1
|
Bang SG, Joeng WT, Hyun TK. Gibberellic acid 3 enhanced the anticancer activity of Abeliophyllum distichum adventitious roots by activating the diterpenoid biosynthesis pathway. Nat Prod Res 2024; 38:3902-3908. [PMID: 37820039 DOI: 10.1080/14786419.2023.2266169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The industrial value of various plants has been improved through the of plant cell culture systems with elicitation. In this study, the adventitious root of Abeliophyllum distichum (AdAR) was treated with gibberellic acid 3 (GA3) to improve its anticancer property. The hexane fraction of the GA3-treated A. distichum adventitious root exhibited a stronger cytotoxic activity against A549 cells than the hexane fraction of AdAR. Through GC/MS and principal component analysis, we identified ferruginol and sugiol as anticancer compounds, which were induced by GA3 treatment in AdAR. Gene expression analysis combined with functional characterisation suggests that the GA3 treatment increased the transcription of geranylgeranyl pyrophosphate synthases and copalyl diphosphate synthase, which led to the accumulation of diterpenoids, including ferruginol and sugiol. Overall, these findings can contribute to the advancement of metabolic engineering for enhancing the biosynthesis of active diterpenoids, and facilitate the large-scale production of bioactive compounds sourced from A. distichum.
Collapse
Affiliation(s)
- Seoung Gun Bang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Won Tae Joeng
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Maupilé L, Chaib J, Boualem A, Bendahmane A. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. TRENDS IN PLANT SCIENCE 2024; 29:1254-1265. [PMID: 39034223 DOI: 10.1016/j.tplants.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.
Collapse
Affiliation(s)
- Lea Maupilé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Vilmorin & Cie, Route d'Ennezat, 63720 Chappes, France
| | - Jamila Chaib
- Vilmorin & Cie, Paraje La Reserva, 04725 La Mojonera, Spain
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
3
|
Wang Z, Zhang S, Chen B, Xu X. Functional Characterization of the Gibberellin (GA) Receptor ScGID1 in Sugarcane. Int J Mol Sci 2024; 25:10688. [PMID: 39409017 PMCID: PMC11477236 DOI: 10.3390/ijms251910688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Shujun Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Baoshan Chen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Abd-Hamid NA, Ismail I. An F-box Kelch repeat protein, PmFBK2, from Persicaria minor interacts with GID1b to modulate gibberellin signalling. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154299. [PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Li X, Zhang J, Guo X, Qiu L, Chen K, Wang J, Cheng T, Zhang Q, Zheng T. Genome-Wide Analysis of the Gibberellin-Oxidases Family Members in Four Prunus Species and a Functional Analysis of PmGA2ox8 in Plant Height. Int J Mol Sci 2024; 25:8697. [PMID: 39201381 PMCID: PMC11354515 DOI: 10.3390/ijms25168697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.L.); (J.Z.); (X.G.); (L.Q.); (K.C.); (J.W.); (T.C.); (Q.Z.)
| |
Collapse
|
6
|
Wang LL, Shi Q, Jing P, Wang R, Zhang H, Liu Y, Li C, Shi T, Zhang L, Yu YH. VlMYB4 and VlCDF3 co-targeted the VlLOG11 promoter to regulate fruit setting in grape (Vitis vinifera L). PLANT CELL REPORTS 2024; 43:194. [PMID: 39008131 DOI: 10.1007/s00299-024-03279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
KEY MESSAGE The VlLOG11 mediates the cytokinin signaling pathway to regulate grape fruit setting. Fruit set, as an accepted agronomic trait, is inextricably linked with fruit quality and yield. Previous studies have demonstrated that exogenous treatment with the synthetic cytokinin analog, forchlorfenuron (CPPU), significantly enhances fruit set. In this study, a significant reduction in endogenous cytokinins was found by measuring the content of cytokinins in young grape berries after CPPU treatment. LONELY GUYs (VlLOGs), a key cytokinin-activating enzyme working in the biosynthesis pathway of cytokinins, exhibited differential expression. Some differentially expressed VlLOGs genes were presented by RNA seq data and their functions and regulation patterns were further investigated. The results showed that VlLOG11 was differentially expressed in young grape berries after CPPU treatment. Overexpression of VlLOG11 in tomato increases the amount of fruit set, and upregulated the expression of genes associated with cytokinin signaling including SlHK4, SlHK5, SlHP3, SlHP4, SlPHP1, SlPHP2. VlMYB4 and VlCDF3 could regulate the expression of VlLOG11 by directly binding to its promoter in young grape berries during fruit set. These results strongly demonstrated that VlMYB4/VlCDF3-VlLOG11 regulatory module plays a key role in the process of fruit setting in grape. This provided a basis for the molecular mechanism of VlLOG11-mediated cytokinin biosynthesis in young grape fruit set.
Collapse
Affiliation(s)
- Lei Lei Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Pengwei Jing
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Ruxin Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Haimeng Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Yiting Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Chenyang Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Tizhen Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Lixiang Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China.
| |
Collapse
|
7
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
8
|
Picarella ME, Ruiu F, Selleri L, Presa S, Mizzotti C, Masiero S, Colombo L, Soressi GP, Granell A, Mazzucato A. Genetic and molecular mechanisms underlying the parthenocarpic fruit mutation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1329949. [PMID: 38601310 PMCID: PMC11004453 DOI: 10.3389/fpls.2024.1329949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Parthenocarpy allows fruit set independently of fertilization. In parthenocarpic-prone tomato genotypes, fruit set can be achieved under pollen-limiting environmental conditions and in sterile mutants. Parthenocarpy is also regarded as a quality-related trait, when seedlessness is associated with positive fruit quality aspects. Among the different sources of genetic parthenocarpy described in tomato, the parthenocarpic fruit (pat) mutation is of particular interest because of its strong expressivity, high fruit set, and enhanced fruit quality. The complexity of the pat "syndrome" associates a strong competence for parthenocarpy with a complex floral phenotype involving stamen and ovule developmental aberrations. To understand the genetic basis of the phenotype, we mapped the pat locus within a 0.19-cM window of Chr3, comprising nine coding loci. A non-tolerated missense mutation found in the 14th exon of Solyc03g120910, the tomato ortholog of the Arabidopsis HD-Zip III transcription factor HB15 (SlHB15), cosegregated with the pat phenotype. The role of SlHB15 in tomato reproductive development was supported by its expression in developing ovules. The link between pat and SlHB15 was validated by complementation and knock out experiments by co-suppression and CRISPR/Cas9 approaches. Comparing the phenotypes of pat and those of Arabidopsis HB15 mutants, we argued that the gene plays similar functions in species with fleshy and dry fruits, supporting a conserved mechanism of fruit set regulation in plants.
Collapse
Affiliation(s)
- Maurizio E. Picarella
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Fabrizio Ruiu
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Selleri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Presa
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Chiara Mizzotti
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Gian Piero Soressi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Antonio Granell
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Andrea Mazzucato
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
9
|
Wu M, Liu K, Li H, Li Y, Zhu Y, Su D, Zhang Y, Deng H, Wang Y, Liu M. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. HORTICULTURE RESEARCH 2024; 11:uhad275. [PMID: 38344652 PMCID: PMC10857933 DOI: 10.1093/hr/uhad275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/06/2023] [Indexed: 04/10/2024]
Abstract
The phytohormone ethylene is well known for its important role in the ripening of climacteric fruit, such as tomato (Solanum lycopersicum). However, the role and mode of action of other plant hormones in climacteric fruit ripening regulation are not fully understood. Here, we showed that exogenous GA treatment or increasing endogenous gibberellin content by overexpressing the gibberellin synthesis gene SlGA3ox2 specifically in fruit tissues delayed tomato fruit ripening, whereas treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) accelerated fruit ripening. Moreover, exogenous ethylene treatment cannot completely reverse the delayed fruit ripening phenotype. Furthermore, exogenous GA treatment of ethylene signalling mutant Never ripe (Nr) or SlEBF3-overexpressing lines still delayed fruit ripening, suggesting that GA involved in fruit ripening partially depends on ethylene. Transcriptome profiling showed that gibberellin affect the ripening of fruits by modulating the metabolism and signal transduction of multiple plant hormones, such as auxin and abscisic acid, in addition to ethylene. Overall, the results of this study provide new insight into the regulation of gibberellin in fruit ripening through mediating multiple hormone signals.
Collapse
Affiliation(s)
- Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Honghai Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
10
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gomez-Jimenez MC. Hormonal Content and Gene Expression during Olive Fruit Growth and Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:3832. [PMID: 38005729 PMCID: PMC10675085 DOI: 10.3390/plants12223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Su C, Wang Z, Cui J, Wang Z, Wang R, Meng J, Luan Y. Sl-lncRNA47980, a positive regulator affects tomato resistance to Phytophthora infestans. Int J Biol Macromol 2023; 248:125824. [PMID: 37453642 DOI: 10.1016/j.ijbiomac.2023.125824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) involve in defense respond against pathogen attack and show great potentials to improve plant resistance. Tomato late blight, a destructive plant disease, is caused by the oomycete pathogen Phytophthora infestans, which seriously affects the yield and quality of tomato. Our previous research has shown that Sl-lncRNA47980 is involved in response to P. infestans infection, but its molecular mechanism is unknown. Gain- and loss-of-function experiments revealed that Sl-lncRNA47980 as a positive regulator, played a crucial role in enhancing tomato resistance to P. infestans. The Sl-lncRNA47980-overexpressing transgenic plants exhibited an improved ability to scavenge reactive oxygen species (ROS), decreased contents of endogenous gibberellin (GA) and salicylic acid (SA), and increased contents of jasmonic acid (JA), while silencing of Sl-lncRNA47980 showed an opposite trend in the levels of these hormones. Furthermore, it was found that Sl-lncRNA47980 could upregulate the expression of SlGA2ox4 gene through activation of the promoter of SlGA2ox4 to affect GA content. The increased expression of the tomato GA signaling repressor SlDELLA could activate JA-related genes and inhibit SA-related genes to varying degrees respectively. In addition, exogenous application of GA3 and GA synthesis inhibitor uniconazole could increase disease susceptibility of Sl-lncRNA47980-overexpressing plants and the resistance of Sl-lncRNA47980-silenced plants, respectively, to P. infestans. From thus, it was speculated that Sl-lncRNA47980 conferred tomato resistance to P. infestans, which was related to the decrease in endogenous GA content. Our study provided information to link Sl-lncRNA47980 with changes in ROS accumulation and phytohormone levels in plant immunity, thus providing a new candidate gene for tomato breeding.
Collapse
Affiliation(s)
- Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Wu W, Sun NJ, Xu Y, Chen YT, Liu XF, Shi LY, Chen W, Zhu QG, Gong BC, Yin XR, Yang ZF. Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors. PLANT PHYSIOLOGY 2023; 193:840-854. [PMID: 37325946 DOI: 10.1093/plphys/kiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
As the harvest season of most fruit is concentrated, fruit maturation manipulation is essential for the fresh fruit industry to prolong sales time. Gibberellin (GA), an important phytohormone necessary for plant growth and development, has also shown a substantial regulatory effect on fruit maturation; however, its regulatory mechanisms remain inconclusive. In this research, preharvest GA3 treatment effectively delayed fruit maturation in several persimmon (Diospyros kaki) cultivars. Among the proteins encoded by differentially expressed genes, 2 transcriptional activators (NAC TRANSCRIPTION FACTOR DkNAC24 and ETHYLENE RESPONSIVE FACTOR DkERF38) and a repressor (MYB-LIKE TRANSCRIPTION FACTOR DkMYB22) were direct regulators of GERANYLGERANYL DIPHOSPHATE SYNTHASE DkGGPS1, LYSINE HISTIDINE TRANSPORTER DkLHT1, and FRUCTOSE-BISPHOSPHATE ALDOLASE DkFBA1, respectively, resulting in the inhibition of carotenoid synthesis, outward transport of an ethylene precursor, and consumption of fructose and glucose. Thus, the present study not only provides a practical method to prolong the persimmon fruit maturation period in various cultivars but also provides insights into the regulatory mechanisms of GA on multiple aspects of fruit quality formation at the transcriptional regulation level.
Collapse
Affiliation(s)
- Wei Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ning-Jing Sun
- College of Resources and Environment Sciences, Baoshan University, Baoshan, Yunnan 678000, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yu-Tong Chen
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Fen Liu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li-Yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Qing-Gang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bang-Chu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xue-Ren Yin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Feng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
14
|
Zhang C, Liu X, Liu Y, Yu J, Yao G, Yang H, Yang D, Wu Y. An integrated transcriptome and metabolome analysis reveals the gene network regulating flower development in Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2023; 14:1201486. [PMID: 37457333 PMCID: PMC10340533 DOI: 10.3389/fpls.2023.1201486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Pogostemon cablin is a well-known protected species widely used in medicine and spices, however the underlying molecular mechanisms and metabolite dynamics of P. cablin flower development remain unclear due to the difficulty in achieving flowering in this species. A comparison of the transcriptome and widely targeted metabolome during P. cablin flower development was first performed in this study. Results showed that a total of 13,469 differentially expressed unigenes (DEGs) and 371 differentially accumulated metabolites (DAMs) were identified. Transcriptomic analysis revealed that the DEGs were associated with starch and sucrose metabolism, terpenoid biosynthesis and phenylpropanoid biosynthesis. Among these DEGs, 75 MIKC-MADS unigenes were associated with the development of floral organs. Gibberellins (GAs), auxin, and aging signaling might form a cross-regulatory network to regulate flower development in P. cablin. According to the metabolic profile, the predominant DAMs were amino acids, flavonoids, terpenes, phenols, and their derivatives. The accumulation patterns of these predominant DAMs were closely associated with the flower developmental stage. The integration analysis of DEGs and DAMs indicated that phenylpropanoids, flavonoids, and amino acids might be accumulated due to the activation of starch and sucrose metabolism. Our results provide some important insights for elucidating the reproductive process, floral organ, and color formation of P. cablin flowers at the molecular level. These results will improve our understanding of the molecular and genetic mechanisms involved in the floral development of P. cablin.
Collapse
Affiliation(s)
- Chan Zhang
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
- Guangdong VTR BioTech Co., Ltd., Zhuhai, China
| | - Xiaofeng Liu
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Jing Yu
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Guanglong Yao
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Huageng Yang
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Dongmei Yang
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Sanya, China
| |
Collapse
|
15
|
Liu Y, Li Y, Guo H, Lv B, Feng J, Wang H, Zhang Z, Chai S. Gibberellin biosynthesis is required for CPPU-induced parthenocarpy in melon. HORTICULTURE RESEARCH 2023; 10:uhad084. [PMID: 37323228 PMCID: PMC10266944 DOI: 10.1093/hr/uhad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Spraying N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), an exogenous cytokinin (CK) growth regulator, is the conventional method for inducing fruit set during melon (Cucumis melo L.) production; however, the mechanism by which CPPU induces fruit set is unclear. Through histological and morphological observations, fruit size was comparable between CPPU-induced fruits and normal pollinated fruits because CPPU-induced fruits had higher cell density but smaller cell size compared with normal pollinated fruits. CPPU promotes the accumulation of gibberellin (GA) and auxin and decreases the level of abscisic acid (ABA) during fruit set. Moreover, application of the GA inhibitor paclobutrazol (PAC) partially inhibits CPPU-induced fruit set. Transcriptome analysis revealed that CPPU-induced fruit set specifically induced the GA-related pathway, in which the key synthase encoding gibberellin 20-oxidase 1 (CmGA20ox1) was specifically upregulated. Further study indicated that the two-component response regulator 2 (CmRR2) of the cytokinin signaling pathway, which is highly expressed at fruit setting, positively regulates the expression of CmGA20ox1. Collectively, our study determined that CPPU-induced melon fruit set is dependent on GA biosynthesis, providing a theoretical basis for the creation of parthenocarpic melon germplasm.
Collapse
Affiliation(s)
| | | | | | - Bingsheng Lv
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Feng
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Huihui Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Sen Chai
- Corresponding authors: E-mail: ;
| |
Collapse
|
16
|
Zhang S, Gottschalk C, van Nocker S. Conservation and divergence of expression of GA2-oxidase homeologs in apple ( Malus x domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2023; 14:1117069. [PMID: 37180390 PMCID: PMC10169729 DOI: 10.3389/fpls.2023.1117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
In domesticated apple (Malus x domestica Borkh.) and other woody perennials, floral initiation can be repressed by gibberellins (GAs). The associated mechanism is a major unanswered question in plant physiology, and understanding organismal aspects of GA signaling in apple has important commercial applications. In plants, the major mechanism for elimination of GAs and resetting of GA signaling is through catabolism by GA2-oxidases (GA2ox). We found that the GA2ox gene family in apple comprises 16 genes representing eight, clearly defined homeologous pairs, which were named as MdGA2ox1A/1B to MdGA2ox8A/8B. Expression of the genes was analyzed in the various structures of the spur, where flowers are initiated, as well as in various structures of seedlings over one diurnal cycle and in response to water-deficit and salt stress. Among the results, we found that MdGA2ox2A/2B dominated expression in the shoot apex and were strongly upregulated in the apex after treatment with exogenous GA3, suggesting potential involvement in repression of flowering. Several MdGA2ox genes also showed preferential expression in the leaf petiole, fruit pedicel, and the seed coat of developing seeds, potentially representing mechanisms to limit diffusion of GAs across these structures. In all contexts studied, we documented both concerted and distinct expression of individual homeologs. This work introduces an accessible woody plant model for studies of GA signaling, GA2ox gene regulation, and conservation/divergence of expression of homeologous genes, and should find application in development of new cultivars of apple and other tree fruits.
Collapse
Affiliation(s)
| | | | - Steve van Nocker
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Buthelezi LG, Mavengahama S, Sibiya J, Ntuli NR. Variation in Shoot, Peduncle and Fruit Growth of Lagenaria siceraria Landraces. PLANTS (BASEL, SWITZERLAND) 2023; 12:532. [PMID: 36771617 PMCID: PMC9920849 DOI: 10.3390/plants12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Lagenaria siceraria (Molina) Standley is a prominent food source as almost all its plant parts are edible. However, no studies have recorded the changes in shoots, peduncles and fruits during its growth. Hence, this study aimed to record changes in shoot traits and relate the peduncle to the fruit traits of L. siceraria landraces across different growth stages. Changes in shoots, peduncles and fruits during growth were compared within and among landraces using analysis of variance, correlation, principal component analysis, cluster analysis and heritability estimates. Almost all landraces had harvestable shoots at 42 days after sowing. Peduncles became shorter and wider as the fruits elongated. Shoots, peduncles and fruits correlated positively with each other. The informative principal components had a total variability of 84.488%, with a major contribution from shoot traits. The biplot and dendrogram clustered landraces with similar growth habits and the harvestable shoot and fruit attributes into three clusters, but KRI and NSRC formed singlets. Shoot width (60.2%) and peduncle length (55.2%) had high heritability estimates. The general low heritability estimates and genetic advances indicated the presence of non-additive gene action. This study is the first report on changes in harvested shoots and the relationship between peduncles and fruits during growth.
Collapse
Affiliation(s)
- Lungelo Given Buthelezi
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sydney Mavengahama
- Food Security and Safety Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2745, South Africa
| | - Julia Sibiya
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Nontuthuko Rosemary Ntuli
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
18
|
Manipulating GA-Related Genes for Cereal Crop Improvement. Int J Mol Sci 2022; 23:ijms232214046. [PMID: 36430524 PMCID: PMC9696284 DOI: 10.3390/ijms232214046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global population is projected to experience a rapid increase in the future, which poses a challenge to global food sustainability. The "Green Revolution" beginning in the 1960s allowed grain yield to reach two billion tons in 2000 due to the introduction of semi-dwarfing genes in cereal crops. Semi-dwarfing genes reduce the gibberellin (GA) signal, leading to short plant stature, which improves the lodging resistance and harvest index under modern fertilization practices. Here, we reviewed the literature on the function of GA in plant growth and development, and the role of GA-related genes in controlling key agronomic traits that contribute to grain yield in cereal crops. We showed that: (1) GA is a significant phytohormone in regulating plant development and reproduction; (2) GA metabolism and GA signalling pathways are two key components in GA-regulated plant growth; (3) GA interacts with other phytohormones manipulating plant development and reproduction; and (4) targeting GA signalling pathways is an effective genetic solution to improve agronomic traits in cereal crops. We suggest that the modification of GA-related genes and the identification of novel alleles without a negative impact on yield and adaptation are significant in cereal crop breeding for plant architecture improvement. We observed that an increasing number of GA-related genes and their mutants have been functionally validated, but only a limited number of GA-related genes have been genetically modified through conventional breeding tools and are widely used in crop breeding successfully. New genome editing technologies, such as the CRISPR/Cas9 system, hold the promise of validating the effectiveness of GA-related genes in crop development and opening a new venue for efficient and accelerated crop breeding.
Collapse
|
19
|
The Plant Growth Regulator 14-OH BR Can Minimize the Application Content of CPPU in Kiwifruit (Actinidia chinensis) ‘Donghong’ and Increase Postharvest Time without Sacrificing the Yield. Processes (Basel) 2022. [DOI: 10.3390/pr10112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) is extensively used for red-fleshed kiwifruits or ‘Donghong’, but it has toxicological properties. Extra plant growth regulators (PGRs) were screened for partial substitution of CPPU (10 mg L−1) to the crops to minimize the CPPU content. The results showed that CPPU at a concentration of 5 mg L−1 plus 14-hydroxylated brassinosteroid (14-OH BR) at a concentration of 0.15 mg L−1 has a nearly equal effect to CPPU at a concentration of 10 mg L−1; it maintains the kiwifruit yields and quality as well as increases the postharvest time. Transcriptome sequencing data revealed that the regulation of 14-OH BR on kiwifruit growth acts mainly by activating Brassinosteroid (BR) signaling to synergistically and antagonistically stimulate the signaling of other endogenous growth regulators, including auxin (IAA), abscisic acid (ABA), cytokinin (CK), gibberellin (GA), jasmonic acid (JA) and ethylene (ET).
Collapse
|
20
|
Yang Y, Zhao T, Xu X, Jiang J, Li J. Transcriptome Analysis to Explore the Cause of the Formation of Different Inflorescences in Tomato. Int J Mol Sci 2022; 23:ijms23158216. [PMID: 35897806 PMCID: PMC9368726 DOI: 10.3390/ijms23158216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The number of inflorescence branches is an important agronomic character of tomato. The meristem differentiation and development pattern of tomato inflorescence is complex and its regulation mechanism is very different from those of other model plants. Therefore, in order to explore the cause of tomato inflorescence branching, transcriptome analysis was conducted on two kinds of tomato inflorescences (single racemes and compound inflorescences). According to the transcriptome data analysis, there were many DEGs of tomato inflorescences at early, middle, and late stages. Then, GO and KEGG enrichments of DEGs were performed. DEGs are mainly enriched in metabolic pathways, biohormone signaling, and cell cycle pathways. According to previous studies, DEGs were mainly enriched in metabolic pathways, and FALSIFLORA (FA) and ANANTHA (AN) genes were the most notable of 41 DEGs related to inflorescence branching. This study not only provides a theoretical basis for understanding inflorescence branching, but also provides a new idea for the follow-up study of inflorescence.
Collapse
|
21
|
Sabir IA, Manzoor MA, Shah IH, Abbas F, Liu X, Fiaz S, Shah AN, Jiu S, Wang J, Abdullah M, Zhang C. Evolutionary and Integrative Analysis of Gibberellin-Dioxygenase Gene Family and Their Expression Profile in Three Rosaceae Genomes ( F. vesca, P. mume, and P. avium) Under Phytohormone Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:942969. [PMID: 35874024 PMCID: PMC9302438 DOI: 10.3389/fpls.2022.942969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The gibberellin-dioxygenase (GAox) gene family plays a crucial role in regulating plant growth and development. GAoxs, which are encoded by many gene subfamilies, are extremely critical in regulating bioactive GA levels by catalyzing the subsequent stages in the biosynthesis process. Moreover, GAoxs are important enzymes in the GA synthesis pathway, and the GAox gene family has not yet been identified in Rosaceae species (Prunus avium L., F. vesca, and P. mume), especially in response to gibberellin and PCa (prohexadione calcium; reduce biologically active GAs). In the current investigation, 399 GAox members were identified in sweet cherry, Japanese apricot, and strawberry. Moreover, they were further classified into six (A-F) subgroups based on phylogeny. According to motif analysis and gene structure, the majority of the PavGAox genes have a remarkably well-maintained exon-intron and motif arrangement within the same subgroup, which may lead to functional divergence. In the systematic investigation, PavGAox genes have several duplication events, but segmental duplication occurs frequently. A calculative analysis of orthologous gene pairs in Prunus avium L., F. vesca, and P. mume revealed that GAox genes are subjected to purifying selection during the evolutionary process, resulting in functional divergence. The analysis of cis-regulatory elements in the upstream region of the 140 PavGAox members suggests a possible relationship between genes and specific functions of hormone response-related elements. Moreover, the PavGAox genes display a variety of tissue expression patterns in diverse tissues, with most of the PavGAox genes displaying tissue-specific expression patterns. Furthermore, most of the PavGAox genes express significant expression in buds under phytohormonal stresses. Phytohormones stress analysis demonstrated that some of PavGAox genes are responsible for maintaining the GA level in plant-like Pav co4017001.1 g010.1.br, Pav sc0000024.1 g340.1.br, and Pav sc0000024.1 g270.1.mk. The subcellular localization of PavGAox protein utilizing a tobacco transient transformation system into the tobacco epidermal cells predicted that GFP signals were mostly found in the cytoplasm. These findings will contribute to a better understanding of the GAox gene family's interaction with prohexadione calcium and GA, as well as provide a strong framework for future functional characterization of GAox genes in sweet cherry.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xunju Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Gibberellic Acid (GA3) Applied to Flowering Heracleum sosnowskyi Decreases Seed Viability Even If Seed Development Is Not Inhibited. PLANTS 2022; 11:plants11030314. [PMID: 35161295 PMCID: PMC8840363 DOI: 10.3390/plants11030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Sosnowsky’s hogweed (Heracleum sosnowskyi Manden.), an important invasive species in Eastern Europe, is a monocarpic perennial plant that propagates exclusively by seeds. Hence, interfering with seed viability could help control its spread. In the present study, we investigated the effect of exogenous GA3 (25, 100 and 150 mg/L) sprayed twice onto flowering H. sosnowskyi plants on the development of fruits (mericarps) and their ability to germinate under field conditions over the growing seasons of 2018 and 2019. Mericarps from plants sprayed with GA3 failed to develop normally. The width/length ratio of mericarps decreased by 23% to 25% after 150 mg/L GA3 application and their average weight decreased between 7% and 39% under all GA3 treatments. X-ray radiographs revealed that the internal structure was malformed, with many of the mericarps lacking well-developed seeds. Proportionally fewer well-developed mericarps were produced by GA3-treated plants than water-sprayed control plants in 2018. Seed germination assessed outdoors in seeds buried in the ground was also severely reduced (from 58% to 99% after 150 mg/L GA3 application). This indicates that exogenous GA3 sprays result in incomplete seed development and a consequent decrease in viability and germination. As the highest GA3 dose used resulted in significantly reduced propagation of Sosnowsky’s hogweed through seeds in the field, GA3 provides a promising approach to the control of the spread of this invasive weed species.
Collapse
|
23
|
Zheng F, Cui L, Li C, Xie Q, Ai G, Wang J, Yu H, Wang T, Zhang J, Ye Z, Yang C. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:228-244. [PMID: 34499170 DOI: 10.1093/jxb/erab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are specialized glandular or non-glandular structures that provide physical or chemical protection against insect and pathogen attack. Trichomes in Arabidopsis have been extensively studied as typical non-glandular structures. By contrast, the molecular mechanism underlying glandular trichome formation and elongation remains largely unknown. We previously demonstrated that Hair is essential for the formation of type I and type VI trichomes. Here, we found that overexpression of Hair increased the density and length of tomato trichomes. Biochemical assays revealed that Hair physically interacts with its close homolog SlZFP8-like (SlZFP8L), and SlZFP8L also directly interacts with Woolly. SlZFP8L-overexpressing plants showed increased trichome density and length. We further found that the expression of SlZFP6, which encodes a C2H2 zinc finger protein, is positively regulated by Hair. Using chromatin immunoprecipitation, yeast one-hybrid, and dual-luciferase assays we identified that SlZFP6 is a direct target of Hair. Similar to Hair and SlZFP8L, the overexpression of SlZFP6 also increased the density and length of tomato trichomes. Taken together, our results suggest that Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato.
Collapse
Affiliation(s)
- Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junqiang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. MOLECULAR HORTICULTURE 2021; 1:15. [PMID: 37789477 PMCID: PMC10515025 DOI: 10.1186/s43897-021-00019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 10/05/2023]
Abstract
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Natanella Illouz Eliaz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
25
|
Effects of Pollination Interventions, Plant Age and Source on Hormonal Patterns and Fruit Set of Date Palm (Phoenix dactylifera L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Date palm is widely propagated through conventional offshoots. It is also produced through a tissue culture technique due to the limited number of offshoots produced throughout the course of a palm’s life. Being dioecious, it is a cross-pollinated tree that can be naturally or artificially pollinated. Tissue-cultured plants often have abnormal epigenetic or genetic changes that affect specific phenotypic characteristics. The growth of parthenocarpic fruits in date palms is mostly induced by hormonal imbalances in certain tissues. The major hormones in parthenocarpic fruits are auxins (IAA), gibberellins (GA3), and abscisic acid (ABA). Parthenocarpic, or abnormal fruit development, is an undesirable trait for date palm growers since it drastically reduces farm income. The current study was therefore conducted over two seasons to confirm previous observations and included conventional offshoot-derived trees (CO) and tissue culture-derived ones (TC) of the cultivar Barhee. According to the observed ratio of the fruiting abnormalities, two date palm tree ages were selected, i.e., 6 and 13 years. Two pollination interventions were used: pollination of naturally open female spathes (NOP) and pollination of forced open female spathes (FOP). Plant hormones, IAA, GA3, and ABA were identified just before pollination and at specific intervals after pollination for up to 85 days. The ratio of the abnormal fruit set was identified 5 days after pollination. Significant differences were observed in hormonal levels between tree ages as well as between tree propagation sources. Young TC trees (6-year-old) had high abnormal fruit sets compared to CO date palm trees that were the same age. During the early fruit growth and development phases, CO date palms had much higher amounts of IAA and GA3 than TC date palms. However, ABA concentrations were surprisingly higher in the TC trees during the early fruit growth stages, while it immediately decreased after pollination in the CO date palms. The ratio of abnormal fruits was significantly reduced in the 13-year-old TC date palms, and no differences were observed compared to the CO ones. The levels of IAA, GA3, and ABA hormones in both young and old date palms derived through CO or TC followed similar patterns. The critical observations regarding the ABA pattern in the old TC date palms (13-year-old) gradually dropped after pollination, which was identical to the CO ones, whereas it was the opposite in the young 6-year-old TC date palm plants.
Collapse
|
26
|
Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. PLANTS 2021; 10:plants10102061. [PMID: 34685870 PMCID: PMC8539861 DOI: 10.3390/plants10102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Apple (Malus domestica) is, globally, one of the largest fruits in terms of cultivated area and yield. Apple fruit is generally marketed after storage, which is of great significance for regulating the market supply in the off-season of fruit production. Apple-fruit ripening, which culminates in desirable changes in structural and textural properties, is governed by a complex regulatory network. Much is known about ethylene as one of the most important factors promoting apple-fruit ripening. However, the dynamic interplay between phytohormones also plays an important part in apple-fruit ripening. Here, we review and evaluate the complex regulatory network concerning the action of phytohormones during apple-fruit ripening. Interesting future research areas are discussed.
Collapse
|
27
|
Hu L, Liu P, Jin Z, Sun J, Weng Y, Chen P, Du S, Wei A, Li Y. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2639-2652. [PMID: 34091695 DOI: 10.1007/s00122-021-03849-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A & F University, Yangling, 712100, Shaanxi,, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Backiyarani S, Sasikala R, Sharmiladevi S, Uma S. Decoding the molecular mechanism of parthenocarpy in Musa spp. through protein-protein interaction network. Sci Rep 2021; 11:14592. [PMID: 34272422 PMCID: PMC8285514 DOI: 10.1038/s41598-021-93661-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Banana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein-protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)-WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.
Collapse
Affiliation(s)
- Suthanthiram Backiyarani
- grid.465009.e0000 0004 1768 7371ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, Tamil Nadu 620 102 India
| | - Rajendran Sasikala
- grid.465009.e0000 0004 1768 7371ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, Tamil Nadu 620 102 India
| | - Simeon Sharmiladevi
- grid.465009.e0000 0004 1768 7371ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, Tamil Nadu 620 102 India
| | - Subbaraya Uma
- grid.465009.e0000 0004 1768 7371ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirapalli, Tamil Nadu 620 102 India
| |
Collapse
|
29
|
Clepet C, Devani RS, Boumlik R, Hao Y, Morin H, Marcel F, Verdenaud M, Mania B, Brisou G, Citerne S, Mouille G, Lepeltier JC, Koussevitzky S, Boualem A, Bendahmane A. The miR166-SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. MOLECULAR PLANT 2021; 14:1185-1198. [PMID: 33964458 DOI: 10.1016/j.molp.2021.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Fruit set is inhibited by adverse temperatures, with consequences on yield. We isolated a tomato mutant producing fruits under non-permissive hot temperatures and identified the causal gene as SlHB15A, belonging to class III homeodomain leucine-zipper transcription factors. SlHB15A loss-of-function mutants display aberrant ovule development that mimics transcriptional changes occurring in fertilized ovules and leads to parthenocarpic fruit set under optimal and non-permissive temperatures, in field and greenhouse conditions. Under cold growing conditions, SlHB15A is subjected to conditional haploinsufficiency and recessive dosage sensitivity controlled by microRNA 166 (miR166). Knockdown of SlHB15A alleles by miR166 leads to a continuum of aberrant ovules correlating with parthenocarpic fruit set. Consistent with this, plants harboring an Slhb15a-miRNA166-resistant allele developed normal ovules and were unable to set parthenocarpic fruit under cold conditions. DNA affinity purification sequencing and RNA-sequencing analyses revealed that SlHB15A is a bifunctional transcription factor expressed in the ovule integument. SlHB15A binds to the promoters of auxin-related genes to repress auxin signaling and to the promoters of ethylene-related genes to activate their expression. A survey of tomato genetic biodiversity identified pat and pat-1, two historical parthenocarpic mutants, as alleles of SlHB15A. Taken together, our findings demonstrate the role of SlHB15A as a sentinel to prevent fruit set in the absence of fertilization and provide a mean to enhance fruiting under extreme temperatures.
Collapse
Affiliation(s)
- Christian Clepet
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Ravi Sureshbhai Devani
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Rachid Boumlik
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Yanwei Hao
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Fabien Marcel
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Brahim Mania
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Gwilherm Brisou
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | | | | | | | | | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France.
| |
Collapse
|
30
|
Li W, Xiang F, Su Y, Luo Z, Luo W, Zhou L, Liu H, Xiao L. Gibberellin Increases the Bud Yield and Theanine Accumulation in Camellia sinensis (L.) Kuntze. Molecules 2021; 26:molecules26113290. [PMID: 34072521 PMCID: PMC8198828 DOI: 10.3390/molecules26113290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 μM solution of GA3 containing 1‰ tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Fen Xiang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Zhoufei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Lingyun Zhou
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Hongyan Liu
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Correspondence: ; Tel.: +86-073-184-635-261
| |
Collapse
|
31
|
Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021; 11:788. [PMID: 34073871 PMCID: PMC8225067 DOI: 10.3390/biom11060788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants' adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow "window" in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost-benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.
Collapse
Affiliation(s)
- Md. Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
32
|
Kaur H, Ozga JA, Reinecke DM. Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. PLANT, CELL & ENVIRONMENT 2021; 44:1486-1503. [PMID: 32515497 DOI: 10.1111/pce.13820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/29/2020] [Indexed: 05/08/2023]
Abstract
In pea (Pisum sativum L.), moderate heat stress during early flowering/fruit set increased seed/ovule abortion, and concomitantly produced fruits with reduced ovary (pericarp) length, and fewer seeds at maturity. Plant hormonal networks coordinate seed and pericarp growth and development. To determine if these hormonal networks are modulated in response to heat stress, we analyzed the gene expression patterns and associated these patterns with precursors, and bioactive and inactive metabolites of the auxin, gibberellin (GA), abscisic acid (ABA), and ethylene biosynthesis/catabolism pathways in young developing seeds and pericarps of non-stressed and 4-day heat-stressed fruits. Our data suggest that within the developing seeds heat stress decreased bioactive GA levels reducing GA growth-related processes, and that increased ethylene levels may have promoted this inhibitory response. In contrast, heat stress increased auxin biosynthesis gene expression and auxin levels in the seeds and pericarps, and seed ABA levels, both effects can increase seed sink strength. We hypothesize that seeds with higher auxin- and ABA-induced sink strength and adequate bioactive GA levels will set and continue to grow, while the seeds with lower sink strength (low auxin, ABA, and GA levels) will become more sensitive to heat stress-induced ethylene leading to ovule/seed abortion.
Collapse
Affiliation(s)
- Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Naoi T, Hataya T. Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. PLANTS 2021; 10:plants10030575. [PMID: 33803660 PMCID: PMC8003082 DOI: 10.3390/plants10030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
To date, natural resistance or tolerance, which can be introduced into crops by crossing, to potato spindle tuber viroid (PSTVd) has not been reported. Additionally, responses to PSTVd infection in many wild tomato species, including some species that can be crossed with PSTVd-susceptible cultivated tomatoes (Solanum lycopersicum var. lycoperaicum), have not been ascertained. The aim of this study was to evaluate responses to PSTVd infection including resistance and tolerance. Accordingly, we inoculated several cultivated and wild tomato species with intermediate and lethal strains of PSTVd. None of the host plants exhibited sufficient resistance to PSTVd to render systemic infection impossible; however, these plants displayed other responses, including tolerance. Further analysis of PSTVd accumulation revealed low accumulation of PSTVd in two wild species, exhibiting high tolerance, even to the lethal strain. Additionally, F1 hybrids generated by crossing a PSTVd-sensitive wild tomato (Solanum lycopersicum var. cerasiforme) with these wild relatives also exhibited tolerance to the lethal PSTVd strain, which is accompanied by low PSTVd accumulation during early infection. These results indicate that the tolerance toward PSTVd in wild species is a dominant trait and can be utilized for tomato breeding by crossing.
Collapse
Affiliation(s)
- Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| | - Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence:
| |
Collapse
|
34
|
Wei S, Zhang W, Fu R, Zhang Y. Genome-wide characterization of 2-oxoglutarate and Fe(II)-dependent dioxygenase family genes in tomato during growth cycle and their roles in metabolism. BMC Genomics 2021; 22:126. [PMID: 33602133 PMCID: PMC7891033 DOI: 10.1186/s12864-021-07434-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 2-Oxoglutarate and Fe(II)-dependent dioxygenases (2ODDs) belong to the 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily and are involved in various vital metabolic pathways of plants at different developmental stages. These proteins have been extensively investigated in multiple model organisms. However, these enzymes have not been systematically analyzed in tomato. In addition, type I flavone synthase (FNSI) belongs to the 2ODD family and contributes to the biosynthesis of flavones, but this protein has not been characterized in tomato. RESULTS A total of 131 2ODDs from tomato were identified and divided into seven clades by phylogenetic classification. The Sl2ODDs in the same clade showed similar intron/exon distributions and conserved motifs. The Sl2ODDs were unevenly distributed across the 12 chromosomes, with different expression patterns among major tissues and at different developmental stages of the tomato growth cycle. We characterized several Sl2ODDs and their expression patterns involved in various metabolic pathways, such as gibberellin biosynthesis and catabolism, ethylene biosynthesis, steroidal glycoalkaloid biosynthesis, and flavonoid metabolism. We found that the Sl2ODD expression patterns were consistent with their functions during the tomato growth cycle. These results indicated the significance of Sl2ODDs in tomato growth and metabolism. Based on this genome-wide analysis of Sl2ODDs, we screened six potential FNSI genes using a phylogenetic tree and coexpression analysis. However, none of them exhibited FNSI activity. CONCLUSIONS Our study provided a comprehensive understanding of the tomato 2ODD family and demonstrated the significant roles of these family members in plant metabolism. We also suggest that no FNSI genes in tomato contribute to the biosynthesis of flavones.
Collapse
Affiliation(s)
- Shuo Wei
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, China
| | - Wen Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, China
| | - Rao Fu
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, China
| | - Yang Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, China
| |
Collapse
|
35
|
Cheng J, Ma J, Zheng X, Lv H, Zhang M, Tan B, Ye X, Wang W, Zhang L, Li Z, Li J, Feng J. Functional Analysis of the Gibberellin 2-oxidase Gene Family in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:619158. [PMID: 33679834 PMCID: PMC7928363 DOI: 10.3389/fpls.2021.619158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/28/2023]
Abstract
Peach (Prunus persica L. Batsch) trees grow vigorously and are subject to intense pruning during orchard cultivation. Reducing the levels of endogenous gibberellins (GAs) represents an effective method for controlling branch growth. Gibberellin 2-oxidases (GA2oxs) deactivate bioactive GAs, but little is known about the GA2ox gene family in peach. In this study, we identified seven PpGA2ox genes in the peach genome, which were clustered into three subgroups: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Overexpressing representative genes from the three subgroups, PpGA2ox-1, PpGA2ox-5, and PpGA2ox-2, in tobacco resulted in dwarf plants with shorter stems and smaller leaves than the wild type. An analysis of the GA metabolic profiles of the transgenic plants showed that PpGA2ox-5 (a member of subgroup C19-GA2ox-II) is simultaneously active against both C19-GAs and C20-GAs,which implied that C19-GA2ox-II enzymes represent intermediates of C19-GA2oxs and C20-GA2oxs. Exogenous GA3 treatment of shoot tips activated the expression of all seven PpGA2ox genes, with different response times: the C 19-GA2ox genes were transcriptionally activated more rapidly than the C20-GA2ox genes. GA metabolic profile analysis suggested that C20-GA2ox depletes GA levels more broadly than C19-GA2ox. These results suggest that the PpGA2ox gene family is responsible for fine-tuning endogenous GA levels in peach. Our findings provide a theoretical basis for appropriately controlling the vigorous growth of peach trees.
Collapse
|
36
|
El-Sharkawy I, Ismail A, Darwish A, El Kayal W, Subramanian J, Sherif SM. Functional characterization of a gibberellin F-box protein, PslSLY1, during plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:371-384. [PMID: 32945838 DOI: 10.1093/jxb/eraa438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Fruit development is orchestrated by a complex network of interactions between hormone signaling pathways. The phytohormone gibberellin (GA) is known to regulate a diverse range of developmental processes; however, the mechanisms of GA action in perennial fruit species are yet to be elucidated. In the current study, a GA signaling gene PslSLY1, encoding a putative F-box protein that belongs to the SLY1 (SLEEPY1)/GID2 (gibberellin-insensitive dwarf2) gene family, was isolated from Japanese plum (Prunus salicina). PslSLY1 transcript abundance declined as fruit development progressed, along with potential negative feedback regulation of PslSLY1 by GA. Subcellular localization and protein-protein interaction assays suggested that PslSLY1 functions as an active GA signaling component that interacts with the ASK1 (Arabidopsis SKP1) subunit of an SCF-ubiquitin ligase complex and with PslDELLA repressors, in a GA-independent manner. By using a domain omission strategy, we illustrated that the F-box and C-terminal domains of PslSLY1 are essential for its interactions with the downstream GA signaling components. PslSLY1 overexpression in wild-type and Arabidopsissly1.10 mutant backgrounds resulted in a dramatic enhancement in overall plant growth, presumably due to triggered GA signaling. This includes germination characteristics, stem elongation, flower structure, and fertility. Overall, our findings shed new light on the GA strategy and signaling network in commercially important perennial crops.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- Florida A&M University, College of Agriculture and Food Sciences, Center for Viticulture & Small Fruit Research, Tallahassee, FL, USA
| | - Ahmed Ismail
- Damanhour University, Faculty of Agriculture, Department of Horticulture, Damanhour, Behera, Egypt
| | - Ahmed Darwish
- Florida A&M University, College of Agriculture and Food Sciences, Center for Viticulture & Small Fruit Research, Tallahassee, FL, USA
- Minia University, Faculty of Agriculture, Department of Biochemistry, Minia, Egypt
| | - Walid El Kayal
- Florida A&M University, College of Agriculture and Food Sciences, Center for Viticulture & Small Fruit Research, Tallahassee, FL, USA
- American University of Beirut, Faculty of Agricultural and Food Sciences, Riad El Solh, Beirut, Lebanon
| | | | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, AHS Jr. Agricultural Research and Extension Center, Winchester, VA, USA
| |
Collapse
|
37
|
Li R, Sun S, Wang H, Wang K, Yu H, Zhou Z, Xin P, Chu J, Zhao T, Wang H, Li J, Cui X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat Commun 2020; 11:5844. [PMID: 33203832 PMCID: PMC7673020 DOI: 10.1038/s41467-020-19705-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fruit firmness is a target trait in tomato breeding because it facilitates transportation and storage. However, it is also a complex trait and uncovering the molecular genetic mechanisms controlling fruit firmness has proven challenging. Here, we report the map-based cloning and functional characterization of qFIRM SKIN 1 (qFIS1), a major quantitative trait locus that partially determines the difference in compression resistance between cultivated and wild tomato accessions. FIS1 encodes a GA2-oxidase, and its mutation leads to increased bioactive gibberellin content, enhanced cutin and wax biosynthesis, and increased fruit firmness and shelf life. Importantly, FIS1 has no unfavorable effect on fruit weight or taste, making it an ideal target for breeders. Our study demonstrates that FIS1 mediates gibberellin catabolism and regulates fruit firmness, and it offers a potential strategy for tomato breeders to produce firmer fruit.
Collapse
Affiliation(s)
- Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongmin Zhao
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Kim JS, Ezura K, Lee J, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153238. [PMID: 32707453 DOI: 10.1016/j.jplph.2020.153238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
Parthenocarpic fruit formation can be achieved through the inhibition of SlIAA9, a negative regulator of auxin signalling in tomato plant. During early fruit development under SlIAA9 inhibition, cell division and cell expansion were observed. Bioactive gibberellin (GA) accumulated, but indole-3-acetic acid (IAA) and trans-zeatin did not accumulate substantially. Furthermore, under SlIAA9 inhibition, auxin-responsive genes such as SlIAA2, -3, and -14 were upregulated, and SlARF7 was downregulated. These results indicate that SlIAA9 inhibition mimics an increase in auxin. The auxin biosynthesis genes SlTAR1, ToFZY, and ToFZY5 were stimulated by an increase in auxin and by auxin mimicking under SlIAA9 inhibition. However, SlTAR2 and ToFZY2 were upregulated only by pollination followed by high IAA accumulation. These results suggest that SlTAR2 and ToFZY2 play an important role in IAA synthesis in growing ovaries. GA synthesis was also activated by SlIAA9 inhibition through both the early-13-hydroxylation (for GA1 synthesis) and non-13-hydroxylation (GA4) pathways, indicating that fruit set caused by SlIAA9 inhibition was partially mediated by the GA pathway. SlIAA9 inhibition induced the expression of GA inactivation genes as well as GA biosynthesis genes except SlCPS during early parthenocarpic fruit development in tomato. This result suggests that inactivation genes play a role in fine-tuning the regulation of bioactive GA accumulation.
Collapse
Affiliation(s)
- Ji-Seong Kim
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Department of Environmental Horticulture, The University of Seoul, Seoulsiripdae‑ro 163, Dongdaemun‑gu, Seoul 130‑743, South Korea
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan
| | - Jeongeun Lee
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Department of Environmental Horticulture, The University of Seoul, Seoulsiripdae‑ro 163, Dongdaemun‑gu, Seoul 130‑743, South Korea
| | - Mikkiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
39
|
Sha J, Wang F, Xu X, Chen Q, Zhu Z, Jiang Y, Ge S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:636-645. [PMID: 32912493 DOI: 10.1016/j.plaphy.2020.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In order to define translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple, the 13C labeled tracer method was used in whole five-year-old 'Fuji'3/M26/Malus hupehensis (Pamp.) Rehder apple trees at different days after flowering (DAF). The changes in 13C translocation to the fruit, source strength of the leaves, and sink strength of the fruits were assessed. The results indicated that the δ13C value and 13C distribution rate of the fruit increased first and then decreased with the increase in the fruit development period, being higher from 120 to 135 DAF. The leaves appeared to moderately senesce in an attempt to maintain high photosynthesis during 120-135 DAF, which promoted the outward transport of photoassimilates. The single fruit weight and longitudinal and transverse diameter of the fruit increased rapidly during 120-150 DAF, which increased the sink zone for the unloading of photoassimilates in the fruit. The activity of sorbitol dehydrogenase (SDH) and amylase (AM), the content of indole-3-acetic acid (IAA), the gibberellin (GA3) and abscisic acid (ABA) in the fruit flesh, and the gene expression levels of MdSOT1, MdSOT2, MdSOT3, MdSUT1, and MdSUT4 in the fruit stalk tissue were higher during 120-135 DAF. At this point, the difference in the sorbitol content between the fruit stalk and fruit flesh was also at the highest level of the entire year. These factors together increased the sink activity of the fruit, thus improving the photoassimilate transport efficiency to the fruit.
Collapse
Affiliation(s)
- Jianchuan Sha
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fen Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
40
|
Salem MA, Yoshida T, Perez de Souza L, Alseekh S, Bajdzienko K, Fernie AR, Giavalisco P. An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1614-1632. [PMID: 32378781 DOI: 10.1111/tpj.14800] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 05/20/2023]
Abstract
Phytohormones play essential roles in the regulation of growth and development in plants. Plant hormone profiling is therefore essential to understand developmental processes and the adaptation of plants to biotic and/or abiotic stresses. Interestingly, commonly used hormone extraction and profiling methods do not adequately resolve other molecular entities, such as polar metabolites, lipids, starch and proteins, which would be required to comprehensively describe the continuing biological processes at a systematic level. In this article we introduce an updated version of a previously published liquid:liquid metabolite extraction protocol, which not only allows for the profiling of primary and secondary metabolites, lipids, starch and proteins, but also enables the quantitative analysis of the major plant hormone classes, including abscisic acid, auxins, cytokinins, jasmonates and salicylates, from a single sample aliquot. The optimization of the method, which uses the introduction of acidified water, enabling the complete purification of major plant hormones into the organic (methyl-tert-butyl-ether) phase, eliminated the need for solid-phase extraction for sample clean-up, and therefore reduces both sampling time and cost. As a proof-of-concept analysis, Arabidopsis thaliana plants were subjected to water-deficit stress, which were then profiled for hormonal, metabolic, lipidomic and proteomic changes. Surprisingly, we determined not only previously described molecular changes but also significant changes regarding the breakdown of specific galactolipids, followed by the substantial accumulation of unsaturated fatty-acid derivatives and diverse jasmonates in the course of adaptation to water-deficit stress.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St, Shibin Elkom, Menoufia, 32511, Egypt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Takuya Yoshida
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Krzysztof Bajdzienko
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, Cologne, 50931, Germany
| |
Collapse
|
41
|
Wu L, Zhao Y, Zhang Q, Chen Y, Gao M, Wang Y. Overexpression of the 3-hydroxy-3-methylglutaryl-CoA synthase gene LcHMGS effectively increases the yield of monoterpenes and sesquiterpenes. TREE PHYSIOLOGY 2020; 40:1095-1107. [PMID: 32325486 DOI: 10.1093/treephys/tpaa045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/15/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Monoterpenes are important components of plant essential oils and have long been used as raw materials for spices and food flavorings. A number of studies have been performed to increase the content of monoterpenes in plants, but no obvious effect was observed. Exchange was observed between the methylerythritol phosphate (MEP) and mevalonic acid (MVA) metabolic pathways, which produce monoterpenes and sesquiterpenes, respectively. However, the specific details of the communication have not been elucidated. In the present study, we investigated the effects of overexpressing Litsea cubeba (Lour.) Persoon 3-hydroxy-3-methylglutaryl-coenzyme A synthase (LcHMGS) on the production of monoterpenes and sesquiterpenes. In addition, we also explored the flow of metabolic flux between the MEP and MVA pathways. We cloned LcHMGS and analyzed its expression pattern in various tissues. The overexpression of LcHMGS significantly increased the species and content of monoterpenes and sesquiterpenes. In addition, LcHMGS overexpression in plants induced such phenotypes as excessive growth, enlarged vegetative organs and early flowering by elevating the GA3 content. Our results demonstrate a metabolic engineering strategy to improve the yield of monoterpenes and sesquiterpenes and simultaneously increase the biomass of plants.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiyan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
42
|
Honi U, Amin MR, Kabir SMT, Bashar KK, Moniruzzaman M, Jahan R, Jahan S, Haque MS, Islam S. Genome-wide identification, characterization and expression profiling of gibberellin metabolism genes in jute. BMC PLANT BIOLOGY 2020; 20:306. [PMID: 32611317 PMCID: PMC7329397 DOI: 10.1186/s12870-020-02512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.
Collapse
Affiliation(s)
- Ummay Honi
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Ruhul Amin
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Moniruzzaman
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Sharmin Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Md Samiul Haque
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| |
Collapse
|
43
|
Renau-Morata B, Carrillo L, Cebolla-Cornejo J, Molina RV, Martí R, Domínguez-Figueroa J, Vicente-Carbajosa J, Medina J, Nebauer SG. The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Sci Rep 2020; 10:10645. [PMID: 32606421 PMCID: PMC7326986 DOI: 10.1038/s41598-020-67537-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA4 biosynthesis. Finally, the overexpression of SlCDF4 also promoted changes in the profile of carbon and nitrogen compounds related to fruit quality. Overall, our results unveil SlCDF4 as a new key factor controlling tomato size and composition.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Jaime Cebolla-Cornejo
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain
| | - Rosa V Molina
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Raúl Martí
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain
| | - José Domínguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain.
| | - Sergio G Nebauer
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
44
|
Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, Tornero P, Alonso JM, López-Díaz I, Gómez MD, Pérez-Amador MA. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1026-1041. [PMID: 31930587 DOI: 10.1111/tpj.14684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Jorge Baños
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Julia Palau-Rodríguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Omar Ruiz-Rivero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State, Raleigh, NC, USA
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Miguel A Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
45
|
Hao X, Pu Z, Cao G, You D, Zhou Y, Deng C, Shi M, Nile SH, Wang Y, Zhou W, Kai G. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J Adv Res 2020; 23:1-12. [PMID: 32071787 PMCID: PMC7016019 DOI: 10.1016/j.jare.2020.01.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge is an herb rich in bioactive tanshinone and salvianolic acid compounds. It is primarily used as an effective medicine for treating cardiovascular and cerebrovascular diseases. Liposoluble tanshinones and water-soluble phenolic acids are a series of terpenoids and phenolic compounds, respectively. However, the regulation mechanism for the simultaneous promotion of tanshinone and salvianolic acid biosynthesis remains unclear. This study identified a R2R3-MYB subgroup 20 transcription factor (TF), SmMYB98, which was predominantly expressed in S. miltiorrhiza lateral roots. The accumulation of major bioactive metabolites, tanshinones, and salvianolic acids, was improved in SmMYB98 overexpression (OE) hairy root lines, but reduced in SmMYB98 knockout (KO) lines. The qRT-PCR analysis revealed that the transcriptional expression levels of tanshinone and salvianolic acid biosynthesis genes were upregulated by SmMYB98-OE and downregulated by SmMYB98-KO. Dual-Luciferase (Dual-LUC) assays demonstrated that SmMYB98 significantly activated the transcription of SmGGPPS1, SmPAL1, and SmRAS1. These results suggest that SmMYB98-OE can promote tanshinone and salvianolic acid production. The present findings illustrate the exploitation of R2R3-MYB in terpenoid and phenolic biosynthesis, as well as provide a feasible strategy for improving tanshinone and salvianolic acid contents by MYB proteins in S. miltiorrhiza.
Collapse
Key Words
- 4CL, 4-coumarate-CoA ligase
- AACT, acetoacetyl-CoA thiolase
- C4H, cinnamate 4-hydroxylase
- CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol
- CDP-MEP, 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate
- CMK, 4-(cytidine5-diphospho)-2-C-methylerythritol kinase
- CPP, copalyldiphesphate
- DMAPP, dimethylallyl diphosphate
- DXP, 1-deoxy-D-xylulose-5-phosphate
- DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase
- DXS, 1-deoxy-D-xylulose-5-phosphate synthase
- G3P, glyceraldehyde-3-phosphate
- GGPP, geranylgeranyl diphosphate
- HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase
- HDS, hydroxy-methybutenyl-4-diphosphate synthase
- HMB-PP, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate
- HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase
- HMGS, hydroxymethylglutaryl-CoA synthase
- HPPR, 4-hydroxyphenylpyruvate reductase
- IPP, isopentenyl diphosphate
- IPPI, isopentenyl diphosphate isomerase
- MCT, MEP cytidyl-transferase
- MDC, mevalonate diphosphate decarboxylase
- MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
- MEP, 2-C-methyl-D-erythritol 4-phosphate
- MEcPP, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate
- MK, mevalonate kinase
- MVA, mevalonate
- MVAP, mevalonate-5-phosphate
- MVAPP, mevalonate-5-pyrophosphate
- Metabolic engineering
- PAL, phenylalanine ammonia-lyase
- PMK, phosphomevalonate kinase
- Plant secondary metabolism
- R2R3-MYB transcription factor
- RAS, rosmarinic acid synthase
- TAT, tyrosine aminotransferase
- Traditional Chinese Medicine
- Transcriptional regulation
- ent-CPP, ent-Copalyldiphesphate
Collapse
Affiliation(s)
- Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhongqiang Pu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Gang Cao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Dawei You
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yang Zhou
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Changping Deng
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
46
|
Chen S, Wang XJ, Tan GF, Zhou WQ, Wang GL. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. PROTOPLASMA 2020; 257:853-861. [PMID: 31863170 DOI: 10.1007/s00709-019-01471-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Fruit shape and ripening are major horticultural traits for many fruits and vegetable crops. Changes in fruit shape and ripening are often accomplished by altered cell division or cell expansion patterns. Gibberellic acids (GAs) are essential for tomato fruit development; however, the exact role and the underlying mechanism are still elusive. To elucidate the relationship between gibberellins and fruit shape and ripening in tomato, GA3 and gibberellin biosynthesis inhibitor paclobutrazol (PAC) were applied to tomato. Fruit shape index was increased when GA3 was applied, which was mainly attributed to the increased organ elongation. The expression levels of genes involved in cell elongation and expansion were altered at the same time. In addition, GA delayed the ripening time by regulating the transcript levels of ethylene-related genes. By contrast, PAC application decreased fruit shape index and shortened fruit ripening time. These results demonstrate that manipulation of GA levels can simultaneously influence tomato fruit shape and ripening. Further studies aimed to regulate fruit shape and ripening can be achieved by altering GA levels.
Collapse
Affiliation(s)
- Shen Chen
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Department of Life Sciences, Shaanxi XueQian Normal University, Xi'an, 710100, China
| | - Xiao-Jing Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wen-Qi Zhou
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
47
|
Lange T, Pimenta Lange MJ. The Multifunctional Dioxygenases of Gibberellin Synthesis. ACTA ACUST UNITED AC 2020; 61:1869-1879. [DOI: 10.1093/pcp/pcaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Gibberellin (GA) hormones regulate the development of plants and their responses to environmental signals. The final part of GA biosynthesis is catalyzed by multifunctional 2-oxoglutarate-dependent dioxygenases, which are encoded by multigene families. According to their enzymatic properties and physiological functions, GA-oxidases are classified as anabolic or catabolic enzymes. Together they allow complex regulation of the GA biosynthetic pathway, which adapts the specific hormonal needs of a plant during development and interaction with its environment. In this review, we combine recent advances in enzymatic characterization of the multifunctional GA-oxidases, in particular, from cucumber and Arabidopsis that have been most comprehensively investigated.
Collapse
Affiliation(s)
- Theo Lange
- Institut f�r Pflanzenbiologie, Technische Universit�t Braunschweig, Mendelssohnstr. 4, D-38106 Braunschweig, Germany
| | - Maria Jo�o Pimenta Lange
- Institut f�r Pflanzenbiologie, Technische Universit�t Braunschweig, Mendelssohnstr. 4, D-38106 Braunschweig, Germany
| |
Collapse
|
48
|
Gibberellin Signaling Repressor LlDELLA1 Controls the Flower and Pod Development of Yellow Lupine ( Lupinus luteus L.). Int J Mol Sci 2020; 21:ijms21051815. [PMID: 32155757 PMCID: PMC7084671 DOI: 10.3390/ijms21051815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Precise control of generative organ development is of great importance for the productivity of crop plants, including legumes. Gibberellins (GAs) play a key role in the regulation of flowering, and fruit setting and development. The major repressors of GA signaling are DELLA proteins. In this paper, the full-length cDNA of LlDELLA1 gene in yellow lupine (Lupinus luteus L.) was identified. Nuclear-located LlDELLA1 was clustered in a second phylogenetic group. Further analyses revealed the presence of all conserved motifs and domains required for the GA-dependent interaction with Gibberellin Insensitive Dwarf1 (GID1) receptor, and involved in the repression function of LlDELLA1. Studies on expression profiles have shown that fluctuating LlDELLA1 transcript level favors proper flower and pod development. Accumulation of LlDELLA1 mRNA slightly decreases from the flower bud stage to anther opening (dehiscence), while there is rapid increase during pollination, fertilization, as well as pod setting and early development. LlDELLA1 expression is downregulated during late pod development. The linkage of LlDELLA1 activity with cellular and tissue localization of gibberellic acid (GA3) offers a broader insight into the functioning of the GA pathway, dependent on the organ and developmental stage. Our analyses provide information that may be valuable in improving the agronomic properties of yellow lupine.
Collapse
|
49
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
50
|
Alegre ML, Steelheart C, Baldet P, Rothan C, Just D, Okabe Y, Ezura H, Smirnoff N, Gergoff Grozeff GE, Bartoli CG. Deficiency of GDP-L-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. PLANTA 2020; 251:54. [PMID: 31970534 DOI: 10.1007/s00425-020-03345-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/10/2020] [Indexed: 05/26/2023]
Abstract
Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. GDP-L-galactose phosphorylase (GGP) catalyzes the first step committed to ascorbic acid synthesis. The participation of GDP-L-galactose phosphorylase and ascorbate in tomato fruit production and quality was studied in this work using two SlGGP1 deficient EMS Micro-Tom mutants. The SlGGP1 mutants display decreased concentrations of ascorbate in roots, leaves, flowers, and fruit. The initiation of anthesis is delayed in ggp1 plants but the number of flowers is similar to wild type. The number of fruits is reduced in ggp1 mutants with an increased individual weight. However, the whole fruit biomass accumulation is reduced in both mutant lines. Fruits of the ggp1 plants produce more ethylene and show higher firmness and soluble solids content than the wild type after the breaker stage. Leaf CO2 uptake decreases about 50% in both ggp1 mutants at saturating light conditions; however, O2 production in an enriched CO2 atmosphere is only 19% higher in wild type leaves. Leaf conductance that is largely reduced in both mutants may be the main limitation for photosynthesis. Sink-source assays and hormone concentration were measured to determine restrictions to fruit yield. Manipulation of leaf area/fruit number relationship demonstrates that the number of fruits and not the provision of photoassimilates from the source restricts biomass accumulation in the ggp1 lines. The lower gibberellins concentration measured in the flowers would contribute to the lower fruit set, thus impacting in tomato yield. Taken as a whole these results demonstrate that ascorbate biosynthetic pathway critically participates in tomato development and fruit production.
Collapse
Affiliation(s)
- Matías L Alegre
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales, Universidad Nacional de La Plata-CCT CONICET, La Plata, Argentina
| | - Charlotte Steelheart
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales, Universidad Nacional de La Plata-CCT CONICET, La Plata, Argentina
| | - Pierre Baldet
- UMR 1332 Biologie du Fruit Et Pathologie, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 Biologie du Fruit Et Pathologie, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Daniel Just
- UMR 1332 Biologie du Fruit Et Pathologie, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Gustavo E Gergoff Grozeff
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales, Universidad Nacional de La Plata-CCT CONICET, La Plata, Argentina
| | - Carlos G Bartoli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales, Universidad Nacional de La Plata-CCT CONICET, La Plata, Argentina.
| |
Collapse
|