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus - Givat Ram, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Yehouda Marcus
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Heiko Wagner
- Institut für Biologie, Abteilung Pflanzenphysiologie, Universität Leipzig, Leipzig, 04103, Germany
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus - Givat Ram, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
44
|
Kikutani S, Tanaka R, Yamazaki Y, Hara S, Hisabori T, Kroth PG, Matsuda Y. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum. J Biol Chem 2012; 287:20689-700. [PMID: 22535967 DOI: 10.1074/jbc.m111.322743] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxins (Trxs) are important regulators of photosynthetic fixation of CO(2) and nitrogen in plant chloroplasts. To date, they have been considered to play a minor role in controlling the Calvin cycle in marine diatoms, aquatic primary producers, although diatoms possess a set of plastidic Trxs. In this study we examined the influences of the redox state and the involvement of Trxs in the enzymatic activities of pyrenoidal carbonic anhydrases, PtCA1 and PtCA2, in the marine diatom Phaeodactylum tricornutum. The recombinant mature PtCA1 and -2 (mPtCA1 and -2) were completely inactivated following oxidation by 50 μm CuCl(2), whereas DTT activated CAs in a concentration-dependent manner. The maximum activity of mPtCAs in the presence of 6 mm reduced DTT increased significantly by addition of 10 μm Trxs from Arabidopsis thaliana (AtTrx-f2 and -m2) and 5 μm Trxs from P. tricornutum (PtTrxF and -M). Analyses of mPtCA activation by Trxs in the presence of DTT revealed that the maximum mPtCA1 activity was enhanced ∼3-fold in the presence of Trx, whereas mPtCA2 was only weakly activated by Trxs, and that PtTrxs activate PtCAs more efficiently compared with AtTrxs. Site-directed mutagenesis of potential disulfide-forming cysteines in mPtCA1 and mPtCA2 resulted in a lack of oxidative inactivation of both mPtCAs. These results reveal the first direct evidence of a target of plastidic Trxs in diatoms, indicating that Trxs may participate in the redox control of inorganic carbon flow in the pyrenoid, a focal point of the CO(2)-concentrating mechanism.
Collapse
Affiliation(s)
- Sae Kikutani
- Department of Bioscience, Research Center for Environmental Bioscience, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, Matsuda Y. CO(2)-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2012; 158:499-513. [PMID: 22095044 PMCID: PMC3252111 DOI: 10.1104/pp.111.190249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 11/14/2011] [Indexed: 05/19/2023]
Abstract
Expression controls of the carbon acquisition system in marine diatoms in response to environmental factors are an essential issue to understand the changes in marine primary productivity. A pyrenoidal β-carbonic anhydrase, PtCA1, is one of the most important candidates to investigate the control mechanisms of the CO(2) acquisition system in the marine diatom Phaeodactylum tricornutum. A detailed functional assay was carried out on the putative core regulatory region of the ptca1 promoter using a β-glucuronidase reporter in P. tricornutum cells under changing CO(2) conditions. A set of loss-of-function assays led to the identification of three CO(2)-responsive elements, TGACGT, ACGTCA, and TGACGC, at a region -86 to -42 relative to the transcription start site. Treatment with a cyclic (c)AMP analog, dibutyryl cAMP, revealed these three elements to be under the control of cAMP; thus, we designated them, from 5' to 3', as CO(2)-cAMP-Responsive Element1 (CCRE1), CCRE2, and CCRE3. Because the sequence TGACGT is known to be a typical target of human Activating Transcription Factor6 (ATF6), we searched for genes containing a basic zipper (bZIP) region homologous to that of ATF6 in the genome of P. tricornutum. Gel-shift assays using CCRE pentamers as labeled probes showed that at least one candidate of bZIP proteins, PtbZIP11, bound specifically to CCREs. A series of gain-of-function assays with CCREs fused to a minimal promoter strongly suggested that the alternative combination of CCRE1/2 or CCRE2/3 at proper distances from the minimal promoter is required as a potential target of PtbZIP11 for an effective CO(2) response of the ptca1 gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yusuke Matsuda
- Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo 669–1337, Japan
| |
Collapse
|
46
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. PHOTOSYNTHESIS RESEARCH 2011; 109:191-203. [PMID: 21287273 DOI: 10.1007/s11120-011-9623-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/06/2011] [Indexed: 05/24/2023]
Abstract
Marine diatoms, the major primary producer in ocean environment, are known to take up both CO(2) and HCO(3)(-) in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO(2). However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO(2) and HCO(3)(-) as inorganic forms, and efficiently supply CO(2) to Rubisco by an aid of carbonic anhydrases (biophysical CO(2)-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO(3)(-) into C(4) compounds may play a major role to supply concentrated CO(2) to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO(2) acquisition systems in response to changes in pCO(2). Recent findings about the participation of cAMP in the signaling pathway of CO(2) concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO(2). In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO(2) signal capturing.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, Research Center for Environmental Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan.
| | | | | |
Collapse
|
48
|
Mercado JM, Gordillo FJL. Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems? PHOTOSYNTHESIS RESEARCH 2011; 109:257-267. [PMID: 21445608 DOI: 10.1007/s11120-011-9646-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
Most of the experimental work on the effects of ocean acidification on the photosynthesis of algae has been performed in the laboratory using monospecific cultures. It is frequently assumed that the information obtained from these cultures can be used to predict the acclimation response in the natural environment. CO(2) concentration is known to regulate the expression and functioning of the CCMs in the natural communities; however, ambient CO(2) can become quite variable in the marine ecosystems even in the short- to mid-term. We propose that the degree of saturation of the photosynthesis for a given algal community should be defined in relation to the particular characteristics of its habitat, and not only in relation to its taxonomic composition. The convenience of high CO(2) experiments to infer the degree of photosynthesis saturation by CO(2) in the natural algal communities under the present ocean conditions, as well as its trend in a coming future is discussed taking into account other factors such as the availability of light and nutrients, and seasonality.
Collapse
Affiliation(s)
- Jesús M Mercado
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain.
| | | |
Collapse
|
49
|
Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2011; 109:205-21. [PMID: 21365259 DOI: 10.1007/s11120-011-9634-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/13/2011] [Indexed: 05/12/2023]
Abstract
It is believed that intracellular carbonic anhydrases (CAs) are essential components of carbon concentrating mechanisms in microalgae. In this study, putative CA-encoding genes were identified in the genome sequences of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Subsequently, the subcellular localizations of the encoded proteins were determined. Nine and thirteen CA sequences were found in the genomes of P. tricornutum and T. pseudonana, respectively. Two of the β-CA genes in P. tricornutum corresponded to ptca1 and ptca2 identified previously. Immunostaining transmission electron microscopy of a PtCA1:YFP fusion expressed in the cells of P. tricornutum clearly showed the localization of PtCA1 within the central part of the pyrenoid structure in the chloroplast. Besides these two β-CA genes, P. tricornutum likely contains five α- and two γ-CA genes, whereas T. pseudonana has three α-, five γ-, four δ-, and one ζ-CA genes. Semi-quantitative reverse transcription PCR performed on mRNA from the two diatoms grown in changing light and CO(2) conditions revealed that levels of six putative α- and γ-CA mRNAs in P. tricornutum did not change between cells grown in air-level CO(2) and 5% CO(2). However, mRNA levels of one putative α-CA gene, CA-VII in P. tricornutum, were reduced in the dark compared to that in the light. In T. pseudonana, mRNA accumulation levels of putative α-CA (CA-1), ζ-CA (CA-3) and δ-CA (CA-7) were analyzed and all levels found to be significantly reduced when cells were grown in 0.16% CO(2). Intercellular localizations of eight putative CAs were analyzed by expressing GFP fusion in P. tricornutum and T. pseudonana. In P. tricornutum, CA-I and II localized in the periplastidial compartment, CA-III, VI, VII were found in the chloroplast endoplasmic reticulum, and CA-VIII was localized in the mitochondria. On the other hand, T. pseudonana CA-1 localized in the stroma and CA-3 was found in the periplasm. These results suggest that CAs are constitutively present in the four chloroplastic membrane systems in P. tricornutum and that CO(2) responsive CAs occur in the pyrenoid of P. tricornutum, and in the stroma and periplasm of T. pseudonana.
Collapse
Affiliation(s)
- Masaaki Tachibana
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University,Sanda, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 2009; 419:681-8. [PMID: 19200059 DOI: 10.1042/bj20082315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A beta-type carbonic anhydrase, PtCA1, of the marine diatom Phaeodactylum tricornutum was previously shown to be present in the chloroplast as clumped particles on the girdle lamellae. A series of deletions was carried out on the PtCA1 gene, ptca1, at regions encoding N- or C-terminal domains of the mature PtCA1. These deletion constructs were fused with the EGFP [enhanced GFP (green fluorescent protein)] gene, egfp, introduced and expressed in the cells of P. tricornutum. All three types of N-terminal deletions, Delta52-63, Delta64-75 and Delta76-87 relative to the initiation methionine, showed little interference with the particle formation of the PtCA1::GFP fusion protein. Similarly, one of the three types of C-terminal deletions, Delta253-262, was silent. However, the remaining two C-terminal deletions, Delta263-272 and Delta273-282 relative to the initiation methionine, were strongly inhibitory to the particle formation of PtCA1. The C-terminal 263-282 region comprises five hydrophobic amino acids, Met(263), Leu(266), Ile(269), Leu(272) and Leu(275), which were predicted to form a hydrophobic cluster on the C-terminal alpha-helix. Each or all five of these hydrophobic residues were replaced with a hydrophilic residue with a side chain of similar size and structure, glutamate. Particle formations of PtCA1 were moderately inhibited by substitutions of Met(263), Leu(266) and Ile(269) but more evidently by substitutions of Leu(272) and Leu(275). Finally, substitutions of all five hydrophobic residues resulted in an efficient inhibition of particle formation and the GFP signal was totally dispersed throughout the stroma area. These results strongly suggest that the amphipathic C-terminal helix of PtCA1 plays an essential role in the formation of the macromolecular protein complex.
Collapse
|