1
|
Zhai Q, Deng L, Li C. Mediator subunit MED25: at the nexus of jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:78-86. [PMID: 32777679 DOI: 10.1016/j.pbi.2020.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Dallery JF, Zimmer M, Halder V, Suliman M, Pigné S, Le Goff G, Gianniou DD, Trougakos IP, Ouazzani J, Gasperini D, O’Connell RJ. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2910-2921. [PMID: 32006004 PMCID: PMC7260715 DOI: 10.1093/jxb/eraa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/22/2023]
Abstract
Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Desert Research Center, Cairo, Egypt
| | - Sandrine Pigné
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Géraldine Le Goff
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Jamal Ouazzani
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Correspondence: or
| | - Richard J O’Connell
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Correspondence: or
| |
Collapse
|
3
|
Halder V, Suliman MNS, Kaschani F, Kaiser M. Plant chemical genetics reveals colistin sulphate as a SA and NPR1-independent PR1 inducer functioning via a p38-like kinase pathway. Sci Rep 2019; 9:11196. [PMID: 31371749 PMCID: PMC6671972 DOI: 10.1038/s41598-019-47526-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
In plants, low-dose of exogenous bacterial cyclic lipopeptides (CLPs) trigger transient membrane changes leading to activation of early and late defence responses. Here, a forward chemical genetics approach identifies colistin sulphate (CS) CLP as a novel plant defence inducer. CS uniquely triggers activation of the PATHOGENESIS-RELATED 1 (PR1) gene and resistance against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis thaliana (Arabidopsis) independently of the PR1 classical inducer, salicylic acid (SA) and the key SA-signalling protein, NON-EXPRESSOR OF PR1 (NPR1). Low bioactive concentration of CS does not trigger activation of early defence markers such as reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK). However, it strongly suppresses primary root length elongation. Structure activity relationship (SAR) assays and mode-of-action (MoA) studies show the acyl chain and activation of a ∼46 kDa p38-like kinase pathway to be crucial for CS' bioactivity. Selective pharmacological inhibition of the active p38-like kinase pathway by SB203580 reverses CS' effects on PR1 activation and root length suppression. Our results with CS as a chemical probe highlight the existence of a novel SA- and NPR1-independent branch of PR1 activation functioning via a membrane-sensitive p38-like kinase pathway.
Collapse
Affiliation(s)
- Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute of Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829, Köln, Germany. .,Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany. .,Rijk Zwaan, De Lier, 2678 ZG, The Netherlands.
| | - Mohamed N S Suliman
- Chemical Biology Laboratory, Max Planck Institute of Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829, Köln, Germany.,Desert Research Centre, 11753 El matareya, Cairo, Egypt
| | - Farnusch Kaschani
- Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany.
| |
Collapse
|
4
|
Zhai Q, Li C. The plant Mediator complex and its role in jasmonate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3415-3424. [PMID: 31089685 PMCID: PMC6609880 DOI: 10.1093/jxb/erz233] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
5
|
Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E. Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1592-1607. [PMID: 29931201 DOI: 10.1093/pcp/pcy106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 05/20/2023]
Abstract
In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.
Collapse
Affiliation(s)
- Shachi Joglekar
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Michael Bartsch
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jens Maintz
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
6
|
Song S, Huang H, Wang J, Liu B, Qi T, Xie D. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1752-1763. [PMID: 29017003 DOI: 10.1093/pcp/pcx112] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Jasmonates (JAs), lipid-derived phytohormones, regulate plant growth, development and defenses against biotic stresses. CORONATINE INSENSITIVE1 perceives bioactive JA and recruits JASMONATE ZIM-DOMAIN (JAZ) proteins for ubiquitination and subsequent degradation via the 26S proteasome, which de-represses JAZ-targeted transcription factors that regulate diverse JA responses. Recent studies showed that the Arabidopsis basic helix-loop-helix transcription factor MYC5 interacts with JAZs and regulates stamen development. However, whether MYC5 mediates other JA responses is unclear. Here, we show that MYC5 functions redundantly with MYC2, MYC3 and MYC4 to modulate JA-regulated root growth inhibition and plant defenses against insect attack and pathogen infection, and that it positively regulates JA-induced leaf senescence. Our findings define MYC5 as an important regulator that is essential for diverse JA responses.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
8
|
Yan J, Li S, Gu M, Yao R, Li Y, Chen J, Yang M, Tong J, Xiao L, Nan F, Xie D. Endogenous Bioactive Jasmonate Is Composed of a Set of (+)-7-iso-JA-Amino Acid Conjugates. PLANT PHYSIOLOGY 2016; 172:2154-2164. [PMID: 27756820 PMCID: PMC5129707 DOI: 10.1104/pp.16.00906] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/14/2016] [Indexed: 05/04/2023]
Abstract
Jasmonates (JAs) regulate a wide range of plant defense and development processes. The bioactive JA is perceived by its receptor COI1 to trigger the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins and subsequently derepress the JAZ-repressed transcription factors for activation of expression of JA-responsive genes. So far, (+)-7-iso-JA-l-Ile has been the only identified endogenous bioactive JA molecule. Here, we designed coronafacic acid (CFA) conjugates with all the amino acids (CFA-AA) to mimic the JA amino acid conjugates, and revealed that (+)-7-iso-JA-Leu, (+)-7-iso-JA-Val, (+)-7-iso-JA-Met, and (+)-7-iso-JA-Ala are new endogenous bioactive JA molecules. Furthermore, our studies uncover the general characteristics for all the bioactive JA molecules, and provide a new strategy to synthetically generate novel active JA molecules.
Collapse
Affiliation(s)
- Jianbin Yan
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.);
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Suhua Li
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Min Gu
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Yuwen Li
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Juan Chen
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Mai Yang
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Jianhua Tong
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Langtao Xiao
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.)
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Fajun Nan
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.);
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Y., S.L., R.Y., Y.L., J.C., M.Y., D.X.);
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China (M.G., F.N.); and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China (J.T., L.X.)
| |
Collapse
|
9
|
Hasan MM, Hasan MM, Teixeira da Silva JA, Li X. Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 2016; 21:7. [PMID: 28536610 PMCID: PMC5415736 DOI: 10.1186/s11658-016-0008-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphorus is a poorly bioavailable macronutrient that is essential for crop growth and yield. Overuse of phosphorus fertilizers results in low phosphorus use efficiency (PUE), has serious environmental consequences and accelerates the depletion of phosphorus mineral reserves. It has become extremely challenging to improve PUE while preserving global food supplies and maintaining environmental sustainability. Molecular and genetic analyses have revealed the primary mechanisms of phosphorus uptake and utilization and their relationships to phosphorus transporters, regulators, root architecture, metabolic adaptations, quantitative trait loci, hormonal signaling and microRNA. The ability to improve PUE requires a transition from this knowledge of molecular mechanisms and plant architecture to practical strategies. These could include: i) the use of arbuscular mycorrhizal fungal symbioses for efficient phosphorus mining and uptake; ii) intercropping with suitable crop species to achieve phosphorus activation and mobilization in the soil; and iii) tissue-specific overexpression of homologous genes with advantageous agronomic properties for higher PUE along with breeding for phosphorus-efficient varieties and introgression of key quantitative trait loci. More effort is required to further dissect the mechanisms controlling phosphorus uptake and utilization within plants and provide new insight into the means to efficiently improve PUE.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| | - Md. Mainul Hasan
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali Bangladesh
| | | | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
10
|
Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 2016; 6:24778. [PMID: 27101793 PMCID: PMC4840450 DOI: 10.1038/srep24778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022] Open
Abstract
The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xiaoying Pan
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yuxia Deng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Huamao Wu
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Pei Liu
- Department of Ecology, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin 2016; 9:8. [PMID: 26918031 PMCID: PMC4766709 DOI: 10.1186/s13072-016-0057-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. RESULTS Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. CONCLUSIONS The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue that distinguishing between them is important for understanding the role of chromatin marks in genes' transcriptional performance. JA-priming, specifically of dehydration stress memory genes encoding cell/membrane protective functions, suggests it is an adaptational response to two different environmental stresses.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
12
|
Cai XT, Xu P, Wang Y, Xiang CB. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1017-30. [PMID: 25752924 DOI: 10.1111/jipb.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/02/2015] [Indexed: 05/11/2023]
Abstract
Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation.
Collapse
Affiliation(s)
- Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ping Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
13
|
Böttcher C, Burbidge CA, di Rienzo V, Boss PK, Davies C. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:618-27. [PMID: 25494944 DOI: 10.1111/jipb.12321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/08/2014] [Indexed: 05/14/2023]
Abstract
The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal.
Collapse
Affiliation(s)
- Christine Böttcher
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Crista A Burbidge
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | | | - Paul K Boss
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Christopher Davies
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
14
|
Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. PLANT PHYSIOLOGY 2014; 166:2179-94. [PMID: 25301887 PMCID: PMC4256851 DOI: 10.1104/pp.114.246694] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/07/2014] [Indexed: 05/18/2023]
Abstract
Plants have evolved an elaborate signaling network to ensure an appropriate level of immune response to meet the differing demands of developmental processes. Previous research has demonstrated that DELLA proteins physically interact with JASMONATE ZIM-DOMAIN1 (JAZ1) and dynamically regulate the interaction of the gibberellin (GA) and jasmonate (JA) signaling pathways. However, whether and how the JAZ1-DELLA regulatory node is regulated at the transcriptional level in plants under normal growth conditions or during pathogen infection is not known. Here, we demonstrate multiple functions of cotton (Gossypium barbadense) GbWRKY1 in the plant defense response and during development. Although GbWRKY1 expression is induced rapidly by methyl jasmonate and infection by Verticillium dahliae, our results show that GbWRKY1 is a negative regulator of the JA-mediated defense response and plant resistance to the pathogens Botrytis cinerea and V. dahliae. Under normal growth conditions, GbWRKY1-overexpressing lines displayed GA-associated phenotypes, including organ elongation and early flowering, coupled with the down-regulation of the putative targets of DELLA. We show that the GA-related phenotypes of GbWRKY1-overexpressing plants depend on the constitutive expression of Gossypium hirsutum GhJAZ1. We also show that GhJAZ1 can be transactivated by GbWRKY1 through TGAC core sequences, and the adjacent sequences of this binding site are essential for binding specificity and affinity to GbWRKY1, as revealed by dual-luciferase reporter assays and electrophoretic mobility shift assays. In summary, our data suggest that GbWRKY1 is a critical regulator mediating the plant defense-to-development transition during V. dahliae infection by activating JAZ1 expression.
Collapse
Affiliation(s)
- Chao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linlin Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Dayan FE, Duke SO. Natural compounds as next-generation herbicides. PLANT PHYSIOLOGY 2014; 166:1090-105. [PMID: 24784133 PMCID: PMC4226356 DOI: 10.1104/pp.114.239061] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/02/2014] [Indexed: 05/04/2023]
Abstract
Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs.
Collapse
Affiliation(s)
- Franck E Dayan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Stephen O Duke
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| |
Collapse
|
16
|
Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall CS, Hause B, Jez JM, Kaiser M, Kombrink E. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 2014; 10:830-6. [PMID: 25129030 DOI: 10.1038/nchembio.1591] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.
Collapse
Affiliation(s)
- Christian Meesters
- 1] Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany. [2] Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Timon Mönig
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Julian Oeljeklaus
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Daniel Krahn
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Markus Kaiser
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
17
|
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KFX. Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks. MOLECULAR PLANT 2014; 7:1167-90. [PMID: 24719466 DOI: 10.1093/mp/ssu042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastid-to-nucleus signaling is essential for the coordination and adjustment of cellular metabolism in response to environmental and developmental cues of plant cells. A variety of operational retrograde signaling pathways have been described that are thought to be triggered by reactive oxygen species, photosynthesis redox imbalance, tetrapyrrole intermediates, and other metabolic traits. Here we report a meta-analysis based on transcriptome and protein interaction data. Comparing the output of these pathways reveals the commonalities and peculiarities stimulated by six different sources impinging on operational retrograde signaling. Our study provides novel insights into the interplay of these pathways, supporting the existence of an as-yet unknown core response module of genes being regulated under all conditions tested. Our analysis further highlights affiliated regulatory cis-elements and classifies abscisic acid and auxin-based signaling as secondary components involved in the response cascades following a plastidial signal. Our study provides a global analysis of structure and interfaces of different pathways involved in plastid-to-nucleus signaling and a new view on this complex cellular communication network.
Collapse
Affiliation(s)
- Christine Gläßer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Georg Haberer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Iris Finkemeier
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Thomas Pfannschmidt
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, D-07743 Jena, Germany Laboratoire de Physiologie Cellulaire Végétale (LPCV), CEA/CNRS/UJF iRTSV, CEA Grenoble 17, rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Tatjana Kleine
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Rainer Erich Häusler
- University of Cologne, Botanical Institute, Cologne Biocenter, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Klaus Franz Xaver Mayer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
18
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|
19
|
Kato H, Saito T, Ito H, Komeda Y, Kato A. Overexpression of the TIR-X gene results in a dwarf phenotype and activation of defense-related gene expression in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:382-8. [PMID: 24594389 DOI: 10.1016/j.jplph.2013.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 05/03/2023]
Abstract
The Arabidopsis genome encodes various proteins with a Toll/interleukin-1 receptor (TIR) domain. Many of these proteins also contain nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains and function as resistance (R) proteins. However, the protein encoded by At2g32140 (a TIR-X gene) contains a TIR domain but lacks NBS and LRR domains. We found that transgenic plants overexpressing At2g32140 displayed a dwarf phenotype and showed increased expression of defense-related genes. In general, the growth defect caused by activation of defense responses is suppressed under high-temperature conditions. However, transgenic plants overexpressing At2g32140 displayed a much stronger dwarf phenotype at 28°C than at 22°C. This dwarf phenotype was suppressed under the combination with known salicylic-acid pathway mutants. These findings suggest that At2g32140 encodes a protein involved in the plant defense response.
Collapse
Affiliation(s)
- Hiroaki Kato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 120-8554, Japan
| | - Hidetaka Ito
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshibumi Komeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Atsushi Kato
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
20
|
Fonseca S, Rosado A, Vaughan-Hirsch J, Bishopp A, Chini A. Molecular locks and keys: the role of small molecules in phytohormone research. FRONTIERS IN PLANT SCIENCE 2014; 5:709. [PMID: 25566283 PMCID: PMC4269113 DOI: 10.3389/fpls.2014.00709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/26/2014] [Indexed: 05/03/2023]
Abstract
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.
Collapse
Affiliation(s)
- Sandra Fonseca
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Abel Rosado
- The Botany Department, University of British ColumbiaVancouver, BC, Canada
| | - John Vaughan-Hirsch
- Centre for Plant Integrative Biology, University of NottinghamNottingham, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of NottinghamNottingham, UK
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones CientíficasMadrid, Spain
- *Correspondence: Andrea Chini, Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, C/ Darwin 3, 28049 Madrid, Spain e-mail:
| |
Collapse
|
21
|
Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D. JAV1 controls jasmonate-regulated plant defense. Mol Cell 2013; 50:504-15. [PMID: 23706819 DOI: 10.1016/j.molcel.2013.04.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022]
Abstract
Plants evolve effective mechanisms to protect themselves from environmental stresses and employ jasmonates as vital defense signals to defend against insect attack and pathogen infection. Jasmonates are also recognized as an essential growth regulator by which diverse developmental processes are mediated. Despite substantial research, there are no key signaling components reported yet to control jasmonate-regulated plant defense independent of developmental responses. We identify JAV1, a key gene in the jasmonate pathway, which functions as a negative regulator to control plant defense but does not play a detectable role in plant development. Our results suggest that when encountering insect attack and pathogen infection, plants accumulate jasmonates that trigger JAV1 degradation via the 26S proteasome to activate defensive gene expression and elevate resistances against both insects and pathogens. These findings have provided insight into the molecular mechanism by which plants integrate jasmonate signals to protect themselves from insect attack and pathogen infection.
Collapse
Affiliation(s)
- Po Hu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
22
|
Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. PLANTA 2012; 236:1351-66. [PMID: 23011567 DOI: 10.1007/s00425-012-1705-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/27/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-L-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins.
Collapse
Affiliation(s)
- Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| |
Collapse
|
23
|
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. THE PLANT CELL 2012; 24:2898-916. [PMID: 22822206 PMCID: PMC3426122 DOI: 10.1105/tpc.112.098277] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 05/18/2023]
Abstract
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)-triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.
Collapse
|
24
|
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1159-75. [PMID: 22570470 PMCID: PMC3387702 DOI: 10.1104/pp.112.198150] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
In the interaction between Arabidopsis (Arabidopsis thaliana) and the generalist herbivorous insect Spodoptera littoralis, little is known about early events in defense signaling and their link to downstream phytohormone pathways. S. littoralis oral secretions induced both Ca²⁺ and phytohormone elevation in Arabidopsis. Plant gene expression induced by oral secretions revealed up-regulation of a gene encoding a calmodulin-like protein, CML42. Functional analysis of cml42 plants revealed more resistance to herbivory than in the wild type, because caterpillars gain less weight on the mutant, indicating that CML42 negatively regulates plant defense; cml42 also showed increased aliphatic glucosinolate content and hyperactivated transcript accumulation of the jasmonic acid (JA)-responsive genes VSP2 and Thi2.1 upon herbivory, which might contribute to increased resistance. CML42 up-regulation is negatively regulated by the jasmonate receptor Coronatine Insensitive1 (COI1), as loss of functional COI1 resulted in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defense by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes and is independent of herbivory-induced JA biosynthesis. JA-induced Ca²⁺ elevation and root growth inhibition were more sensitive in cml42, also indicating higher JA perception. Our results indicate that CML42 acts as a crucial signaling component connecting Ca²⁺ and JA signaling. CML42 is localized to cytosol and nucleus. CML42 is also involved in abiotic stress responses, as kaempferol glycosides were down-regulated in cml42, and impaired in ultraviolet B resistance. Under drought stress, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca²⁺ sensor having multiple functions in insect herbivory defense and abiotic stress responses.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Michael Reichelt
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Bettina Hause
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Jonathan Gershenzon
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Wilhelm Boland
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | | |
Collapse
|
25
|
Walley JW, Kelley DR, Savchenko T, Dehesh K. Investigating the function of CAF1 deadenylases during plant stress responses. PLANT SIGNALING & BEHAVIOR 2010; 5:802-805. [PMID: 20421740 PMCID: PMC3115028 DOI: 10.4161/psb.5.7.11578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 05/29/2023]
Abstract
Alteration of gene expression plays a central role in the transmission of developmental and environmental signals. The steady-state transcript level within a cell is determined by the combination of the rate synthesis and the rate of degradation. While altering the rate of mRNA turnover is known to provide a rapid mechanism to reprogram transcript levels, research has largely focused on changes in transcriptional regulation as a mechanism to control mRNA levels. However, recent studies have begun to explore the role of mRNA decay in reprogramming the transcriptome.
Collapse
Affiliation(s)
- Justin W Walley
- Division of Biological Sciences; University of California at San Diego; La Jolla, CA USA
| | - Dior R Kelley
- Plant Molecular and Cellular Biology Laboratory; Salk Institute for Biological Sciences; La Jolla, CA USA
| | - Tatyana Savchenko
- Department of Plant Biology; University of California at Davis; Davis, CA USA
| | - Katayoon Dehesh
- Department of Plant Biology; University of California at Davis; Davis, CA USA
| |
Collapse
|
26
|
Jia MR, Wei T, Xu WF. The Analgesic Activity of Bestatin as a Potent APN Inhibitor. Front Neurosci 2010; 4:50. [PMID: 20631848 PMCID: PMC2903224 DOI: 10.3389/fnins.2010.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/10/2010] [Indexed: 11/13/2022] Open
Abstract
Bestatin, a small molecular weight dipeptide, is a potent inhibitor of various aminopeptidases as well as LTA4 hydrolase. Various physiological functions of Bestatin have been identified, viz.: (1) an immunomodifier for enhancing the proliferation of normal human bone marrow granulocyte-macrophage progenitor cells to form CFU-GM colonies; Bestatin exerts a direct stimulating effect on lymphocytes via its fixation on the cell surface and an indirect effect on monocytes via aminopeptidase B inhibition of tuftsin catabolism; (2) an immunorestorator and curative or preventive agent for spontaneous tumor; Bestatin alone or its combination with chemicals can prolongate the disease-free interval and survival period in adult acute or chronic leukemia, therefore, it was primarily marketed in 1987 in Japan as an anticancer drug and servers as the only marketed inhibitor of Aminopeptidase N (APN/CD13) to cure leukemia to date; (3) a pan-hematopoietic stimulator and restorator; Bestatin promotes granulocytopoiesis and thrombocytopoiesis in vitro and restores them in myelo-hypoplastic men; (4) an inhibitor of several natural opioid peptides. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, beta-Endorphin, and so on, the anti-aminopeptidase action of Bestatin also allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. Although many scientific studies and great accomplishments have been achieved in this field, a large amount of problems are unsolved. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes.
Collapse
Affiliation(s)
- Mei-Rong Jia
- School of Pharmacy, Shandong UniversityJinan, Shandong, China
| | - Tao Wei
- School of Public Health, Shandong UniversityJinan, Shandong, China
| | - Wen-Fang Xu
- School of Pharmacy, Shandong UniversityJinan, Shandong, China
| |
Collapse
|
27
|
Walley JW, Dehesh K. Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:354-9. [PMID: 20377697 DOI: 10.1111/j.1744-7909.2010.00940.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As sessile organisms plants must cope with ever changing environmental conditions. To survive plants have evolved elaborate mechanisms to perceive and rapidly respond to a diverse range of abiotic and biotic stresses. Central to this response is the ability to modulate gene expression at both the transcriptional and post-transcriptional levels. This review will focus on recent progress that has been made towards understanding the rapid reprogramming of the transcriptome that occurs in response to stress as well as emerging mechanisms underpinning the reprogramming of gene expression in response to stress.
Collapse
Affiliation(s)
- Justin W Walley
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K. Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. PLANT PHYSIOLOGY 2010; 152:866-75. [PMID: 19955262 PMCID: PMC2815882 DOI: 10.1104/pp.109.149005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/25/2009] [Indexed: 05/19/2023]
Abstract
To maintain homeostasis in an ever-changing environment organisms have evolved mechanisms to reprogram gene expression. One central mechanism regulating gene expression is messenger RNA (mRNA) degradation, which is initiated by poly(A) tail shortening (deadenylation). The carbon catabolite repressor 4-CCR4 associated factor1 (CCR4-CAF1) complex is the major enzyme complex that catalyzes mRNA deadenylation and is conserved among eukaryotes. However, the components and functions of this global regulatory complex have not been well characterized in plants. Here we investigate the CAF1 family in Arabidopsis (Arabidopsis thaliana). We identify 11 AtCAF1 homologs and show that a subset of these genes are responsive to mechanical wounding, among them are AtCAF1a and AtCAF1b whose expression levels are rapidly and transiently induced by wounding. The differential expression profiles of the various AtCAF1s suggest that not all AtCAF1 genes are involved in stress-responsive regulation of transcript levels. Comparison of misexpressed genes identified via transcript profiling of Atcaf1a and Atcaf1b mutants at different time points before and after wounding suggests that AtCAF1a and AtCAF1b target shared and unique transcripts for deadenylation with temporal specificity. Consistent with the AtPI4Kgamma3 transcript exhibiting the largest increase in abundance in Atcaf1b, AtCAF1b targets AtPI4Kgamma3 mRNA for deadenylation. Stress-tolerance assays demonstrate that AtCAF1a and AtCAF1b are involved in mediating abiotic stress responses. However, AtCAF1a and AtCAF1b are not functionally redundant in all cases, nor are they essential for all environmental stresses. These findings demonstrate that these closely related proteins exhibit overlapping and distinct roles with respect to mRNA deadenylation and mediation of stress responses.
Collapse
|
29
|
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C. Arabidopsis ASA1Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. THE PLANT CELL 2009; 21:1495-511. [PMID: 19435934 PMCID: PMC2700526 DOI: 10.1105/tpc.108.064303] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractPlant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.
Collapse
Affiliation(s)
- Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxiu Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Songqing Ye
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rong Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xugang Li
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Olaf Tietz
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Xiaoyan Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jerry D. Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Klaus Palme
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
30
|
Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C. The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. PLANT PHYSIOLOGY 2009; 4:464-6. [PMID: 19286935 PMCID: PMC2675735 DOI: 10.1104/pp.109.135269] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The phytohormone abscisic acid (ABA) is well known for its regulatory roles in integrating environmental constraints with the developmental programs of plants. Here, we characterize the biological function of the Arabidopsis (Arabidopsis thaliana) RING-H2 protein RHA2a in ABA signaling. The rha2a mutant is less sensitive to ABA than the wild type during seed germination and early seedling development, whereas transgenic plants overexpressing RHA2a are hypersensitive, indicating that RHA2a positively regulates ABA-mediated control of seed germination and early seedling development. Double mutant analyses of rha2a with several known ABA-insensitive mutants suggest that the action of RHA2a in ABA signaling is independent of that of the transcription factors ABI3, ABI4, and ABI5. We provide evidence showing that RHA2a also positively regulates plant responses to salt and osmotic stresses during seed germination and early seedling development. RHA2a is a functional E3 ubiquitin ligase, and its conserved RING domain is likely important for the biological function of RHA2a in ABA signaling. Together, these results suggest that the E3 ligase RHA2a is an important regulator of ABA signaling during seed germination and early seedling development.
Collapse
Affiliation(s)
- Qingyun Bu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res 2009; 19:307-16. [PMID: 19065152 DOI: 10.1038/cr.2008.317] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3' end, a process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We report here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of AtCAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA insertion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interestingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resistance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and defence responses to pathogen infections.
Collapse
Affiliation(s)
- Wenxing Liang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Robert S, Raikhel NV, Hicks GR. Powerful partners: Arabidopsis and chemical genomics. THE ARABIDOPSIS BOOK 2009; 7:e0109. [PMID: 22303245 PMCID: PMC3243329 DOI: 10.1199/tab.0109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical genomics (i.e. genomics scale chemical genetics) approaches capitalize on the ability of low molecular mass molecules to modify biological processes. Such molecules are used to modify the activity of a protein or a pathway in a manner that it is tunable and reversible. Bioactive chemicals resulting from forward or reverse chemical screens can be useful in understanding and dissecting complex biological processes due to the essentially limitless variation in structure and activities inherent in chemical space. A major advantage of this approach as a powerful addition to conventional plant genetics is the fact that chemical genomics can address loss-of-function lethality and redundancy. Furthermore, the ability of chemicals to be added at will and to act quickly can permit the study of processes that are highly dynamic such as endomembrane trafficking. An important aspect of utilizing small molecules effectively is to characterize bioactive chemicals in detail including an understanding of structure-activity relationships and the identification of active and inactive analogs. Bioactive chemicals can be useful as reagents to probe biological pathways directly. However, the identification of cognate targets and their pathways is also informative and can be achieved by screens for genetic resistance or hypersensitivity in Arabidopsis thaliana or other organisms from which the results can be translated to plants. In addition, there are approaches utilizing "tagged" chemical libraries that possess reactive moieties permitting the immobilization of active compounds. This opens the possibility for biochemical purification of putative cognate targets. We will review approaches to screen for bioactive chemicals that affect biological processes in Arabidopsis and provide several examples of the power and challenges inherent in this new approach in plant biology.
Collapse
Affiliation(s)
- Stéphanie Robert
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Current address: VIB Department of Plant Systems Biology, University of Ghent, 9052 Ghent, Belgium
| | - Natasha V. Raikhel
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Glenn R. Hicks
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Address correspondence to
| |
Collapse
|
33
|
Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 2008; 18:756-67. [PMID: 18427573 DOI: 10.1038/cr.2008.53] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anac019 anac055 double mutant and with transgenic plants overexpressing ANAC019 or ANAC055. The anac019 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COI1 and AtMYC2, together with the finding that overexpression of ANAC019 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anac019 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.
Collapse
Affiliation(s)
- Qingyun Bu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 5 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li H, Sun J, Xu Y, Jiang H, Wu X, Li C. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. PLANT MOLECULAR BIOLOGY 2007; 65:655-65. [PMID: 17828375 DOI: 10.1007/s11103-007-9230-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 08/17/2007] [Indexed: 05/17/2023]
Abstract
The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress. Here, we report that a nuclear-localized basic helix-loop-helix (bHLH)-type protein, AtAIB, positively regulates ABA response in Arabidopsis. The expression of AtAIB was transitorily induced by ABA and PEG, although its transcripts were accumulated in various organs. We provided evidence showing that AtAIB has transcriptional activation activity in yeast. Knockdown of AtAIB expression caused reduced sensitivity to ABA, whereas overexpression of this gene led to elevated sensitivity to ABA in cotyledon greening and seedling root growth. Furthermore, soil-grown plants overexpressing AtAIB showed increased drought tolerance. Taken together, these results suggested that AtAIB functions as a transcription activator involved in the regulation of ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Hongmei Li
- State Key Laboratory of Plant Genomics, Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 5 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
35
|
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1148-58. [PMID: 17609218 DOI: 10.1093/pcp/pcm088] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular mechanism governing the response of plants to salinity stress, one of the most significant limiting factors for agriculture worldwide, has just started to be revealed. Here, we report AtSZF1 and AtSZF2, two closely related CCCH-type zinc finger proteins, involved in salt stress responses in Arabidopsis. The expression of AtSZF1 and AtSZF2 is quickly and transiently induced by NaCl treatment. Mutants disrupted in the expression of AtSZF1 or AtSZF2 exhibit increased expression of a group of salt stress-responsive genes in response to high salt. Significantly, the atszf1-1/atszf2-1 double mutant displays more sensitive responses to salt stress than the atszf1-1 or atszf2-1 single mutants and wild-type plants. On the other hand, transgenic plants overexpressing AtSZF1 show reduced induction of salt stress-responsive genes and are more tolerant to salt stress. We also showed that AtSZF1 is localized in the nucleus. Taken together, these results demonstrated that AtSZF1 and AtSZF2 negatively regulate the expression of salt-responsive genes and play important roles in modulating the tolerance of Arabidopsis plants to salt stress.
Collapse
Affiliation(s)
- Jiaqiang Sun
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhai Q, Li CB, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1061-71. [PMID: 17567636 DOI: 10.1093/pcp/pcm076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An Arabidopsis mutant line named hy1-101 was isolated because it shows stunted root growth on medium containing low concentrations of jasmonic acid (JA). Subsequent investigation indicated that even in the absence of JA, hy1-101 plants exhibit shorter roots and express higher levels of a group of JA-inducible defense genes. Here, we show that the hy1-101 mutant has increased production of JA and its jasmonate-related phenotype is suppressed by the coi1-1 mutation that interrupts JA signaling. Gene cloning and genetic complementation analyses revealed that the hy1-101 mutant contains a mutation in the HY1 gene, which encodes a heme oxygenase essential for phytochrome chromophore biosynthesis. These results support a hypothesis that phytochrome chromophore deficiency leads to overproduction of JA and activates COI1-dependent JA responses. Indeed, we show that, like hy1-101, independent alleles of the phytochrome chromophore-deficient mutants, including hy1-100 and hy2 (CS68), also show elevated JA levels and constant expression of JA-inducible defense genes. We further provide evidence showing that, on the other hand, JA inhibits the expression of a group of light-inducible and photosynthesis-related genes. Together, these data imply that the JA-signaled defense pathway and phytochrome chromophore-mediated light signaling might have antagonistic effects on each other.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. THE PLANT CELL 2007; 19:2225-45. [PMID: 17616737 PMCID: PMC1955694 DOI: 10.1105/tpc.106.048017] [Citation(s) in RCA: 710] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, 4067, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Advances in Arabidopsis research in China from 2006 to 2007. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1292-304. [PMID: 17616508 PMCID: PMC1914136 DOI: 10.1104/pp.107.099705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/19/2007] [Indexed: 05/16/2023]
Abstract
A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of ethylmethanesulfonate-mutagenized Arabidopsis seedlings recovered seven lines with resistance levels to DAS734 ranging from 5- to 125-fold. Genetic tests determined that all the resistance mutations were dominant and allelic. One mutation was mapped to an interval on chromosome 4 containing At4g34740, which encodes an isoform of glutamine phosphoribosylamidotransferase (AtGPRAT2), the first enzyme of the purine biosynthetic pathway. Sequencing of At4g34740 from the resistant lines showed that all seven contained mutations producing changes in the encoded polypeptide sequence. Two lines with the highest level of resistance (125-fold) contained the mutation R264K. The wild-type and mutant AtGPRAT2 enzymes were cloned and functionally overexpressed in Escherichia coli. Assays of the recombinant enzyme showed that DAS734 was a potent, slow-binding inhibitor of the wild-type enzyme (I(50) approximately 0.2 microm), whereas the mutant enzyme R264K was not significantly inhibited by 200 microm DAS734. Another GPRAT isoform in Arabidopsis, AtGPRAT3, was also inhibited by DAS734. This combination of chemical, genetic, and biochemical evidence indicates that the phytotoxicity of DAS734 arises from direct inhibition of GPRAT and establishes its utility as a new and specific chemical genetic probe of plant purine biosynthesis. The effects of this novel GPRAT inhibitor are compared to the phenotypes of known AtGPRAT genetic mutants.
Collapse
Affiliation(s)
- Terence A Walsh
- Dow AgroSciences, Discovery Research, Indianapolis, IN 46268, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaschani F, van der Hoorn R. Small molecule approaches in plants. Curr Opin Chem Biol 2007; 11:88-98. [PMID: 17208036 DOI: 10.1016/j.cbpa.2006.11.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/28/2006] [Indexed: 12/29/2022]
Abstract
Small molecules offer exciting opportunities for plant science. So far, bioactive small molecules have been identified as plant hormones, herbicides, growth regulators, or taken from animal research. Recently, plant scientists have started to explore further the chemical space for novel modulators of plant hormone signalling, and have followed up this work with exciting discoveries illustrating the potential of small molecules such as brassinazole and sirtinol. New chemical genetic screens have been designed to generate chemical tools for the investigation of membrane trafficking, gravitropism and plant immunity. Further novel 'chemetic' tools to identify targets and modes of action are currently generated through an intimate interdisciplinary collaboration between biologists and small molecule chemists.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics Group, Chemical Genomics Centre, Dortmund, Germany and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|