1
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
2
|
Zhang X, Bai L, Li M, Li Y, Hu R, Guo H. Pollen transcriptomic analysis provided insights into understanding the molecular mechanisms underlying grafting-induced improvement in potato fertility. FRONTIERS IN PLANT SCIENCE 2024; 15:1338106. [PMID: 38606064 PMCID: PMC11007164 DOI: 10.3389/fpls.2024.1338106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024]
Abstract
Introduction Heterologous grafting has been proven to be a valid approach to improving potato fertility, especially when grafting potatoes with other Solanaceae family plants. However, the mechanisms underlying grafting-induced improvement in potato fertility are still unknown. Methods In this study, a poor-fertility potato cultivar "Qingshu No. 9" (Q9) was grafted with a tomato cultivar "Zhongyan988" (ZY988) to study the effects of heterologous grafting in the former. The tuber yield was controlled by different grafting and cultivation approaches, and the correlation between tuber yield and pollen vigor was studied. Comparative transcriptomic analysis of the potential mechanisms of pollen in potato scion fertility changes. Result Grafting with the tomato rootstock effectively promoted the flower and fruit formation in the scion potato and improved its pollen viability by 15%-20%. In addition, a significant negative correlation was observed between the potato tuber yield and pollen viability, suggesting a potential impact on the metabolic regulatory network related to tuber formation. From the comparative transcriptomic analysis between the pollens from Q9 self-grafted plants and Q9-tomato grafting scion, 513 differentially expressed genes (DEGs) were identified. These DEGs were found to be related to gametophyte and pollen development, carbohydrate metabolism, and protein processing. Thus, these DEGs might be involved in improved fertility after reduced tuberization in plants subjected to heterologous grafting. Discussion Potato/tomato heterologous grafting significantly improved the pollen viability of scion potatoes and was associated with the absence of potato tubers. Heterologous grafting promotes the transcription of genes related to protein processing, carbohydrate metabolism, and pollen development in pollen cells, resulting in the production of fertile pollen. Our results provided initial clues to understanding the improvement of potato fertility using the heterologous grafting method, which might be a useful tool in assisted potato breeding.
Collapse
Affiliation(s)
- Xing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Maoxing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youhan Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ronghai Hu
- Technical Department, Yunnan BengLong Potato Planting Co., Ltd, Kunming, Yunnan, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhang Z, Sun M, Xiong T, Ye F, Zhao Z. Development and genetic regulation of pollen intine in Arabidopsis and rice. Gene 2024; 893:147936. [PMID: 38381507 DOI: 10.1016/j.gene.2023.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Ziwei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
4
|
Kamarova KA, Ershova NM, Sheshukova EV, Arifulin EA, Ovsiannikova NL, Antimonova AA, Kudriashov AA, Komarova TV. Nicotiana benthamiana Class 1 Reversibly Glycosylated Polypeptides Suppress Tobacco Mosaic Virus Infection. Int J Mol Sci 2023; 24:12843. [PMID: 37629021 PMCID: PMC10454303 DOI: 10.3390/ijms241612843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant-virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1-3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1-2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1-2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.
Collapse
Affiliation(s)
- Kamila A. Kamarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia L. Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra A. Antimonova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Andrei A. Kudriashov
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Jaffri SRF, Scheer H, MacAlister CA. The hydroxyproline O-arabinosyltransferase FIN4 is required for tomato pollen intine development. PLANT REPRODUCTION 2023; 36:173-191. [PMID: 36749417 DOI: 10.1007/s00497-023-00459-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
The pollen grain cell wall is a highly specialized structure composed of distinct layers formed through complex developmental pathways. The production of the innermost intine layer, composed of cellulose, pectin and other polymers, is particularly poorly understood. Here we demonstrate an important and specific role for the hydroxyproline O-arabinosyltransferase (HPAT) FIN4 in tomato intine development. HPATs are plant-specific enzymes which initiate glycosylation of certain cell wall structural proteins and signaling peptides. FIN4 was expressed throughout pollen development in both the developing pollen and surrounding tapetal cells. A fin4 mutant with a partial deletion of the catalytic domain displayed significantly reduced male fertility in vivo and compromised pollen hydration and germination in vitro. However, fin4 pollen that successfully germinated formed morphologically normal pollen tubes with the same growth rate as the wild-type pollen. When we examined mature fin4 pollen, we found they were cytologically normal, and formed morphologically normal exine, but produced significantly thinner intine. During intine deposition at the late stages of pollen development we found fin4 pollen had altered polymer deposition, including reduced cellulose and increased detection of pectin, specifically homogalacturonan with both low and high degrees of methylesterification. Therefore, FIN4 plays an important role in intine formation and, in turn pollen hydration and germination and the process of intine formation involves dynamic changes in the developing pollen cell wall.
Collapse
Affiliation(s)
- Syeda Roop Fatima Jaffri
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Scheer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Chen X, Zhang Y, Yin W, Wei G, Xu H, Ma L, Tian W, Yang G, Li Y, Wu R, Zhang T, Wang N, He G. Full-length EFOP3 and EFOP4 proteins are essential for pollen intine development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36970846 DOI: 10.1111/tpj.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pollen development is critical to plant reproduction, but the underlying regulatory molecular mechanisms have not been fully elucidated. The Arabidopsis (Arabidopsis thaliana) EFR3 OF PLANT 3 (EFOP3) and EFR3 OF PLANT 4 (EFOP4) genes encode members of the Armadillo (ARM) repeat superfamily that play key roles in pollen development. Herein, we demonstrate that EFOP3 and EFOP4 are co-expressed in pollen at anther stages 10-12, but loss-of-function of both EFOP3 and EFOP4 leads to male gametophyte sterility, irregular intine, and shriveled pollen grains at anther stage 12. We further established that full-length EFOP3 and EFOP4 specifically localize to the plasma membrane, and the integrity of these proteins is essential for pollen development. We observed uneven intine, less organized cellulose and reduced pectin content in mutant pollen compared with the wild-type. These, together with the misexpression of several genes related to cell wall metabolism in efop3-/- efop4+/- mutants, suggest that EFOP3 and EFOP4 may indirectly regulate the expression of these genes to affect intine formation, thus controlling Arabidopsis pollen fertility in a functionally redundant manner. Moreover, transcriptome analysis showed that the absence of EFOP3 and EFOP4 function affects multiple pollen development pathways. These results enhance our understanding of EFOPs proteins and their role in pollen development.
Collapse
Affiliation(s)
- Xinlong Chen
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Yingying Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Wuzhong Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Sichuan, 621010, People's Republic of China
| | - Gang Wei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Hailing Xu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Lu Ma
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Guang Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Renhong Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| |
Collapse
|
7
|
Huang X, Bai X, Qian C, Liu S, Goher F, He F, Zhao G, Pei G, Zhao H, Wang J, Kang Z, Guo J. TaUAM3, a UDP‐Ara mutases protein, positively regulates wheat resistance to the stripe rust fungus. Food Energy Secur 2023. [DOI: 10.1002/fes3.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Affiliation(s)
- Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Chaowei Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Shuai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Fuxin He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Guosen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Hua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| |
Collapse
|
8
|
Mao Y, Dai F, Si Z, Fang L, Zhang T. Duplicate mutations of GhCYP450 lead to the production of ms 5m 6 male sterile line in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:2. [PMID: 36648515 DOI: 10.1007/s00122-023-04296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The duplicated male sterile genes ms5m6 in cotton were map-based cloned and validated by the virus-induced gene silencing assays. Duplicate mutations of the GhCYP450 gene encoding a cytochrome P450 protein are responsible for the male sterility in cotton. The utilization of male sterility in cotton plays a vital role in improving yield and fiber quality. A complete male sterile line (ms5ms6) has been extensively used to develop hybrid cotton worldwide. Using Zhongkang-A (ZK-A) developed by transferring Bt and ms5ms6 genes into the commercial cultivar Zhongmiansuo 12, the duplicate genes were map-based cloned and confirmed via the virus-induced gene silencing (VIGS) assays. The duplicate mutations of GhCYP450 genes encoding a cytochrome P450 protein were responsible for producing male sterility in ms5ms6 in cotton. Sequence alignment showed that GhCYP450-Dt in ZK-A differed in two critical aspects from the fertile wild-type TM-1: GhCYP450-Dt has three amino acid (D98E, E168K, G198R) changes in the coding region and a 7-bp (GGAAAAA) insertion in the promoter domain; GhCYP450-At appears to be premature termination of GhCYP450 translation. Further morphological observation and cytological examination of GhCYP450-silenced plants induced by VIGS exhibited shorter filaments and no mature pollen grains. These results indicate that GhCYP450 is essential for pollen exine formation and pollen development for male fertility. Investigating the mechanisms of ms5ms6 male sterility will deepen our understanding of the development and utilization of heterosis.
Collapse
Affiliation(s)
- Yun Mao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - TianZhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231911683. [PMID: 36232985 PMCID: PMC9570398 DOI: 10.3390/ijms231911683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089–like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.
Collapse
|
10
|
Kim DG, Lyu JI, Kim JM, Seo JS, Choi HI, Jo YD, Kim SH, Eom SH, Ahn JW, Bae CH, Kwon SJ. Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. Int J Mol Sci 2022; 23:10441. [PMID: 36142354 PMCID: PMC9499481 DOI: 10.3390/ijms231810441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.
Collapse
Affiliation(s)
- Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea
| | - Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Yeong Deuk Jo
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Chang-Hyu Bae
- Department of Life Resources, Graduate School, Sunchon National University, Suncheon 57922, Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| |
Collapse
|
11
|
Wu C, Yang Y, Su D, Yu C, Xian Z, Pan Z, Guan H, Hu G, Chen D, Li Z, Chen R, Hao Y. The SlHB8 acts as a negative regulator in tapetum development and pollen wall formation in Tomato. HORTICULTURE RESEARCH 2022; 9:uhac185. [PMID: 36338846 PMCID: PMC9627519 DOI: 10.1093/hr/uhac185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/13/2022] [Indexed: 05/30/2023]
Abstract
Pollen development is crucial for the fruit setting process of tomatoes, but the underlying regulatory mechanism remains to be elucidated. Here, we report the isolation of one HD-Zip III family transcription factor, SlHB8, whose expression levels decreased as pollen development progressed. SlHB8 knockout using CRISPR/Cas9 increased pollen activity, subsequently inducing fruit setting, whereas overexpression displayed opposite phenotypes. Overexpression lines under control of the 35 s and p2A11 promoters revealed that SlHB8 reduced pollen activity by affecting early pollen development. Transmission electron microscopy and TUNEL analyses showed that SlHB8 accelerated tapetum degradation, leading to collapsed and infertile pollen without an intine and an abnormal exine. RNA-seq analysis of tomato anthers at the tetrad stage showed that SlHB8 positively regulates SPL/NZZ expression and the tapetum programmed cell death conserved genetic pathway DYT1-TDF1-AMS-MYB80 as well as other genes related to tapetum and pollen wall development. In addition, DNA affinity purification sequencing, electrophoretic mobility shift assay, yeast one-hybrid assay and dual-luciferase assay revealed SlHB8 directly activated the expression of genes related to pollen wall development. The study findings demonstrate that SlHB8 is involved in tapetum development and degradation and plays an important role in anther development.
Collapse
Affiliation(s)
| | | | | | - Canye Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Zanlin Pan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongling Guan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guojian Hu
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Da Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | | | | | | |
Collapse
|
12
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
13
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
14
|
Mi L, Mo A, Yang J, Liu H, Ren D, Chen W, Long H, Jiang N, Zhang T, Lu P. Arabidopsis Novel Microgametophyte Defective Mutant 1 Is Required for Pollen Viability via Influencing Intine Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:814870. [PMID: 35498668 PMCID: PMC9039731 DOI: 10.3389/fpls.2022.814870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
The pollen intine layer is necessary for male fertility in flowering plants. However, the mechanisms behind the developmental regulation of intine formation still remain largely unknown. Here, we identified a positive regulator, Arabidopsis novel microgametophyte defective mutant 1 (AtNMDM1), which influences male fertility by regulating intine formation. The AtNMDM1, encoding a pollen nuclei-localized protein, was highly expressed in the pollens at the late anther stages, 10-12. Both the mutations and the knock-down of AtNMDM1 resulted in pollen defects and significantly lowered the seed-setting rates. Genetic transmission analysis indicated that AtNMDM1 is a microgametophyte lethal gene. Calcofluor white staining revealed that abnormal cellulose distribution was present in the aborted pollen. Ultrastructural analyses showed that the abnormal intine rather than the exine led to pollen abortion. We further found, using transcriptome analysis, that cell wall modification was the most highly enriched gene ontology (GO) term used in the category of biological processes. Notably, two categories of genes, Arabinogalactan proteins (AGPs) and pectin methylesterases (PMEs) were greatly reduced, which were associated with pollen intine formation. In addition, we also identified another regulator, AtNMDM2, which interacted with AtNMDM1 in the pollen nuclei. Taken together, we identified a novel regulator, AtNMDM1 that affected cellulose distribution in the intine by regulating intine-related gene expression; furthermore, these results provide insights into the molecular mechanisms of pollen intine development.
Collapse
Affiliation(s)
- Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiange Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haifei Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Shim SH, Mahong B, Lee SK, Kongdin M, Lee C, Kim YJ, Qu G, Zhang D, Ketudat Cairns JR, Jeon JS. Rice β-glucosidase Os12BGlu38 is required for synthesis of intine cell wall and pollen fertility. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:784-800. [PMID: 34570888 DOI: 10.1093/jxb/erab439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glycoside hydrolase family1 β-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice β-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited β-glucosidase activity on the universal substrate p-nitrophenyl β-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated β-glucosidase is necessary for proper intine development.
Collapse
Affiliation(s)
- Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Manatchanok Kongdin
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin, Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Korea
| | - Guorun Qu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| |
Collapse
|
16
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
17
|
Kim JY, Loo EPI, Pang TY, Lercher M, Frommer WB, Wudick MM. Cellular export of sugars and amino acids: role in feeding other cells and organisms. PLANT PHYSIOLOGY 2021; 187:1893-1914. [PMID: 34015139 PMCID: PMC8644676 DOI: 10.1093/plphys/kiab228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 05/20/2023]
Abstract
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Eliza P -I Loo
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for communication:
| |
Collapse
|
18
|
Phosphorylation of BIK1 is critical for interaction with downstream signaling components. Genes Genomics 2021; 43:1269-1276. [PMID: 34449065 DOI: 10.1007/s13258-021-01148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Botrytis-induced Kinase 1 (BIK1) is a receptor-like cytoplasmic kinase (RLCK) involved in the defense, growth, and development of higher plants. It interacts with various receptor-like kinases (RLKs) such as Brassinosteroid Insensitive 1 (BRI1), Flagellin Sensitive 2 (FLS2), and Perception of the Arabidopsis Danger Signal Peptide 1 (PEPR1), but little is known about signaling downstream of BIK1. OBJECTIVE In this study, we aimed to identify Arabidopsis thaliana BIK1 (AtBIK1) and Brassica rapa BIK1 (BrBIK1) interacting proteins, which is downstream signaling components in Arabidopsis. In addition, the effect of BIK1 phosphorylation on their interaction were examined. METHODS For yeast two hybrid (Y2H) screening, a B. rapa cDNA activation domain (AD) library and an A. thaliana cDNA library were used. Reverse reaction (LR) recombinations of appropriate open reading frames (AtBIK1, BrBIK1, AtRGP2, AtPATL2, AtPP7) in either pDONR207 or pDONR/zeo were performed with the split-YFP destination vectors pDEST-GWVYNE and pDEST-GWVYCE to generate N- or C-terminal fusions with the N- and C-terminal yellow fluorescent protein (YFP) moieties, respectively. Recombined vectors were transformed into Agrobacterium strain GV3101. The described GST-AtBIK1, Flag-AtBIK1, and Flag-BrBIK1 constructs were used as templates for site-directed mutagenesis with a QuikChange XL Site-Directed Mutagenesis Kit (Stratagene). RESULTS In results, A. thaliana BIK1 (AtBIK1) displays strong autophosphorylation kinase activity on tyrosine and threonine residues, whereas B. rapa BIK1 (BrBIK1) does not exhibit autophosphorylation kinase activity in vitro. Herein, we demonstrated that four proteins (RGP2, PATL2, PP7, and SULTR4.1) interact with BrBIK1 but not AtBIK1 in a Y2H system. To confirm interactions between BIK1 and protein candidates in Nicotiana benthamiana, BiFC analysis was performed and it was found that only BrBIK1 bound the three proteins tested. Three phosphosites, T90, T362, and T368, based on amino acid sequence alignment between AtBIK1 and BrBIK1, and performed site-directed mutagenesis (SDM) on AtBIK1 and BrBIK. S90T, P362T, and A369T mutations in BrBIK1 restored autophosphorylation kinase activity on threonine residues comparable to AtBIK1. However, T90A, T362P, and T368A mutations in AtBIK1 did not alter autophosphorylation kinase activity on threonine residues compared with wild-type AtBIK1. BiFC results showed that BIK1 mutations restored kinase activity led to the loss of the binding activity to RGP2, PATL2, or PP7 proteins. CONCLUSION Phospho-BIK1 might be involved in plant innate immunity, while non-phospho BIK1 may regulate plant growth and development through interactions with RGP2, PATL2, and PP7.
Collapse
|
19
|
Zhang M, Wei H, Liu J, Bian Y, Ma Q, Mao G, Wang H, Wu A, Zhang J, Chen P, Ma L, Fu X, Yu S. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1198-1212. [PMID: 34160096 DOI: 10.1111/tpj.15378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Hybrid breakdown (HB) functions as a common reproductive barrier and reduces hybrid fitness in many species, including cotton. However, the related genes and the underlying genetic mechanisms of HB in cotton remain unknown. Here, we found that the photosensitive genetic male sterile line CCRI9106 was a hybrid progeny of Gossypium hirsutum and Gossypium barbadense and probably a product of HB. Fine mapping with F2 s (CCRI9106 × G. hirsutum/G. barbadense lines) identified a pair of male sterility genes GoFLA19s (encoding fasciclin-like arabinogalactan family protein) located on chromosomes A12 and D12. Crucial variations occurring in the fasciclin-like domain and the arabinogalactan protein domain were predicted to cause the non-functionalization of GbFLA19-D and GhFLA19-A. CRISPR/Cas9-mediated knockout assay confirmed the effects of GhFLA19s on male sterility. Sequence alignment analyses showed that variations in GbFLA19-D and GhFLA19-A likely occurred after the formation of allotetraploid cotton species. GoFLA19s are specifically expressed in anthers and contribute to tapetal development, exine assembly, intine formation, and pollen grain maturation. RNA-sequencing and quantitative reverse transcriptase-polymerase chain reaction analyses illustrated that genes related to these biological processes were significantly downregulated in the mutant. Our research on male sterility genes, GoFLA19s, improves the understanding of the molecular characteristics and evolutionary significance of HB in interspecific hybrid breeding.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yingjie Bian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
20
|
Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153388. [PMID: 33706055 DOI: 10.1016/j.jplph.2021.153388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
In angiosperms, mature pollen is wrapped by a pollen wall, which is important for maintaining pollen structure and function. Pollen walls provide protection from various environmental stresses and preserve pollen germination and pollen tube growth. The pollen wall structure has been described since pollen ultrastructure investigations began in the 1960s. Pollen walls, which are the most intricate cell walls in plants, are composed of two layers: the exine layer and intine layer. Pollen wall formation is a complex process that occurs via a series of biological events that involve a large number of genes. In recent years, many reports have described the molecular mechanisms of pollen exine development. The formation process includes the development of the callose wall, the wavy morphology of primexine, the biosynthesis and transport of sporopollenin in the tapetum, and the deposition of the pollen coat. The formation mechanism of the intine layer is different from that of the exine layer. However, few studies have focused on the regulatory mechanisms of intine development. The primary component of the intine layer is pectin, which plays an essential role in the polar growth of pollen tubes. Demethylesterified pectin is mainly distributed in the shank region of the pollen tube, which can maintain the hardness of the pollen tube wall. Methylesterified pectin is mainly located in the top region, which is beneficial for improving the plasticity of the pollen tube top. In this review, we summarize the developmental process of the anther, pollen and pollen wall in Arabidopsis; furthermore, we describe the research progress on the pollen wall formation pattern and its molecular mechanisms in detail.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
21
|
Flores-Tornero M, Vogler F, Mutwil M, Potěšil D, Ihnatová I, Zdráhal Z, Sprunck S, Dresselhaus T. Transcriptomic and Proteomic Insights into Amborella trichopoda Male Gametophyte Functions. PLANT PHYSIOLOGY 2020; 184:1640-1657. [PMID: 32989009 PMCID: PMC7723084 DOI: 10.1104/pp.20.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
Flowering plants (angiosperms) are characterized by pollen tubes (PTs; male gametophytes) carrying two immobile sperm cells that grow over long distances through the carpel toward the ovules, where double fertilization is executed. It is not understood how these reproductive structures evolved, which genes occur de novo in male gametophytes of angiosperms, and to which extent PT functions are conserved among angiosperms. To contribute to a deeper understanding of the evolution of gametophyte functions, we generated RNA sequencing data from seven reproductive and two vegetative control tissues of the basal angiosperm Amborella trichopoda and complemented these with proteomic data of pollen grains (PGs) and PTs. The eudicot model plant Arabidopsis (Arabidopsis thaliana) served as a reference organism for data analysis, as more than 200 genes have been associated with male gametophyte functions in this species. We describe methods to collect bicellular A. trichopoda PGs, to induce their germination in vitro, and to monitor PT growth and germ cell division. Transcriptomic and proteomic analyses indicate that A. trichopoda PGs are prepared for germination requiring lipids, energy, but likely also reactive oxygen species, while PTs are especially characterized by catabolic/biosynthetic and transport processes including cell wall biosynthesis and gene regulation. Notably, a number of pollen-specific genes were lacking in Arabidopsis, and the number of genes involved in pollen signaling is significantly reduced in A. trichopoda In conclusion, we provide insight into male gametophyte functions of the most basal angiosperm and establish a valuable resource for future studies on the evolution of flowering plants.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Vogler
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ivana Ihnatová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
22
|
Isolation and Glycomic Analysis of Trans-Golgi Network Vesicles in Plants. Methods Mol Biol 2020. [PMID: 32632812 DOI: 10.1007/978-1-0716-0767-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.
Collapse
|
23
|
Plasmodesmata Conductivity Regulation: A Mechanistic Model. PLANTS 2019; 8:plants8120595. [PMID: 31842374 PMCID: PMC6963776 DOI: 10.3390/plants8120595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.
Collapse
|
24
|
Hu Z, Shen X, Xiang X, Cao J. Evolution of MIR159/319 genes in Brassica campestris and their function in pollen development. PLANT MOLECULAR BIOLOGY 2019; 101:537-550. [PMID: 31745746 DOI: 10.1007/s11103-019-00920-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/03/2019] [Indexed: 05/14/2023]
Abstract
MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality, Bra-MIR319c also can function in flower development. MiR159 and miR319 are extensively studied highly conserved microRNAs which play roles in vegetative development, reproduction, and hormone regulation. In this study, the effects of whole-genome triplication (WGT) on the evolution of the MIR159/319 family and the functional diversification of the genes were comprehensively investigated in Brassica campestris. We identified 11 MIR159/319 genes in B. campestris, which produced five mature sequences. After analyzing the precursor sequences and phylogenetic tree, we found that Bra-MIR159/319 have evolutionary conservatism. Furthermore, Bra-MIR159/319 show functional diversification after WGT, as indicated by their expression patterns and the cis-element in their promoter. GUS signal showed that Bra-MIR159a and Bra-MIR319c can be expressed in anther but in different development stages. In B. campestris, overexpressed MIR159a and MIR319c contribute to late anther development and promote pollen abortion. Moreover, Bra-MIR319c can partially assume the function of MIR319a in flower development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuping Shen
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Hu Z, Liu T, Cao J. Functional Similarity and Difference among Bra-MIR319 Family in Plant Development. Genes (Basel) 2019; 10:genes10120952. [PMID: 31766424 PMCID: PMC6947622 DOI: 10.3390/genes10120952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
miR319 was the first plant miRNA discovered via forward genetic mutation screening. In this study, we found that miR319 family members had similar sequences but different expression patterns in Brassica campestris and Arabidopsis thaliana. RT-PCR analysis revealed that Bra-MIR319a and Bra-MIR319c had similar expression patterns and were widely expressed in plant development, whereas Bra-MIR319b could only be detected in stems. The overexpression of each Bra-MIR319 family member in Arabidopsis could inhibit cell division and function in leaf and petal morphogenesis. Bra-miR319a formed a new regulatory relationship after whole genome triplication, and Bra-MIR319a overexpressing in Arabidopsis led to the degradation of pollen content and affected the formation of intine, thereby causing pollen abortion. Our results suggest that Bra-MIR319 family members have functional similarity and difference in plant development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
26
|
Saqib A, Scheller HV, Fredslund F, Welner DH. Molecular characteristics of plant UDP-arabinopyranose mutases. Glycobiology 2019; 29:839-846. [PMID: 31679023 PMCID: PMC6861824 DOI: 10.1093/glycob/cwz067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.
Collapse
Affiliation(s)
- Anam Saqib
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
- Industrial Enzymes and Biofuels Group, National Institute for Biotechnology and Genetic Engineering, Jhang Road, 44000 Faisalabad, Pakistan
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Engineering and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| |
Collapse
|
27
|
Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS One 2019; 14:e0218029. [PMID: 31199816 PMCID: PMC6568414 DOI: 10.1371/journal.pone.0218029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for cruciferous vegetables. Turnip (Brassica rapa ssp. rapifera) is one of the most important local cruciferous vegetables in China, cultivated for its fleshy root as a flat disc. Here, morphological characteristics of an Ogura-CMS line ‘BY10-2A’ and its maintainer fertile (MF) line ‘BY10-2B’ of turnip were investigated. Ogura-CMS turnip showed a reduction in the size of the fleshy root, and had distinct defects in microspore development and tapetum degeneration during the transition from microspore mother cells to tetrads. Defective microspore production and premature tapetum degeneration during microgametogenesis resulted in short filaments and withered white anthers, leading to complete male sterility of the Ogura-CMS line. Additionally, the mechanism regulating Ogura-CMS in turnip was investigated using inflorescence transcriptome analyses of the Ogura-CMS and MF lines. The de novo assembly resulted in a total of 84,132 unigenes. Among them, 5,117 differentially expressed genes (DEGs) were identified, including 1,339 up- and 3,778 down-regulated genes in the Ogura-CMS line compared to the MF line. A number of functionally known members involved in anther development and microspore formation were addressed in our DEG pool, particularly genes regulating tapetum programmed cell death (PCD), and associated with pollen wall formation. Additionally, 185 novel genes were proposed to function in male organ development based on GO analyses, of which 26 DEGs were genotype-specifically expressed. Our research provides a comprehensive foundation for understanding anther development and the CMS mechanism in turnip.
Collapse
|
28
|
Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, Duan D, Peralta AG, Domozych DS, Hahn MG, Drakakaki G. A Hybrid Approach Enabling Large-Scale Glycomic Analysis of Post-Golgi Vesicles Reveals a Transport Route for Polysaccharides. THE PLANT CELL 2019; 31:627-644. [PMID: 30760563 PMCID: PMC6482635 DOI: 10.1105/tpc.18.00854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 05/10/2023]
Abstract
The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.
Collapse
Affiliation(s)
- Thomas Wilkop
- Department of Plant Sciences, University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Guangxi Ren
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Destiny J Davis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Wenlong Bao
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Dechao Duan
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Angelo G Peralta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
29
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
30
|
Bessho-Uehara K, Nugroho JE, Kondo H, Angeles-Shim RB, Ashikari M. Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. JOURNAL OF PLANT RESEARCH 2018; 131:693-707. [PMID: 29740707 PMCID: PMC6488557 DOI: 10.1007/s10265-018-1033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/08/2018] [Indexed: 05/29/2023]
Abstract
Oryza longistaminata, the African wild rice, can propagate vegetatively through rhizomes. Rhizomes elongate horizontally underground as sink organs, however, they undergo a developmental transition that shifts their growth to the surface of the ground to become aerial stems. This particular stage is essential for the establishment of new ramets. While several determinants such as abiotic stimuli and plant hormones have been reported as key factors effecting developmental transition in aerial stem, the cause of this phenomenon in rhizome remains elusive. This study shows that depletion of nutrients, particularly sucrose, is the key stimulus that induces the developmental transition in rhizomes, as indicated by the gradient of sugars from the base to the tip of the rhizome. Sugar treatments revealed that sucrose specifically represses the developmental transition from rhizome to aerial stem by inhibiting the expression of sugar metabolism and hormone synthesis genes at the bending point. Sucrose depletion affected several factors contributing to the developmental transition of rhizome including signal transduction, transcriptional regulation and plant hormone balance.
Collapse
Affiliation(s)
- Kanako Bessho-Uehara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Jovano Erris Nugroho
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hirono Kondo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Rosalyn B Angeles-Shim
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
31
|
Lin S, Yue X, Miao Y, Yu Y, Dong H, Huang L, Cao J. The distinct functions of two classical arabinogalactan proteins BcMF8 and BcMF18 during pollen wall development in Brassica campestris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:60-76. [PMID: 29385650 DOI: 10.1111/tpj.13842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 05/28/2023]
Abstract
Arabinogalactan proteins (AGPs) are extensively glycosylated hydroxyproline-rich glycoproteins ubiquitous in all plant tissues and cells. AtAGP6 and AtAGP11, the only two functionally known pollen-specific classical AGP encoding genes in Arabidopsis, are reported to have redundant functions in microspore development. BcMF18 and BcMF8 isolated from Brassica campestris are the orthologues of AtAGP6 and AtAGP11, respectively. In contrast to the functional redundancy of AtAGP6 and AtAGP11, single-gene disruption of BcMF8 led to deformed pollen grains with abnormal intine development and ectopic aperture formation in B. campestris. Here, we further explored the action of BcMF18 and its relationship with BcMF8. BcMF18 was specifically expressed in pollen during the late stages of microspore development. Antisense RNA transgenic lines with BcMF18 reduction resulted in aberrant pollen grains with abnormal cellulose distribution, lacking intine, cytoplasm and nuclei. Transgenic plants with repressive expression of both BcMF8 and BcMF18 showed a hybrid phenotype, expressing a mixture of the phenotypes of the single gene knockdown plant lines. In addition, we identified functional diversity between BcMF18/BcMF8 and AtAGP6/AtAGP11, mainly reflected by the specific contribution of BcMF18 and BcMF8 to pollen wall formation. These results suggest that, unlike the orthologous genes AtAGP6 and AtAGP11 in Arabidopsis, BcMF18 and BcMF8 are both integral to pollen biogenesis in B. campestris, acting through independent pathways during microspore development.
Collapse
Affiliation(s)
- Sue Lin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Xiaoyan Yue
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Yingjing Miao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| |
Collapse
|
32
|
Honta H, Inamura T, Konishi T, Satoh S, Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2018; 131:307-317. [PMID: 29052022 DOI: 10.1007/s10265-017-0985-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 05/27/2023]
Abstract
Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.
Collapse
Affiliation(s)
- Hideyuki Honta
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takuya Inamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
33
|
Czarnocka W, Van Der Kelen K, Willems P, Szechyńska-Hebda M, Shahnejat-Bushehri S, Balazadeh S, Rusaczonek A, Mueller-Roeber B, Van Breusegem F, Karpiński S. The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator. PLANT, CELL & ENVIRONMENT 2017; 40:2644-2662. [PMID: 28555890 DOI: 10.1111/pce.12994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - Katrien Van Der Kelen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Patrick Willems
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239, Cracow, Poland
| | - Sara Shahnejat-Bushehri
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| |
Collapse
|
34
|
Welner DH, Shin D, Tomaleri GP, DeGiovanni AM, Tsai AYL, Tran HM, Hansen SF, Green DT, Scheller HV, Adams PD. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes. PLoS One 2017; 12:e0177591. [PMID: 28598995 PMCID: PMC5466300 DOI: 10.1371/journal.pone.0177591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obtain in the needed amount and purity for such molecular studies, and recombinant cell wall glycosyltransferase production efforts have largely failed. A daunting number of strategies can be employed to overcome this challenge, including optimization of DNA and protein sequences, choice of expression organism, expression conditions, co-expression partners, purification methods, and optimization of protein solubility and stability. Hence researchers are presented with thousands of potential conditions to test. Ultimately, the subset of conditions that will be sampled depends on practical considerations and prior knowledge of the enzyme(s) being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test set of Arabidopsis thaliana cell wall glycosyltransferases known to be challenging to obtain in soluble form, as well as to a library of cell wall glycosyltransferases from other plants including agricultural and biofuel crops. The screening results suggest that recombinant cell wall glycosyltransferases in general have a very low soluble:insoluble ratio in lysates from heterologous expression cultures, and that co-expression of chaperones as well as lysis buffer optimization can increase this ratio. We have applied the identified preferred conditions to Reversibly Glycosylated Polypeptide 1 from Arabidopsis thaliana, and processed this enzyme to near-purity in unprecedented milligram amounts. The obtained preparation of Reversibly Glycosylated Polypeptide 1 has the expected arabinopyranose mutase and autoglycosylation activities.
Collapse
Affiliation(s)
- Ditte Hededam Welner
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| | - David Shin
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Giovani P. Tomaleri
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Huu M. Tran
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California, United States of America
| | - Sara Fasmer Hansen
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
35
|
Welner DH, Tsai AYL, DeGiovanni AM, Scheller HV, Adams PD. X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa. Acta Crystallogr F Struct Biol Commun 2017; 73:241-245. [PMID: 28368284 PMCID: PMC5379175 DOI: 10.1107/s2053230x17004587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 11/20/2022] Open
Abstract
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.
Collapse
Affiliation(s)
- Ditte Hededam Welner
- DTU Bioengineering, Technical University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Ma Z, Jiang J, Hu Z, Lyu T, Yang Y, Jiang J, Cao J. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis. PLANT MOLECULAR BIOLOGY 2017; 93:313-326. [PMID: 27909970 DOI: 10.1007/s11103-016-0563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.
Collapse
Affiliation(s)
- Zhiming Ma
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxia Jiang
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziwei Hu
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Tianqi Lyu
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Yang
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Jiang
- State Key Lab of Agrobiotechnology, Shenzhen Base, Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Jiashu Cao
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood JL, Scheller HV, Hu J, Zhang D, Liang W. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development. PLANT PHYSIOLOGY 2017; 173:240-255. [PMID: 27246096 PMCID: PMC5210703 DOI: 10.1104/pp.16.00095] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.
Collapse
Affiliation(s)
- Dawei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Carsten Rautengarten
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Xiaoling Qian
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Gynheung An
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Fritz Waßmann
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lukas Schreiber
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Joshua L Heazlewood
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Henrik Vibe Scheller
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianping Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.);
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.);
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.);
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.);
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.);
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.);
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
38
|
Hatami M, Kariman K, Ghorbanpour M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:275-291. [PMID: 27485129 DOI: 10.1016/j.scitotenv.2016.07.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the research gaps that currently exist in this field.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran.
| | - Khalil Kariman
- School of Earth and Environment M004, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran.
| |
Collapse
|
39
|
Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. JOURNAL OF PLANT RESEARCH 2016; 129:781-792. [PMID: 27220955 PMCID: PMC5897480 DOI: 10.1007/s10265-016-0834-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 05/07/2023]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Yukiko Yamanashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Chiemi Imaizumi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
40
|
Dugard CK, Mertz RA, Rayon C, Mercadante D, Hart C, Benatti MR, Olek AT, SanMiguel PJ, Cooper BR, Reiter WD, McCann MC, Carpita NC. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2. PLANT PHYSIOLOGY 2016; 171:1905-20. [PMID: 27217494 PMCID: PMC4936543 DOI: 10.1104/pp.15.01922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/19/2016] [Indexed: 05/23/2023]
Abstract
Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP.
Collapse
Affiliation(s)
- Christopher K Dugard
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Rachel A Mertz
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Catherine Rayon
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Davide Mercadante
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Christopher Hart
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Matheus R Benatti
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Anna T Olek
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Phillip J SanMiguel
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Bruce R Cooper
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Wolf-Dieter Reiter
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Maureen C McCann
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| |
Collapse
|
41
|
Abstract
Starch-rich crops form the basis of our nutrition, but plants have still to yield all their secrets as to how they make this vital substance. Great progress has been made by studying both crop and model systems, and we approach the point of knowing the enzymatic machinery responsible for creating the massive, insoluble starch granules found in plant tissues. Here, we summarize our current understanding of these biosynthetic enzymes, highlighting recent progress in elucidating their specific functions. Yet, in many ways we have only scratched the surface: much uncertainty remains about how these components function together and are controlled. We flag-up recent observations suggesting a significant degree of flexibility during the synthesis of starch and that previously unsuspected non-enzymatic proteins may have a role. We conclude that starch research is not yet a mature subject and that novel experimental and theoretical approaches will be important to advance the field.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
42
|
Villarino GH, Hu Q, Manrique S, Flores-Vergara M, Sehra B, Robles L, Brumos J, Stepanova AN, Colombo L, Sundberg E, Heber S, Franks RG. Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain. PLANT PHYSIOLOGY 2016; 171:42-61. [PMID: 26983993 PMCID: PMC4854683 DOI: 10.1104/pp.15.01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/14/2016] [Indexed: 05/24/2023]
Abstract
Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis.
Collapse
Affiliation(s)
- Gonzalo H Villarino
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Qiwen Hu
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Silvia Manrique
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Miguel Flores-Vergara
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Bhupinder Sehra
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Linda Robles
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Javier Brumos
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Anna N Stepanova
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Lucia Colombo
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Eva Sundberg
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Steffen Heber
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| | - Robert G Franks
- Department of Plant and Microbial Biology (G.H.V., M.F.-V., B.S., L.R., J.B., A.N.S., R.G.F.) and Department of Computer Science and Bioinformatics Research Center (Q.H., S.H.), North Carolina State University, Raleigh, North Carolina 27606;Università degli Studi di Milano Dip. di BioScienze, Sezione di Botanica Generale, Milan, Italy 20133 (S.M., L.C.); andDepartment of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden 750 07 (E.S.)
| |
Collapse
|
43
|
Jiang N, Wiemels RE, Soya A, Whitley R, Held M, Faik A. Composition, Assembly, and Trafficking of a Wheat Xylan Synthase Complex. PLANT PHYSIOLOGY 2016; 170:1999-2023. [PMID: 26917684 PMCID: PMC4825154 DOI: 10.1104/pp.15.01777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/23/2016] [Indexed: 05/18/2023]
Abstract
Xylans play an important role in plant cell wall integrity and have many industrial applications. Characterization of xylan synthase (XS) complexes responsible for the synthesis of these polymers is currently lacking. We recently purified XS activity from etiolated wheat (Triticum aestivum) seedlings. To further characterize this purified activity, we analyzed its protein composition and assembly. Proteomic analysis identified six main proteins: two glycosyltransferases (GTs) TaGT43-4 and TaGT47-13; two putative mutases (TaGT75-3 and TaGT75-4) and two non-GTs; a germin-like protein (TaGLP); and a vernalization related protein (TaVER2). Coexpression of TaGT43-4, TaGT47-13, TaGT75-3, and TaGT75-4 in Pichia pastoris confirmed that these proteins form a complex. Confocal microscopy showed that all these proteins interact in the endoplasmic reticulum (ER) but the complexes accumulate in Golgi, and TaGT43-4 acts as a scaffold protein that holds the other proteins. Furthermore, ER export of the complexes is dependent of the interaction between TaGT43-4 and TaGT47-13. Immunogold electron microscopy data support the conclusion that complex assembly occurs at specific areas of the ER before export to the Golgi. A di-Arg motif and a long sequence motif within the transmembrane domains were found conserved at the NH2-terminal ends of TaGT43-4 and homologous proteins from diverse taxa. These conserved motifs may control the forward trafficking of the complexes and their accumulation in the Golgi. Our findings indicate that xylan synthesis in grasses may involve a new regulatory mechanism linking complex assembly with forward trafficking and provide new insights that advance our understanding of xylan biosynthesis and regulation in plants.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Richard E Wiemels
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Aaron Soya
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Rebekah Whitley
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Michael Held
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Ahmed Faik
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| |
Collapse
|
44
|
Liu T, Li Y, Liu F, Wang C. The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy. BIORESOURCE TECHNOLOGY 2016; 203:150-9. [PMID: 26724547 DOI: 10.1016/j.biortech.2015.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 05/08/2023]
Abstract
A potential continuous nitrogen-limitation (CNL) strategy was proposed to enhance lipid accumulation by oleaginous Chlorella vulgaris in this study. The highest biomass (4.61 g/L) with CNL was nearly close to the maximum biomass (4.88 g/L) achieved by the traditional batch nitrogen-starvation strategy (BNS) under laboratory condition. CNL was further found to diminish the photosynthetic activity and trigger the degradation of nitrogenous compounds (e.g. protein, chlorophyll, DNA) consequently resulted in enhanced lipid accumulation. The maximal lipid productivity of 305.71 mg/L/d was accomplished by CNL, which presented 1.35-fold more than that of BNS. Furthermore, the identified lipid accumulation-related metabolic checkpoints (MDH and GPDH) provide the possibilities to develop high-lipid engineering microalgae. The aforementioned results imply that CNL nitrogen-deficiency strategy for lipid production on large-scale deserves further exploration.
Collapse
Affiliation(s)
- Tingting Liu
- Biological Engineering Department, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, PR China
| | - Yuqin Li
- Biological Engineering Department, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, PR China.
| | - Fei Liu
- Biological Engineering Department, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, PR China
| | - Chao Wang
- Biological Engineering Department, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, PR China
| |
Collapse
|
45
|
Zhao G, Shi J, Liang W, Zhang D. ATP binding cassette G transporters and plant male reproduction. PLANT SIGNALING & BEHAVIOR 2016; 11:e1136764. [PMID: 26906115 PMCID: PMC4883977 DOI: 10.1080/15592324.2015.1136764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 05/18/2023]
Abstract
The function of ATP Binding Cassette G (ABCG) transporters in the regulation of plant vegetative organs development has been well characterized in various plant species. In contrast, their function in reproductive development particularly male reproductive development received considerably less attention till some ABCG transporters was reported to be associated with anther and pollen wall development in Arabidopsis thaliana and rice (Oryza sativa) during the past decade. This mini-review summarizes current knowledge of ABCG transporters regarding to their roles in male reproduction and underlying genetic and biochemical mechanisms, which makes it evident that ABCG transporters represent one of those conserved and divergent components closely related to male reproduction in plants. This mini-review also discusses the current challenges and future perspectives in this particular field.
Collapse
Affiliation(s)
- Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence to: Guochao Zhao,
| |
Collapse
|
46
|
Dziedzic JA, McDonald AG. In vitro protein profiles in the early and late stages of Douglas-fir xylogenesis. Electrophoresis 2015; 36:2035-45. [PMID: 25999182 DOI: 10.1002/elps.201400561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/09/2022]
Abstract
The process of wood formation is of great interest to control and manipulate wood quality for economically important gymnosperms. A Douglas-fir tissue culture system was developed that could be induced to differentiate into tracheary elements (fibers) making it possible to monitor xylogenesis in vitro by a proteomics approach. Two proteomes were analyzed and compared, one from an early and one from a late stage of the fiber differentiation process. After 18 weeks in a differentiation-inducing medium, 80% of the callus cells were elongated while 20% showed advanced spiral thickening indicating full wood fiber differentiation. Based on 2D electrophoresis, MS, and data analyses (data are available via ProteomeXchange with identifier PXD001484.), it was shown that in nondifferentiated callus (representing an early stage of development), proteins related to protein metabolism, cellular energy, and primary cell wall metabolism were abundant. By comparison, in cells actively differentiating wood fibers (representing a late stage of development), proteins involved in cell wall polysaccharide biosynthesis predominated together with housekeeping and stress-associated proteins.
Collapse
Affiliation(s)
| | - Armando G McDonald
- Environmental Science Program, University of Idaho, Moscow, ID, USA.,Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
47
|
Sumiyoshi M, Inamura T, Nakamura A, Aohara T, Ishii T, Satoh S, Iwai H. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). PLANT & CELL PHYSIOLOGY 2015; 56:232-41. [PMID: 25261533 DOI: 10.1093/pcp/pcu132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen.
Collapse
Affiliation(s)
- Minako Sumiyoshi
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Takuya Inamura
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Atsuko Nakamura
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Tsutomu Aohara
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Tadashi Ishii
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Shinobu Satoh
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| | - Hiroaki Iwai
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, 305-8572 Japan
| |
Collapse
|
48
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
49
|
|
50
|
Park E, Drakakaki G. Proteomics of endosomal compartments from plants case study: isolation of trans-Golgi network vesicles. Methods Mol Biol 2014; 1209:179-187. [PMID: 25117284 DOI: 10.1007/978-1-4939-1420-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A detailed understanding of endomembrane processes and their biological roles is vital for a complete picture of plant growth and development; however their highly dynamic nature has complicated comprehensive and rigorous studies so far. Recent pioneering efforts have demonstrated that isolation of vesicles in their native state, paired with a quantitative identification of their cargo, offers a viable and practicable approach for the dissection of endomembrane trafficking pathways. The protocol presented in this chapter describes in detail the isolation of the SYP61 trans-Golgi network vesicles from Arabidopsis. With minor alterations, in a few key parameters, it can be adopted to yield a universal procedure for the broad spectrum of plant vesicles.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant sciences, University of California Davis, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | | |
Collapse
|