1
|
Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life (Basel) 2022; 12:life12020144. [PMID: 35207432 PMCID: PMC8879990 DOI: 10.3390/life12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/30/2023] Open
Abstract
One of the major concerns for long-term exploration missions beyond the Earth’s magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.
Collapse
|
2
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
3
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
4
|
Mao Y, Botella JR, Liu Y, Zhu JK. Gene editing in plants: progress and challenges. Natl Sci Rev 2019; 6:421-437. [PMID: 34691892 PMCID: PMC8291443 DOI: 10.1093/nsr/nwz005] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) genome editing system is a powerful tool for targeted gene modifications in a wide range of species, including plants. Over the last few years, this system has revolutionized the way scientists perform genetic studies and crop breeding, due to its simplicity, flexibility, consistency and high efficiency. Considerable progress has been made in optimizing CRISPR/Cas9 systems in plants, particularly for targeted gene mutagenesis. However, there are still a number of important challenges ahead, including methods for the efficient delivery of CRISPR and other editing tools to most plants, and more effective strategies for sequence knock-ins and replacements. We provide our viewpoint on the goals, potential concerns and future challenges for the development and application of plant genome editing tools.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Bonawitz ND, Ainley WM, Itaya A, Chennareddy SR, Cicak T, Effinger K, Jiang K, Mall TK, Marri PR, Samuel JP, Sardesai N, Simpson M, Folkerts O, Sarria R, Webb SR, Gonzalez DO, Simmonds DH, Pareddy DR. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:750-761. [PMID: 30220095 PMCID: PMC6419576 DOI: 10.1111/pbi.13012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 05/03/2023]
Abstract
Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence-specific endonucleases to generate DNA double strand breaks (DSBs) at user-specified genomic loci. These DSBs subsequently result in small insertions/deletions (indels), base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Glycine max) via non-homologous end joining (NHEJ)-mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology-directed repair (HDR)-mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean locus using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2-1a (FAD2-1a) locus of embryogenic cells in tissue culture. We then describe ZFN- and NHEJ-mediated, targeted integration of two different multigene donors to the FAD2-1a locus of immature embryos. The largest donor delivered was 16.2 kb, carried four transgenes, and was successfully transmitted to T1 progeny of mature targeted plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 7.1 kb, NHEJ-integrated donor were perfect or near-perfect, demonstrating that NHEJ is a viable alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fertile transgenic soybean plants with NHEJ-mediated targeted insertions of multigene donors at an endogenous genomic locus.
Collapse
Affiliation(s)
| | | | - Asuka Itaya
- Agriculture and Agri‐Food CanadaOttawaONCanada
| | | | | | | | - Ke Jiang
- Dow AgroSciences LLCIndianapolisINUSA
- Present address:
Genus IntelliGen TechnologiesWindsorWIUSA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao Y, Sawbridge T, Davies JP, Mason J, Webb SR, Spangenberg G, Ainley WM, Walsh TA, Hayden MJ. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2088-2101. [PMID: 29734518 PMCID: PMC6230953 DOI: 10.1111/pbi.12941] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 05/07/2023]
Abstract
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation.
Collapse
Affiliation(s)
- Yidong Ran
- Genovo Biotechnology Co. LtdTianjinChina
| | | | - Pippa Kay
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Debbie Wong
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Margaret Buchanan
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Ying‐Ying Cao
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
| | - Tim Sawbridge
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | - John Mason
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | - German Spangenberg
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| | | | | | - Matthew J. Hayden
- Department of Economic Development, Jobs, Transport and ResourcesCentre for AgriBioscienceAgriculture Victoria ResearchAgriBioBundooraVic.Australia
- School of Applied BiologyLa Trobe UniversityBundooraVic.Australia
| |
Collapse
|
7
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Saini R, Singh AK, Dhanapal S, Saeed TH, Hyde GJ, Baskar R. Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC PLANT BIOLOGY 2017; 17:103. [PMID: 28615006 PMCID: PMC5471674 DOI: 10.1186/s12870-017-1051-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/01/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants exposed to environmental stresses draw upon many genetic and epigenetic strategies, with the former sometimes modulated by the latter. This can help the plant, and its immediate progeny, at least, to better endure the stress. Some evidence has led to proposals that (epi) genetic changes can be both selective and sustainably heritable, while other evidence suggests that changes are effectively stochastic, and important only because they induce genetic variation. One type of stress with an arguably high level of stochasticity in its effects is temperature stress. Studies of how heat and cold affect the rates of meiotic recombination (MR) and somatic mutations (SMs, which are potentially heritable in plants) report increases, decreases, or no effect. Collectively, they do not point to any consistent patterns. Some of this variability, however, might arise from the stress being applied for such an extended time, typically days or weeks. Here, we adopted a targeted approach by (1) limiting exposure to one hour; and (2) timing it to coincide with (a) gamete, and early gametophyte, development, a period of high stress sensitivity; and (b) a late stage of vegetative development. RESULTS For plants (Arabidopsis thaliana) otherwise grown at 22 °C, we measured the effects of a 1 h exposure to cold (12 °C) or heat (32 °C) on the rates of MR, and four types of SMs (frameshift mutations; intrachromosomal recombination; base substitutions; transpositions) in the F1 progeny. One parent (wild type) was stressed, the other (unstressed) carried a genetic event detector. When rates were compared to those in progeny of control (both parents unstressed) two patterns emerged. In the progeny of younger plants (stressed at 36 days; pollinated at 40 days) heat and cold either had no effect (on MR) or (for SMs) had effects that were rare and stochastic. In the progeny of older plants (stressed at 41 days; pollinated at 45 days), while effects were also infrequent, those that were seen followed a consistent pattern: rates of all five genetic events were lowest at 12 °C and highest at 32 °C, i.e. they varied in a "dose-response" manner. This pattern was strongest (or, in the case of MR, only apparent) in progeny whose stressed parent was female. CONCLUSION While the infrequency of effects suggests the need for cautious inference, the consistency of responses in the progeny of older plants, indicate that in some circumstances the level of stochasticity in inherited genetic responses to heat or cold stress can be context-dependent, possibly reflecting life-cycle stages in the parental generation that are variably stress sensitive.
Collapse
Affiliation(s)
- Ramswaroop Saini
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Amit Kumar Singh
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Thoufeequl Hakeem Saeed
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Geoffrey J. Hyde
- Write about Research, 14 Randwick Street, Randwick, Sydney, 2031 Australia
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| |
Collapse
|
9
|
Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 2017; 12:e0177966. [PMID: 28542349 PMCID: PMC5436839 DOI: 10.1371/journal.pone.0177966] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 05/05/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-guided genome editing using the CRISPR/Cas9 CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has been applied successfully in several plant species. However, to date, there are few reports on the use of any of the current genome editing approaches in grape-an important fruit crop with a large market not only for table grapes but also for wine. Here, we report successful targeted mutagenesis in grape (Vitis vinifera L., cv. Neo Muscat) using the CRISPR/Cas9 system. When a Cas9 expression construct was transformed to embryonic calli along with a synthetic sgRNA expression construct targeting the Vitis vinifera phytoene desaturase (VvPDS) gene, regenerated plants with albino leaves were obtained. DNA sequencing confirmed that the VvPDS gene was mutated at the target site in regenerated grape plants. Interestingly, the ratio of mutated cells was higher in lower, older, leaves compared to that in newly appearing upper leaves. This result might suggest either that the proportion of targeted mutagenized cells is higher in older leaves due to the repeated induction of DNA double strand breaks (DSBs), or that the efficiency of precise DSBs repair in cells of old grape leaves is decreased.
Collapse
Affiliation(s)
- Ikuko Nakajima
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Yusuke Ban
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Akifumi Azuma
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Toshiya Yamamoto
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Seto, Kanazawa-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Yokohama, Kanagawa, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Deng C, Wang T, Wu J, Xu W, Li H, Liu M, Wu L, Lu J, Bian P. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat Res 2017; 796:20-28. [PMID: 28254518 DOI: 10.1016/j.mrfmmm.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.
Collapse
Affiliation(s)
- Chenguang Deng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ting Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Jingjing Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Huasheng Li
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Min Liu
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China
| | - Jinying Lu
- China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China.
| | - Po Bian
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, PR China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, PR China.
| |
Collapse
|
11
|
Mondal S, Go YS, Lee SS, Chung BY, Kim JH. Characterization of histone modifications associated with DNA damage repair genes upon exposure to gamma rays in Arabidopsis seedlings. JOURNAL OF RADIATION RESEARCH 2016; 57:646-654. [PMID: 27534791 PMCID: PMC5137295 DOI: 10.1093/jrr/rrw077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 05/02/2023]
Abstract
Dynamic histone modifications play an important role in controlling gene expression in response to various environmental cues. This mechanism of regulation of gene expression is important for sessile organisms, like land plants. We have previously reported consistent upregulation of various marker genes in response to gamma rays at various post-irradiation times. In the present study, we performed various chromatin modification analyses at selected loci using the standard chromatin immunoprecipitation procedure, and demonstrate that upregulation of these genes is associated with histone H3 lysine 4 tri-methylation (H3K4me3) at the gene body or transcription start sites of these loci. Further, at specific AtAgo2 loci, both H3K4me3 and histone H3 lysine 9 acetylation (H3K9ac) are important in controlling gene expression in response to gamma irradiation. There was no change in DNA methylation in these selected loci. We conclude that specific histone modification such as H3K4me3 and H3K9ac may be more important in activating gene expression in these selected loci in response to gamma irradiation than a change in DNA methylation.
Collapse
Affiliation(s)
- Suvendu Mondal
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Young Sam Go
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana. Mutat Res 2016; 791-792:1-9. [PMID: 27497090 DOI: 10.1016/j.mrfmmm.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
Abstract
Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its bioactive derivatives are well accepted as systemic signal transducers that are produced in response to various environmental stresses. It is therefore speculated that the JA signal pathway might play a potential role in mediating radiation-induced bystander signaling of root-to-shoot. In the present study, pretreatment of seedlings with Salicylhydroxamic acid, an inhibitor of lipoxigenase (LOX) in JA biosynthesis, significantly suppressed RIBE-mediated expression of the AtRAD54 gene. After root irradiation, the aerial parts of A. thaliana mutants deficient in JA biosynthesis (aos) and signaling cascades (jar1-1) showed suppressed induction of the AtRAD54 and AtRAD51 genes and TSI and 180-bp repeats, which have been extensively used as endpoints of bystander genetic and epigenetic effects in plants. These results suggest an involvement of the JA signal pathway in the RIBE of plants. Using the root micro-grafting technique, the JA signal pathway was shown to participate in both the generation of bystander signals in irradiated root cells and radiation responses in the bystander aerial parts of plants. The over-accumulation of endogenous JA in mutant fatty acid oxygenation up-regulated 2 (fou2), in which mutation of the Two Pore Channel 1 (TPC1) gene up-regulates expression of the LOX and allene oxide synthase (AOS) genes, inhibited RIBE-mediated expression of the AtRAD54 gene, but up-regulated expression of the AtKU70 and AtLIG4 genes in the non-homologous end joining (NHEJ) pathway. Considering that NHEJ is employed by plants with increased DNA damage, the switch from HR to NHEJ suggests that over-accumulation of endogenous JA might enhance the radiosensitivity of plants in terms of RIBE.
Collapse
|
13
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination. PLANT SIGNALING & BEHAVIOR 2016; 11:e1151599. [PMID: 26901311 PMCID: PMC4991315 DOI: 10.1080/15592324.2016.1151599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 05/31/2023]
Abstract
Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.
Collapse
Affiliation(s)
- Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrey Golubov
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Igor Kovalchuk
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Dubrovina AS, Kiselev KV. Age-associated alterations in the somatic mutation and DNA methylation levels in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:185-196. [PMID: 26211365 DOI: 10.1111/plb.12375] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/21/2015] [Indexed: 05/18/2023]
Abstract
Somatic mutations of the nuclear and mitochondrial DNA and alterations in DNA methylation levels in mammals are well known to play important roles in ageing and various diseases, yet their specific contributions await further investigation. For plants, it has also been proposed that unrepaired DNA damage and DNA polymerase errors accumulate in plant cells and lead to increased somatic mutation rate and alterations in transcription, which eventually contribute to plant ageing. A number of studies also show that DNA methylation levels vary depending on the age of plant tissue and chronological age of a whole plant. Recent studies reveal that prolonged cultivation of plant cells in vitro induces single nucleotide substitutions and increases global DNA methylation level in a time-dependent fashion. Changes in DNA methylation are known to influence DNA repair and can lead to altered mutation rates, and, therefore, it is interesting to investigate both the genetic and epigenetic integrity in relationship to ageing in plants. This review will summarise and discuss the current studies investigating somatic DNA mutation and DNA methylation levels in relation to plant ageing and senescence. The analysis has shown that there still remains a lack of clarity concerning plant biological ageing and the role of the genetic and epigenetic instabilities in this process.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - K V Kiselev
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
- Department of Biochemistry, Microbiology and Biotechnology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
15
|
Shah JM, Ramakrishnan AM, Singh AK, Ramachandran S, Unniyampurath U, Jayshankar A, Balasundaram N, Dhanapal S, Hyde G, Baskar R. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains. BMC PLANT BIOLOGY 2015; 15:210. [PMID: 26307100 PMCID: PMC4549908 DOI: 10.1186/s12870-015-0595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. RESULTS For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently dropped below levels seen in uninfected controls, consistent with the results of the single time-point study. CONCLUSIONS The rates of various classes of mutations that result from Agrobacterium infection depend upon the duration of infection and the type of pathogen derived factors (such as Vir proteins, oncoproteins or T-DNA) possessed by the strain. Strains with vir genes, including the type used for plant transformation, suppressed selected classes of somatic mutations. Our study also provides evidence of a pathogen that can at least partly counter the induction of mutations in an infected plant.
Collapse
Affiliation(s)
- Jasmine M Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
- Department of Plant Science, Central University of Kerala, Kasaragod, 671328, India.
| | - Anantha Maharasi Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Amit Kumar Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Subalakshmi Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | | | - Ajitha Jayshankar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Nithya Balasundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Geoff Hyde
- , 14 Randwick St, Sydney, 2031, Australia.
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| |
Collapse
|
16
|
Singh AK, Bashir T, Sailer C, Gurumoorthy V, Ramakrishnan AM, Dhanapal S, Grossniklaus U, Baskar R. Parental age affects somatic mutation rates in the progeny of flowering plants. PLANT PHYSIOLOGY 2015; 168:247-57. [PMID: 25810093 PMCID: PMC4424033 DOI: 10.1104/pp.15.00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 05/18/2023]
Abstract
In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Tufail Bashir
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Christian Sailer
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Viswanathan Gurumoorthy
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Anantha Maharasi Ramakrishnan
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Ueli Grossniklaus
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India (A.K.S., T.B., V.G., A.M.R., S.D., R.B.); andInstitute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland (C.S., U.G.)
| |
Collapse
|
17
|
Wang T, Sun Q, Xu W, Li F, Li H, Lu J, Wu L, Wu Y, Liu M, Bian P. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana. Mutat Res 2015; 773:27-36. [PMID: 25769184 DOI: 10.1016/j.mrfmmm.2015.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/04/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| | - Qiao Sun
- Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Wei Xu
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| | - Fanghua Li
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| | - Huasheng Li
- Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Jinying Lu
- Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| | - Yuejin Wu
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| | - Min Liu
- Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086, PR China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, PR China
| |
Collapse
|
18
|
DNA damage and repair in plants under ultraviolet and ionizing radiations. ScientificWorldJournal 2015; 2015:250158. [PMID: 25729769 PMCID: PMC4333283 DOI: 10.1155/2015/250158] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
Collapse
|
19
|
Sidler C, Li D, Kovalchuk O, Kovalchuk I. Development-Dependent Expression of DNA Repair Genes and Epigenetic Regulators in Arabidopsis Plants Exposed to Ionizing Radiation. Radiat Res 2015; 183:219-32. [DOI: 10.1667/rr13840.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
20
|
Litvinov SV. Main repair pathways of double-strand breaks in the genomic DNA and interactions between them. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714030062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Bilichak A, Yao Y, Titov V, Golubov A, Kovalchuk I. Genome stability in the uvh6 mutant of Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:979-991. [PMID: 24553752 DOI: 10.1007/s00299-014-1580-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Plant XPD homolog UVH6 is the protein involved in the repair of strand breaks, and the excision repair and uvh6 mutant is not impaired in transgenerational increase in HRF. While analyzing the transgenerational response to stress in plants, we found that the promoter and gene body of Arabidopsis thaliana (Arabidopsis) XPD homolog UVH6 underwent hypomethylation and showed an increase in the level of transcript. Here, we analyzed the mutant of this gene, uvh6-1, by crossing it to two different reporter lines: one which allows for analysis of homologous recombination frequency (HRF) and another which makes it possible to analyze the frequency of point mutations. We observed that uvh6-1 plants exhibited lower rate of spontaneous homologous recombination but higher frequencies of spontaneous point mutations. The analysis of strand breaks using ROPS and Comet assays showed that the mutant had a much higher level of strand breaks at non-induced conditions. Exposure to stresses such as UVC, heat, cold, flood and drought showed that the mutant was not impaired in an increase in somatic HRF. The analysis of spontaneous HRF in the progeny of control plants compared to that of the progeny of stressed plants demonstrated that uvh6-1 was mildly affected in response to temperature, UV and drought. Our data suggest that UVH6 may be involved in the repair of strand breaks and excision repair, but it is unlikely that UVH6 is required for transgenerational increase in HRF.
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada,
| | | | | | | | | |
Collapse
|
22
|
Rahavi SMR, Kovalchuk I. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:479-88. [PMID: 24431516 PMCID: PMC3781278 DOI: 10.1007/s12298-013-0197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28 days post germination (dpg). We found that exposure at 14 and 21 dpg resulted in a higher increase in HRF as compared to exposure at 7 dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF. Exposure at 7 dpg had a positive effect on somatic growth of plants; plants exposed to stress at this age had larger leaves. The analysis of HRF in the progeny showed that the progeny of plants exposed to stress at 7 dpg had an increase in somatic HRF and showed larger sizes of recombination spots on leaves. The progeny of plants exposed to UV-C at 7 dpg and the progeny of plants exposed to cold or heat at 28 dpg had larger leaves as compared to control plants. To summarize, our experiments showed that changes in somatic and transgenerational HRF depend on the type of stress plants are exposed to, time of exposure during development and the duration of exposure.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| |
Collapse
|
23
|
Kathiria P, Sidler C, Woycicki R, Yao Y, Kovalchuk I. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter. PLANT SIGNALING & BEHAVIOR 2013; 8:e24760. [PMID: 23656874 PMCID: PMC3909088 DOI: 10.4161/psb.24760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.
Collapse
Affiliation(s)
| | - Corinne Sidler
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Rafal Woycicki
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Youli Yao
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Igor Kovalchuk
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| |
Collapse
|
24
|
Yao Y, Bilichak A, Titov V, Golubov A, Kovalchuk I. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress. PLANT & CELL PHYSIOLOGY 2013; 54:982-9. [PMID: 23574700 DOI: 10.1093/pcp/pct051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks (DSBs) can be repaired via two main mechanisms: non-homologous end joining (NHEJ) and homologous recombination (HR). Our previous work showed that exposure to abiotic stresses resulted in an increase in point mutation frequency (PMF) and homologous recombination frequency (HRF), and these changes were heritable. We hypothesized that mutants impaired in DSB recognition and repair would also be deficient in somatic and transgenerational changes in PMF and HRF. To test this hypothesis, we analyzed the genome stability of the Arabidopsis thaliana mutants deficient in ATM (communication between DNA strand break recognition and the repair machinery), KU80 (deficient in NHEJ) and RAD51B (deficient in HR repair) genes. We found that all three mutants exhibited higher levels of DSBs. Plants impaired in ATM had a lower spontaneous PMF and HRF, whereas ku80 plants had higher frequencies. Plants impaired in RAD51B had a lower HRF. HRF in wild-type, atm and rad51b plants increased in response to several abiotic stressors, whereas it did not increase in ku80 plants. The progeny of stressed wild-type and ku80 plants exhibited an increase in HRF in response to all stresses, and the increase was higher in ku80 plants. The progeny of atm plants showed an increase in HRF only when the parental generation was exposed to cold or flood, whereas the progeny of rad51b plants completely lacked a transgenerational increase in HRF. Our experiments showed that mutants impaired in the recognition and repair of DSBs exhibited changes in the efficiency of DNA repair as reflected by changes in strand breaks, point mutation and HRF. They also showed that the HR RAD51B protein and the protein ATM that recognized damaged DNA might play an important role in transgenerational changes in HRF.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | | | | | | |
Collapse
|
25
|
Yao Y, Kathiria P, Kovalchuk I. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication. FRONTIERS IN PLANT SCIENCE 2013; 4:61. [PMID: 23519399 PMCID: PMC3604634 DOI: 10.3389/fpls.2013.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/04/2013] [Indexed: 05/02/2023]
Abstract
In the past, we showed that local infection of tobacco leaves with either tobacco mosaic virus or oilseed rape mosaic virus (ORMV) resulted in a systemic increase in the homologous recombination frequency (HRF). Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 h post-infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.
Collapse
Affiliation(s)
| | | | - Igor Kovalchuk
- *Correspondence: Igor Kovalchuk, Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4. e-mail:
| |
Collapse
|
26
|
Wang T, Li F, Liu Q, Bian P, Wang J, Wu Y, Wu L, Li W. Homologous recombination in Arabidopsis seeds along the track of energetic carbon ions. Mutat Res 2012; 737:51-57. [PMID: 22683605 DOI: 10.1016/j.mrfmmm.2012.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/09/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and γ-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5Gy and 30Gy of carbon irradiation.
Collapse
Affiliation(s)
- Ting Wang
- University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
28
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
29
|
Mannuss A, Trapp O, Puchta H. Gene regulation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:154-65. [PMID: 21867786 DOI: 10.1016/j.bbagrm.2011.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 11/17/2022]
Abstract
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Anja Mannuss
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
30
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. Local infection with oilseed rape mosaic virus promotes genetic rearrangements in systemic Arabidopsis tissue. Mutat Res 2011; 709-710:7-14. [PMID: 21376739 DOI: 10.1016/j.mrfmmm.2011.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 05/24/2023]
Abstract
We have previously shown that local infection of tobacco plants with tobacco mosaic virus (TMV) or oilseed rape mosaic virus (ORMV) results in a systemic increase in the homologous recombination frequency (HRF). Here, we analyzed what other changes in the genome are triggered by pathogen infection. For the analysis of HRF, mutation frequency (MF) and microsatellite instability (MI), we used three different transgenic Arabidopsis lines carrying β-glucuronidase (GUS)-based substrates in their genome. We found that local infection of Arabidopsis with ORMV resulted in an increase of all three frequencies, albeit to differing degrees. The most prominent increase was observed in microsatellite instability. The increase in HRF was the lowest, although still statistically significant. The analysis of methylation of the 35S promoter and transgene expression showed that the greater instability of the transgene was not attributed to these changes. Strand breaks brought about a significant increase in non-treated tissues of infected plants. The expression of genes associated with various repair processes, such as KU70, RAD51, MSH2, DNA POL α and DNA POL δ, was also increased. To summarize, our data demonstrate that local ORMV infection destabilizes the genome in systemic tissues of Arabidopsis plants in various ways resulting in large rearrangements, point mutations and microsatellite instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4, Alberta, Canada.
| | | | | | | |
Collapse
|
31
|
Boyko A, Matsuoka A, Kovalchuk I. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation. PLANT CELL REPORTS 2011; 30:505-18. [PMID: 21132499 DOI: 10.1007/s00299-010-0960-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 05/17/2023]
Abstract
Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | | | | |
Collapse
|
32
|
Rahavi MR, Migicovsky Z, Titov V, Kovalchuk I. Transgenerational adaptation to heavy metal salts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2011; 2:91. [PMID: 22639617 PMCID: PMC3355606 DOI: 10.3389/fpls.2011.00091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 11/15/2011] [Indexed: 05/19/2023]
Abstract
Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1-S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni(2+) or Cd(2+) did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu(2+) and Ni(2+) indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate.
Collapse
Affiliation(s)
- Mohammad Reza Rahavi
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Zoë Migicovsky
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
- *Correspondence: Igor Kovalchuk, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4. e-mail:
| |
Collapse
|
33
|
Nakagawa M, Takahashi S, Tanaka A, Narumi I, Sakamoto AN. Role of AtPolζ, AtRev1, and AtPolη in UV light-induced mutagenesis in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:414-20. [PMID: 21030509 PMCID: PMC3075744 DOI: 10.1104/pp.110.166082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/23/2010] [Indexed: 05/22/2023]
Abstract
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants decreased compared with that in the wild type, suggesting that AtPolζ and AtRev1 perform mutagenic bypass events, whereas the mutation frequency in the polh-1 mutant increased, suggesting that AtPolη performs nonmutagenic bypass events with respect to ultraviolet light-induced lesions. The rev3-1 rev1-1 double mutant showed almost the same mutation frequency as the rev1-1 single mutant. The increased mutation frequency found in polh-1 was completely suppressed in the rev3-1 polh-1 double mutant, indicating that AtPolζ is responsible for the increased mutations found in polh-1. In summary, these results suggest that AtPolζ and AtRev1 are involved in the same (error-prone) TLS pathway that is independent from the other (error-free) TLS pathway mediated by AtPolη.
Collapse
|
34
|
Golubov A, Yao Y, Maheshwari P, Bilichak A, Boyko A, Belzile F, Kovalchuk I. Microsatellite instability in Arabidopsis increases with plant development. PLANT PHYSIOLOGY 2010; 154:1415-27. [PMID: 20817752 PMCID: PMC2971617 DOI: 10.1104/pp.110.162933] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/24/2010] [Indexed: 05/23/2023]
Abstract
Plant development consists of the initial phase of intensive cell division followed by continuous genome endoreduplication, cell growth, and elongation. The maintenance of genome stability under these conditions is the main task performed by DNA repair and genome surveillance mechanisms. Our previous work showed that the rate of homologous recombination repair in older plants decreases. We hypothesized that this age-dependent decrease in the recombination rate is paralleled with other changes in DNA repair capacity. Here, we analyzed microsatellite stability using transgenic Arabidopsis (Arabidopsis thaliana) plants that carry the nonfunctional β-glucuronidase gene disrupted by microsatellite repeats. We found that microsatellite instability increased dramatically with plant age. We analyzed the contribution of various mechanisms to microsatellite instability, including replication errors and mistakes of DNA repair mechanisms such as mismatch repair, excision repair, and strand break repair. Analysis of total DNA polymerase activity using partially purified protein extracts showed an age-dependent decrease in activity and an increase in fidelity. Analysis of the steady-state RNA level of DNA replicative polymerases α, δ, Pol I-like A, and Pol I-like B and the expression of mutS homolog 2 (Msh2) and Msh6 showed an age-dependent decrease. An in vitro repair assay showed lower efficiency of nonhomologous end joining in older plants, paralleled by an increase in Ku70 gene expression. Thus, we assume that the more frequent involvement of nonhomologous end joining in strand break repair and the less efficient end-joining repair together with lower levels of mismatch repair activities may be the main contributors to the observed age-dependent increase in microsatellite instability.
Collapse
|
35
|
Yang Z, Tang L, Li M, Chen L, Xu J, Wu G, Li H. Monitoring homologous recombination in rice (Oryza sativa L.). Mutat Res 2010; 691:55-63. [PMID: 20670635 DOI: 10.1016/j.mrfmmm.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 04/11/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3x10(-5) recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.
Collapse
Affiliation(s)
- Zhuanying Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Li F, Liu P, Wang T, Bian P, Wu Y, Wu L, Yu Z. The Induction of Bystander Mutagenic Effects In Vivo by Alpha-Particle Irradiation in Whole Arabidopsis thaliana Plants. Radiat Res 2010; 174:228-37. [DOI: 10.1667/rr2052.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Boyko A, Golubov A, Bilichak A, Kovalchuk I. Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1066-78. [PMID: 20385609 DOI: 10.1093/pcp/pcq048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Various environmental stresses influence plant genome stability. Most of these stresses, such as ionizing radiation, heavy metals and organic chemicals, represent potent DNA-damaging agents. Here, we show that exposure to NaCl, the stress that is not thought to cause direct DNA damage, results in an increase in the level of strand breaks and homologous recombination rates (RRs) in Arabidopsis thaliana plants. The effect of salt stress on the RR was found to be primarily associated with Cl(-) ions, since exposure of plants to Na(2)SO(4) did not increase the RR, whereas exposure to MgCl(2) resulted in an increase. Changes in the number of strand breaks and in the RR were also paralleled by transcriptional activation of AtRad51 and down-regulation of AtKu70. The progeny of exposed plants exhibited higher RRs, higher expression of AtRad51, lower expression of AtKu70, higher tolerance to salt and methyl methane sulfate (MMS) stresses, as well as a higher increase in RR upon further exposure to stress. Our experiments showed that NaCl is a genotoxic stress that leads to somatic and transgenerational changes in recombination rates, and these changes are primarily triggered by exposure to Cl(-) ions.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, 4401 University Drive, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | | | | |
Collapse
|
38
|
Genotoxicity/mutagenicity of formaldehyde revealed by the Arabidopsis thaliana plants transgenic for homologous recombination substrates. Mutat Res 2010; 699:35-43. [PMID: 20399886 DOI: 10.1016/j.mrgentox.2010.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/18/2010] [Accepted: 04/10/2010] [Indexed: 01/01/2023]
Abstract
Formaldehyde (FA) is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. The use of FA-containing industrial materials in daily life exposes human to FA extensively. Numerous studies indicate that FA is genotoxic, and can induce various genotoxic effects in vitro and in vivo. The primary DNA lesions induced by FA are DNA-protein crosslinks (DPCs). Recently, it has been reported that the homologous recombination (HR) mechanism is involved in the repair of DPCs, suggesting the homologous recombination could be a potential indicator for the genotoxicity/mutagenicity of FA. However, it has not yet been reported that organisms harboring recombination substrates are used for the detection of genotoxic/mutagenic effects of FA. In this present study, an Arabidopsis thaliana-line transgenic for GUS recombination substrates was used to study the genotoxicity/mutagenicity of FA, and the results showed that FA-exposure significantly increased the induction of HR in growing plants, but not in dormant seeds. We also observed an early up-regulation of expression of HR-related gene, AtRAD54, after FA-exposure. Moreover, the pretreatment with glutathione (GSH) suppressed drastically the induction of HR by FA-exposure.
Collapse
|
39
|
Kathiria P, Kovalchuk I. Reporter gene-based recombination lines for studies of genome stability. Methods Mol Biol 2010; 631:243-52. [PMID: 20204880 DOI: 10.1007/978-1-60761-646-7_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Homologous recombination is a double-strand break repair mechanism operating in somatic cells and involved in meiotic crossovers in plants. It is responsible for the maintenance of genome stability and thus plays a crucial role in adaptation to stress. Recombination between homologous loci is believed to be regulated in part by epigenetic machinery such as methylation. Therefore, the recombination frequency at a specific locus can reflect the chromatin status.Several reporter gene-based recombination constructs have been developed to study HR frequencies in plants. Among them, the luciferase and beta-glucuronidase-based recombination reporter systems are the most widely used. Here, we explain how reporter gene recombination assays operate and in which applications they are used. We also present a conceptually new system for analysis of sequence-specific recombination frequency. These assays can be effectively used for analysis of locus-specific endogenous and stress-induced recombination frequencies.
Collapse
Affiliation(s)
- Palak Kathiria
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | |
Collapse
|
40
|
Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. THE PLANT CELL 2009; 21:2688-99. [PMID: 19737979 PMCID: PMC2768936 DOI: 10.1105/tpc.108.060525] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/13/2009] [Accepted: 08/24/2009] [Indexed: 05/18/2023]
Abstract
Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is essential for seed development. Each of the two SMC6 homologs of Arabidopsis is required for efficient repair of DNA breakage via intermolecular homologous recombination in somatic cells. Alignment of sister chromatids is enhanced transiently after X-irradiation (and mitomycin C treatment) in wild-type nuclei. In the smc5/6 mutants, the x-ray-mediated increase in sister chromatid alignment is much lower and delayed. The reduced S phase-established cohesion caused by a knockout mutation in one of the alpha-kleisin genes, SYN1, also perturbed enhancement of sister chromatid alignment after irradiation, suggesting that the S phase-established cohesion is a prerequisite for correct DSB-dependent cohesion. The radiation-sensitive51 mutant, deficient in heteroduplex formation during DSB repair, showed wild-type frequencies of sister chromatid alignment after X-irradiation, implying that the irradiation-mediated increase in sister chromatid alignment is a prerequisite for, rather than a consequence of, DNA strand exchange between sister chromatids. Our results suggest that the SMC5/6 complex promotes sister chromatid cohesion after DNA breakage and facilitates homologous recombination between sister chromatids.
Collapse
Affiliation(s)
- Koichi Watanabe
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Stefanie Dukowic
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
41
|
Mbanzibwa DR, Tian Y, Mukasa SB, Valkonen JPT. Cassava brown streak virus (Potyviridae) encodes a putative Maf/HAM1 pyrophosphatase implicated in reduction of mutations and a P1 proteinase that suppresses RNA silencing but contains no HC-Pro. J Virol 2009; 83:6934-40. [PMID: 19386713 PMCID: PMC2698530 DOI: 10.1128/jvi.00537-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/15/2009] [Indexed: 11/20/2022] Open
Abstract
The complete positive-sense single-stranded RNA genome of Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae) was found to consist of 9,069 nucleotides and predicted to produce a polyprotein of 2,902 amino acids. It was lacking helper-component proteinase but contained a single P1 serine proteinase that strongly suppressed RNA silencing. Besides the exceptional structure of the 5'-proximal part of the genome, CBSV also contained a Maf/HAM1-like sequence (678 nucleotides, 226 amino acids) recombined between the replicase and coat protein domains in the 3'-proximal part of the genome, which is highly conserved in Potyviridae. HAM1 was flanked by consensus proteolytic cleavage sites for ipomovirus NIaPro cysteine proteinase. Homology of CBSV HAM1 with cellular Maf/HAM1 pyrophosphatases suggests that it may intercept noncanonical nucleoside triphosphates to reduce mutagenesis of viral RNA.
Collapse
Affiliation(s)
- Deusdedith R Mbanzibwa
- Department of Applied Biology, University of Helsinki, P.O. Box 27, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|
42
|
Kovalchuk I, Boyko A. Improvement of Plant Transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Chang WC, Wang YK, Liu PF, Tsai YF, Kong LR, Lin CK, Yang CH, Pan RL. Regulation of Ku gene promoters in Arabidopsis by hormones and stress. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:265-280. [PMID: 32688782 DOI: 10.1071/fp07249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 04/29/2008] [Indexed: 06/11/2023]
Abstract
The Ku70/Ku80 heterodimer plays a crucial role in non-homologous end-joining during DNA repair, and is also involved in multiple cellular processes such as telomere maintenance, transcription, and apoptosis. In this study, we investigate the regulation of AtKu genes in higher plants. Promoters of the AtKu70 and AtKu80 were isolated from Arabidopsis and their activities characterised using GUS reporter constructs. AtKu promoter activities were relatively higher in hypocotyls and cotyledons upon germination and in stigma and siliques as well at their early developing stages. Furthermore, AtKu promoter activities could be enhanced by gibberellic acid, auxins, and jasmonic acid, but repressed by abscisic acid, salicylic acid, heat, drought and cold, respectively. Deletion analysis demonstrates minimal lengths of ~400 bp and 600 bp upstream of transcription start site for functional promoters of AtKu70 and AtKu80, respectively. Taken together, expressions of Ku genes are regulated both by developmental programs as well as by plant hormones and environmental stresses.
Collapse
Affiliation(s)
- Wen-Chi Chang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Yung-Kai Wang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Pei-Feng Liu
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Yu-Fang Tsai
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Lih-Ren Kong
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Kai Lin
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Chang-Hsien Yang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Rong-Long Pan
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| |
Collapse
|
44
|
Breuer C, Stacey NJ, West CE, Zhao Y, Chory J, Tsukaya H, Azumi Y, Maxwell A, Roberts K, Sugimoto-Shirasu K. BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. THE PLANT CELL 2007; 19:3655-68. [PMID: 18055605 PMCID: PMC2174874 DOI: 10.1105/tpc.107.054833] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/19/2007] [Accepted: 11/05/2007] [Indexed: 05/19/2023]
Abstract
How plant organs grow to reach their final size is an important but largely unanswered question. Here, we describe an Arabidopsis thaliana mutant, brassinosteroid-insensitive4 (bin4), in which the growth of various organs is dramatically reduced. Small organ size in bin4 is primarily caused by reduced cell expansion associated with defects in increasing ploidy by endoreduplication. Raising nuclear DNA content in bin4 by colchicine-induced polyploidization partially rescues the cell and organ size phenotype, indicating that BIN4 is directly and specifically required for endoreduplication rather than for subsequent cell expansion. BIN4 encodes a plant-specific, DNA binding protein that acts as a component of the plant DNA topoisomerase VI complex. Loss of BIN4 triggers an ATM- and ATR-dependent DNA damage response in postmitotic cells, and this response coincides with the upregulation of the cyclin B1;1 gene in the same cell types, suggesting a functional link between DNA damage response and endocycle control.
Collapse
Affiliation(s)
- Christian Breuer
- Department of Cell and Developmental Biology, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007. [PMID: 17487278 DOI: 10.1371/.pone.0000430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|