1
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
2
|
Midorikawa K, Numata K, Kodama Y. Peroxisomes undergo morphological changes in a light-dependent manner with proximity to the nucleus. FEBS Lett 2023; 597:2178-2184. [PMID: 37428521 DOI: 10.1002/1873-3468.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
The size and shape of organelles can influence the rate of biochemical reactions in cells. Previous studies have suggested that organelle morphology changes due to intra- and extracellular environmental responses, affecting the metabolic efficiency of and signal transduction emanating from neighboring organelles. In this study, we tested the possibility that intracellularly distributed organelles exhibit a heterogeneous response to intra- and extracellular environments. We detected a high correlation between peroxisome morphology and distance to the nucleus in light-exposed cells. Moreover, the proximity area between chloroplasts and peroxisomes varied with distance to the nucleus. These results indicate that peroxisome morphology varies with proximity to the nucleus, suggesting the presence of a nucleus-peroxisome signal transduction cascade mediated by chloroplasts.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Keiji Numata
- Department of Material Chemistry, Kyoto University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| |
Collapse
|
3
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
4
|
Rahman A, Tajti J, Majláth I, Janda T, Prerostova S, Ahres M, Pál M. Influence of a phyA Mutation on Polyamine Metabolism in Arabidopsis Depends on Light Spectral Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1689. [PMID: 37111912 PMCID: PMC10146636 DOI: 10.3390/plants12081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The aim of the study was to reveal the influence of phyA mutations on polyamine metabolism in Arabidopsis under different spectral compositions. Polyamine metabolism was also provoked with exogenous spermine. The polyamine metabolism-related gene expression of the wild type and phyA plants responded similarly under white and far-red light conditions but not at blue light. Blue light influences rather the synthesis side, while far red had more pronounced effects on the catabolism and back-conversion of the polyamines. The observed changes under elevated far-red light were less dependent on PhyA than the blue light responses. The polyamine contents were similar under all light conditions in the two genotypes without spermine application, suggesting that a stable polyamine pool is important for normal plant growth conditions even under different spectral conditions. However, after spermine treatment, the blue regime had more similar effects on synthesis/catabolism and back-conversion to the white light than the far-red light conditions. The additive effects of differences observed on the synthesis, back-conversion and catabolism side of metabolism may be responsible for the similar putrescine content pattern under all light conditions, even in the presence of an excess of spermine. Our results demonstrated that both light spectrum and phyA mutation influence polyamine metabolism.
Collapse
Affiliation(s)
- Altafur Rahman
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Judit Tajti
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 11720 Prague, Czech Republic
| | - Mohamed Ahres
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| |
Collapse
|
5
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
6
|
Muhammad D, Smith KA, Bartel B. Plant peroxisome proteostasis-establishing, renovating, and dismantling the peroxisomal proteome. Essays Biochem 2022; 66:229-242. [PMID: 35538741 PMCID: PMC9375579 DOI: 10.1042/ebc20210059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022]
Abstract
Plant peroxisomes host critical metabolic reactions and insulate the rest of the cell from reactive byproducts. The specialization of peroxisomal reactions is rooted in how the organelle modulates its proteome to be suitable for the tissue, environment, and developmental stage of the organism. The story of plant peroxisomal proteostasis begins with transcriptional regulation of peroxisomal protein genes and the synthesis, trafficking, import, and folding of peroxisomal proteins. The saga continues with assembly and disaggregation by chaperones and degradation via proteases or the proteasome. The story concludes with organelle recycling via autophagy. Some of these processes as well as the proteins that facilitate them are peroxisome-specific, while others are shared among organelles. Our understanding of translational regulation of plant peroxisomal protein transcripts and proteins necessary for pexophagy remain based in findings from other models. Recent strides to elucidate transcriptional control, membrane dynamics, protein trafficking, and conditions that induce peroxisome turnover have expanded our knowledge of plant peroxisomal proteostasis. Here we review our current understanding of the processes and proteins necessary for plant peroxisome proteostasis-the emergence, maintenance, and clearance of the peroxisomal proteome.
Collapse
Affiliation(s)
| | - Kathryn A Smith
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
7
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
8
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
9
|
Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. HORTICULTURE RESEARCH 2021; 8:194. [PMID: 34465753 PMCID: PMC8408258 DOI: 10.1038/s41438-021-00629-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Ultraviolet-B radiation (280-315 nm), perceived by the plant photoreceptor UVR8, is a key environmental signal that influences plant growth and development and can reduce disease and pest incidence. The positive effect of UV-B on disease resistance and incidence in various plant species supports the implementation of supplemental UV-B radiation in sustainable crop production. However, despite many studies focusing on UV-B light, there is no consensus on the best mode of application. This review aims to analyze, evaluate, and organize the different application strategies of UV-B radiation in crop production with a focus on disease resistance. We summarize the physiological effects of UV-B light on plants and discuss how plants perceive and transduce UV-B light by the UVR8 photoreceptor as well as how this perception alters plant specialized metabolite production. Next, we bring together conclusions of various studies with respect to different UV-B application methods to improve plant resistance. In general, supplemental UV-B light has a positive effect on disease resistance in many plant-pathogen combinations, mainly through the induction of the production of specialized metabolites. However, many variables (UV-B light source, plant species, dose and intensity, timing during the day, duration, background light, etc.) make it difficult to compare and draw general conclusions. We compiled the information of recent studies on UV-B light applications, including e.g., details on the UV-B light source, experimental set-up, calculated UV-B light dose, intensity, and duration. This review provides practical insights and facilitates future research on UV-B radiation as a promising tool to reduce disease and pest incidence.
Collapse
Affiliation(s)
- Prisca Meyer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
10
|
Azadi AS, Carmichael RE, Kovacs WJ, Koster J, Kors S, Waterham HR, Schrader M. A Functional SMAD2/3 Binding Site in the PEX11β Promoter Identifies a Role for TGFβ in Peroxisome Proliferation in Humans. Front Cell Dev Biol 2020; 8:577637. [PMID: 33195217 PMCID: PMC7644849 DOI: 10.3389/fcell.2020.577637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFβ application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the β isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11β, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11β points to the involvement of the TGFβ signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.
Collapse
Affiliation(s)
- Afsoon S Azadi
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ruth E Carmichael
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zurich, Switzerland
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan Kors
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Terrón-Camero LC, Rodríguez-Serrano M, Sandalio LM, Romero-Puertas MC. Nitric oxide is essential for cadmium-induced peroxule formation and peroxisome proliferation. PLANT, CELL & ENVIRONMENT 2020; 43:2492-2507. [PMID: 32692422 DOI: 10.1111/pce.13855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and nitrosylated derivatives are produced in peroxisomes, but the impact of NO metabolism on organelle functions remains largely uncharacterised. Double and triple NO-related mutants expressing cyan florescent protein (CFP)-SKL (nox1 × px-ck and nia1 nia2 × px-ck) were generated to determine whether NO regulates peroxisomal dynamics in response to cadmium (Cd) stress using confocal microscopy. Peroxule production was compromised in the nia1 nia2 mutants, which had lower NO levels than the wild-type plants. These findings show that NO is produced early in the response to Cd stress and was involved in peroxule production. Cd-induced peroxisomal proliferation was analysed using electron microscopy and by the accumulation of the peroxisomal marker PEX14. Peroxisomal proliferation was inhibited in the nia1 nia2 mutants. However, the phenotype was recovered by exogenous NO treatment. The number of peroxisomes and oxidative metabolism were changed in the NO-related mutant cells. Furthermore, the pattern of oxidative modification and S-nitrosylation of the catalase (CAT) protein was changed in the NO-related mutants in both the absence and presence of Cd stress. Peroxisome-dependent signalling was also affected in the NO-related mutants. Taken together, these results show that NO metabolism plays an important role in peroxisome functions and signalling.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
12
|
Sandalio LM, Peláez-Vico MA, Romero-Puertas MC. Peroxisomal Metabolism and Dynamics at the Crossroads Between Stimulus Perception and Fast Cell Responses to the Environment. Front Cell Dev Biol 2020; 8:505. [PMID: 32676503 PMCID: PMC7333514 DOI: 10.3389/fcell.2020.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
13
|
Piacentini D, Corpas FJ, D'Angeli S, Altamura MM, Falasca G. Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:312-323. [PMID: 32000108 DOI: 10.1016/j.plaphy.2020.01.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 05/21/2023]
Abstract
In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex.
Collapse
Affiliation(s)
- D Piacentini
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008, Granada, Spain
| | - S D'Angeli
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - M M Altamura
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| | - G Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| |
Collapse
|
14
|
Kozuka T, Sawada Y, Imai H, Kanai M, Hirai MY, Mano S, Uemura M, Nishimura M, Kusaba M, Nagatani A. Regulation of Sugar and Storage Oil Metabolism by Phytochrome during De-etiolation. PLANT PHYSIOLOGY 2020; 182:1114-1129. [PMID: 31748417 PMCID: PMC6997681 DOI: 10.1104/pp.19.00535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/02/2019] [Indexed: 05/02/2023]
Abstract
Exposure of dark-grown (etiolated) seedlings to light induces the heterotrophic-to-photoautotrophic transition (de-etiolation) processes, including the formation of photosynthetic machinery in the chloroplast and cotyledon expansion. Phytochrome is a red (R)/far-red (FR) light photoreceptor that is involved in the various aspects of de-etiolation. However, how phytochrome regulates metabolic dynamics in response to light stimulus has remained largely unknown. In this study, to elucidate the involvement of phytochrome in the metabolic response during de-etiolation, we performed widely targeted metabolomics in Arabidopsis (Arabidopsis thaliana) wild-type and phytochrome A and B double mutant seedlings de-etiolated under R or FR light. The results revealed that phytochrome had strong impacts on the primary and secondary metabolism during the first 24 h of de-etiolation. Among those metabolites, sugar levels decreased during de-etiolation in a phytochrome-dependent manner. At the same time, phytochrome upregulated processes requiring sugars. Triacylglycerols are stored in the oil bodies as a source of sugars in Arabidopsis seedlings. Sugars are provided from triacylglycerols through fatty acid β-oxidation and the glyoxylate cycle in glyoxysomes. We examined if and how phytochrome regulates sugar production from oil bodies. Irradiation of the etiolated seedlings with R and FR light dramatically accelerated oil body mobilization in a phytochrome-dependent manner. Glyoxylate cycle-deficient mutants not only failed to mobilize oil bodies but also failed to develop thylakoid membranes and expand cotyledon cells upon exposure to light. Hence, phytochrome plays a key role in the regulation of metabolism during de-etiolation.
Collapse
Affiliation(s)
- Toshiaki Kozuka
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Imai
- United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Hinojosa L, Sanad MNME, Jarvis DE, Steel P, Murphy K, Smertenko A. Impact of heat and drought stress on peroxisome proliferation in quinoa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1144-1158. [PMID: 31108001 DOI: 10.1111/tpj.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Although peroxisomes play a key role in plant metabolism under both normal and stressful growth conditions, the impact of drought and heat stress on the peroxisomes remains unknown. Quinoa represents an informative system for dissecting the impact of abiotic stress on peroxisome proliferation because it is adapted to marginal environments. Here we determined the correlation of peroxisome abundance with physiological responses and yield under heat, drought and heat plus drought stresses in eight genotypes of quinoa. We found that all stresses caused a reduction in stomatal conductance and yield. Furthermore, H2 O2 content increased under drought and heat plus drought. Principal component analysis demonstrated that peroxisome abundance correlated positively with H2 O2 content in leaves and correlated negatively with yield. Pearson correlation coefficient for yield and peroxisome abundance (r = -0.59) was higher than for commonly used photosynthetic efficiency (r = 0.23), but comparable to those for classical stress indicators such as soil moisture content (r = 0.51) or stomatal conductance (r = 0.62). Our work established peroxisome abundance as a cellular sensor for measuring responses to heat and drought stress in the genetically diverse populations. As heat waves threaten agricultural productivity in arid climates, our findings will facilitate identification of genetic markers for improving yield of crops under extreme weather patterns.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
| | - David E Jarvis
- Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA
| | - Patrick Steel
- Department of Chemistry, Durham University, Durham, UK
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Olmedilla A, Sandalio LM. Selective Autophagy of Peroxisomes in Plants: From Housekeeping to Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:1021. [PMID: 31555306 PMCID: PMC6722239 DOI: 10.3389/fpls.2019.01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Peroxisomes are dynamic organelles involved in multiple functions, including oxygen and nitrogen reactive species metabolism. In plants, these organelles have a close relationship with chloroplasts and mitochondria, characterized by intense metabolic activity and signal transduction. Peroxisomes undergo rapid changes in size, morphology, and abundance depending on the plant development stage and environmental conditions. As peroxisomes are essential not only for redox homeostasis but also for sensing stress, signaling transduction, and cell survival, their formation and degradation need to be rigorously regulated. In this review, new insights into the regulation of plant peroxisomes are briefly described, with a particular emphasis on pexophagy components and their regulation.
Collapse
Affiliation(s)
- Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
18
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
20
|
Oikawa K, Hayashi M, Hayashi Y, Nishimura M. Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:836-852. [PMID: 30916439 DOI: 10.1111/jipb.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions, migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles. In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, 526-0829, Japan
| | - Yasuko Hayashi
- Department of Biology, Faculty of science, Niigata University, Niigata, 950-2181, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| |
Collapse
|
21
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
22
|
Pan R, Reumann S, Lisik P, Tietz S, Olsen LJ, Hu J. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1028-1050. [PMID: 29877633 DOI: 10.1111/jipb.12670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosynthesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry (MS)-based proteomics has been performed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of peroxisomes from Arabidopsis leaves given a 48-h dark treatment. Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identified a total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the full function of plant peroxisomes.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sigrun Reumann
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, D-22609 Hamburg, Germany
| | - Piotr Lisik
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Stefanie Tietz
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Laura J Olsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Ebeed HT, Stevenson SR, Cuming AC, Baker A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4971-4985. [PMID: 30032264 PMCID: PMC6137984 DOI: 10.1093/jxb/ery266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/09/2018] [Indexed: 05/06/2023]
Abstract
Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of β-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.
Collapse
Affiliation(s)
- Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Sean R Stevenson
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
24
|
Xu C, Cao H, Xu E, Zhang S, Hu Y. Genome-Wide Identification of Arabidopsis LBD29 Target Genes Reveals the Molecular Events behind Auxin-Induced Cell Reprogramming during Callus Formation. PLANT & CELL PHYSIOLOGY 2018; 59:744-755. [PMID: 29121271 DOI: 10.1093/pcp/pcx168] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/27/2017] [Indexed: 05/18/2023]
Abstract
Auxin-induced callus formation represents an important cell reprogramming process during in vitro regeneration of plants, in which the pericycle or pericycle-like cells within plant organs are reprogrammed into the pluripotent cell mass termed callus that is generally required for subsequent regeneration of root or shoot. However, the molecular events behind cell reprogramming during auxin-induced callus formation are largely elusive. We previously identified that auxin-induced LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors act as the master regulators to trigger auxin-induced callus formation. Here, by ChIP-seq (chromatin immunoprecipitation-based sequencing) and RNA sequencing approaches, we identified the potential LBD29 target genes at the genome-wide level and outlined the molecular events of LBD-triggered cell reprogramming during callus formation. We showed that LBD29 preferentially bound to the G-box (CACGTG) and TGGGC[C/T] motifs and potentially targeted >350 genes, among which the genes related to methylation, reactive oxygen species (ROS) metabolism, cell wall hydrolysis and lipid metabolism were rapidly activated, while most of the light-responsive genes were suppressed by LBD29. Further examination of a few representative genes validated that they were targeted by LBD29 and participated in the regulation of cell reprogramming during callus formation. Our data not only outline a framework of the early molecular events behind auxin-induced cell reprogramming of callus formation, but also provide a valuable resource for identification of genes that regulate cell fate switch during in vitro regeneration of plants.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifen Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
25
|
Frick EM, Strader LC. They Can Handle the Stress: MPK17 and PMD1 act in a salt-specific pathway. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428518. [PMID: 29377762 PMCID: PMC5846545 DOI: 10.1080/15592324.2018.1428518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Arabidopsis MAP KINASE17 (MPK17) was recently identified as a novel regulator of peroxisome division in response to salt stress. Further, the known peroxisome division factor PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1) genetically acts downstream of MPK17. We previously showed that mutants defective in either MPK17 or PMD1 fail to proliferate peroxisomes in response to NaCl stress. Here, we show that, unlike their abnormal NaCl responses, mpk17 and pmd1 mutants display wild type responses to other stresses known to alter peroxisome proliferation, suggesting that plants distinguish among peroxisome division-inducing stresses and alter the peroxisome division pathway based on the stress applied.
Collapse
Affiliation(s)
- E. M. Frick
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - L. C. Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
26
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
27
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Frick EM, Strader LC. Kinase MPK17 and the Peroxisome Division Factor PMD1 Influence Salt-induced Peroxisome Proliferation. PLANT PHYSIOLOGY 2018; 176:340-351. [PMID: 28931630 PMCID: PMC5761782 DOI: 10.1104/pp.17.01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
Peroxisomes are small organelles that house many oxidative reactions. Peroxisome proliferation is induced under multiple stress conditions, including salt stress; however, factors regulating this process are not well defined. We have identified a role for Arabidopsis (Arabidopsis thaliana) MAP KINASE17 (MPK17) in affecting peroxisome division in a manner that requires the known peroxisome division factor PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1). MPK17 and PMD1 are involved in peroxisome proliferation in response to NaCl stress. Additionally, we found that PMD1 is an actin-binding protein and that a functioning actin cytoskeleton is required for NaCl-induced peroxisome division. Our data suggest roles for MPK17 and PMD1 in influencing the numbers and cellular distribution of peroxisomes through the cytoskeleton-peroxisome connection. These findings expand our understanding of peroxisome division and potentially identify factors connecting the actin cytoskeleton and peroxisome proliferation.
Collapse
Affiliation(s)
- Elizabeth M Frick
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
29
|
Desai M, Pan R, Hu J. Arabidopsis Forkhead-Associated Domain Protein 3 negatively regulates peroxisome division. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:454-458. [PMID: 28332291 DOI: 10.1111/jipb.12542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
Peroxisomes are ubiquitous and dynamic eukaryotic organelles capable of altering their abundance in response to environmental and developmental cues, yet the regulatory mechanism of plant peroxisome division/proliferation is unclear. To identify transcriptional regulators of the peroxisome division factor gene PEX11b, we performed a nuclear pull-down experiment and identified Arabidopsis Forkhead-Associated Domain Protein 3 (FHA3) as a novel protein that binds to the promoter of PEX11b. Our data supported the conclusion that, in contrast to the previously identified HY5 HOMOLOG (HYH) protein that promotes the transcription of PEX11b, FHA3 is a negative regulator of PEX11b expression and peroxisome division.
Collapse
Affiliation(s)
- Mintu Desai
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Ronghui Pan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Pan R, Hu J. Sequence and biochemical analysis of Arabidopsis SP1 protein, a regulator of organelle biogenesis. Commun Integr Biol 2017; 10:e1338991. [PMID: 28919939 PMCID: PMC5595426 DOI: 10.1080/19420889.2017.1338991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes, chloroplasts, and mitochondria are essential eukaryotic organelles that host a suite of metabolic processes crucial to energy metabolism and development. Regulatory mechanisms of the dynamics and biogenesis of these important organelles have begun to be discovered in plants. We recently showed that, aside from its previously reported role in targeting chloroplast protein import proteins, the Arabidopsis ubiquitin E3 ligase SP1 (suppressor of ppi1 locus1) negatively regulates peroxisome matrix protein import by promoting the ubiquitination and destabilization of PEX13 and possibly PEX14 and other components of the peroxisome protein import apparatus. Here, we compared protein sequence and domain structure of SP1-like proteins in Arabidopsis and their human homolog, Mitochondrial-Anchored Protein Ligase (MAPL). We further characterized SP1 protein in respect to its membrane topology and ubiquitin E3 ligase activity.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.,Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Deb R, Nagotu S. Versatility of peroxisomes: An evolving concept. Tissue Cell 2017; 49:209-226. [DOI: 10.1016/j.tice.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
32
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
33
|
E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E7307-E7316. [PMID: 27799549 DOI: 10.1073/pnas.1613530113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisome protein docking complex PEX13-PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin-proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.
Collapse
|
34
|
Del Río LA, López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:1364-1376. [PMID: 27081099 DOI: 10.1093/pcp/pcw076] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/07/2016] [Indexed: 05/19/2023]
Abstract
In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2·- ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.
Collapse
Affiliation(s)
- Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| | - Eduardo López-Huertas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| |
Collapse
|
35
|
Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M, Hu J, Sandalio LM. Peroxisomes Extend Peroxules in a Fast Response to Stress via a Reactive Oxygen Species-Mediated Induction of the Peroxin PEX11a. PLANT PHYSIOLOGY 2016; 171:1665-74. [PMID: 27208303 PMCID: PMC4936588 DOI: 10.1104/pp.16.00648] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 05/19/2023]
Abstract
Peroxisomes are highly dynamic and metabolically active organelles that play an important role in cellular functions, including reactive oxygen species (ROS) metabolism. Peroxisomal dynamics, such as the proliferation, movement, and production of dynamic extensions called peroxules, have been associated with ROS in plant cells. However, the function and regulation of peroxules are largely unknown. Using confocal microscopy, we have shown that treatment of Arabidopsis leaves with the heavy metal cadmium produces time course-dependent changes in peroxisomal dynamics, starting with peroxule formation, followed by peroxisome proliferation, and finally returning to the normal morphology and number. These changes during Cd treatment were regulated by NADPH oxidase (C and F)-related ROS production. Peroxule formation is a general response to stimuli such as arsenic and is regulated by peroxin 11a (PEX11a), as Arabidopsis pex11a RNAi lines are unable to produce peroxules under stress conditions. The pex11a line showed higher levels of lipid peroxidation content and lower expression of genes involved in antioxidative defenses and signaling, suggesting that these extensions are involved in regulating ROS accumulation and ROS-dependent gene expression in response to stress. Our results demonstrate that PEX11a and peroxule formation play a key role in regulating stress perception and fast cell responses to environmental cues.
Collapse
Affiliation(s)
- María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain (M.R.-S.; M.C.R.-P.; M.S.-F.; L.M.S.); and Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (J.H.)
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain (M.R.-S.; M.C.R.-P.; M.S.-F.; L.M.S.); and Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (J.H.)
| | - María Sanz-Fernández
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain (M.R.-S.; M.C.R.-P.; M.S.-F.; L.M.S.); and Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (J.H.)
| | - Jianping Hu
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain (M.R.-S.; M.C.R.-P.; M.S.-F.; L.M.S.); and Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (J.H.)
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain (M.R.-S.; M.C.R.-P.; M.S.-F.; L.M.S.); and Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (J.H.)
| |
Collapse
|
36
|
Montgomery BL, Lechno-Yossef S, Kerfeld CA. Interrelated modules in cyanobacterial photosynthesis: the carbon-concentrating mechanism, photorespiration, and light perception. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2931-2940. [PMID: 27117337 DOI: 10.1093/jxb/erw162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we consider the cyanobacterial carbon-concentrating mechanism (CCM) and photorespiration in the context of the regulation of light harvesting, using a conceptual framework borrowed from engineering: modularity. Broadly speaking, biological 'modules' are semi-autonomous functional units such as protein domains, operons, metabolic pathways, and (sub)cellular compartments. They are increasingly recognized as units of both evolution and engineering. Modules may be connected by metabolites, such as NADPH, ATP, and 2PG. While the Calvin-Benson-Bassham Cycle and photorespiratory salvage pathways can be considered as metabolic modules, the carboxysome, the core of the cyanobacterial CCM, is both a structural and a metabolic module. In photosynthetic organisms, which use light cues to adapt to the external environment and which tune the photosystems to provide the ATP and reducing power for carbon fixation, light-regulated modules are critical. The primary enzyme of carbon fixation, RuBisCO, uses CO2 as a substrate, which is accumulated via the CCM. However RuBisCO also has a secondary reaction in which it utilizes O2, a by-product of the photochemical modules, which leads to photorespiration. A complete understanding of the interplay among CCM and photorespiration is predicated on uncovering their connections to the light reactions and the regulatory factors and pathways that tune these modules to external cues. We probe this connection by investigating light inputs into the CCM and photorespiratory pathways in the chromatically acclimating cyanobacterium Fremyella diplosiphon.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Kamisugi Y, Mitsuya S, El‐Shami M, Knight CD, Cuming AC, Baker A. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant. THE NEW PHYTOLOGIST 2016; 209:576-89. [PMID: 26542980 PMCID: PMC4738463 DOI: 10.1111/nph.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 05/22/2023]
Abstract
Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.
Collapse
Affiliation(s)
- Yasuko Kamisugi
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Shiro Mitsuya
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mahmoud El‐Shami
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Celia D. Knight
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew C. Cuming
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Alison Baker
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
38
|
Gao H, Metz J, Teanby NA, Ward AD, Botchway SW, Coles B, Pollard MR, Sparkes I. In Vivo Quantification of Peroxisome Tethering to Chloroplasts in Tobacco Epidermal Cells Using Optical Tweezers. PLANT PHYSIOLOGY 2016; 170:263-72. [PMID: 26518344 PMCID: PMC4704594 DOI: 10.1104/pp.15.01529] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/24/2015] [Indexed: 05/19/2023]
Abstract
Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes.
Collapse
Affiliation(s)
- Hongbo Gao
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Jeremy Metz
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Nick A Teanby
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Andy D Ward
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Stanley W Botchway
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Benjamin Coles
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Mark R Pollard
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| | - Imogen Sparkes
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom (H.G., J.M., I.S.);School of Earth Sciences, University of Bristol, Clifton, Bristol BS8 1RJ, United Kingdom (N.A.T.); andCentral Laser Facility, Science and Technology Facilities Council, Didcot, Oxon OX11 0FA, United Kingdom (A.D.W., S.W.B., B.C., M.R.P.)
| |
Collapse
|
39
|
Using Co-Expression Analysis and Stress-Based Screens to Uncover Arabidopsis Peroxisomal Proteins Involved in Drought Response. PLoS One 2015; 10:e0137762. [PMID: 26368942 PMCID: PMC4569587 DOI: 10.1371/journal.pone.0137762] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their co-expression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to environmental stresses.
Collapse
|
40
|
Desai M, Kaur N, Hu J. Ectopic expression of the RING domain of the Arabidopsis peroxin2 protein partially suppresses the phenotype of the photomorphogenic mutant de-etiolated1. PLoS One 2014; 9:e108473. [PMID: 25248106 PMCID: PMC4172754 DOI: 10.1371/journal.pone.0108473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/27/2014] [Indexed: 11/25/2022] Open
Abstract
The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED 1/FUSCA (COP/DET1/FUS) proteins repress photomorphogenesis by degrading positive regulators of photomorphogenesis, such as the transcription factor LONG HYPOCOTYL5 (HY5). The gain-of-function mutant ted3, which partially suppresses the det1 mutant, contains a missense mutation of a Val-to-Met substitution before the C-terminal RING finger domain of the peroxisomal membrane protein PEROXIN2 (PEX2). We hypothesized that a truncated PEX2 protein, which only contains the C-terminal RING domain, is initiated by the ted3 mutation and by-passes the function of DET1 in the nucleus. Although we have not been able to detect this hypothetic peptide in vivo, we show in this study that, when fused with a fluorescent protein and overexpressed, the PEX2 RING domain can localize to the nucleus, where it is able to interact with HY5, and PEX2 RING domain overexpression in det1 also partially suppresses the det1 phenotype. Compared with det1, ted3 det1 plants have significantly decreased levels of the HY5 protein and the expression of most of the analyzed HY5 target genes is altered to levels comparable to those in hy5. We conclude that compromised activity of HY5 may have been mainly responsible for the partial reversal of the det1 phenotype in ted3 det1. Our data support the notion that, when appropriately localized, some RING finger domains may be able to achieve neomorphic effects in the cell.
Collapse
Affiliation(s)
- Mintu Desai
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Navneet Kaur
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Plant Biology Department, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Dinh PTY, Knoblauch M, Elling AA. Nondestructive imaging of plant-parasitic nematode development and host response to nematode pathogenesis. PHYTOPATHOLOGY 2014; 104:497-506. [PMID: 24313744 DOI: 10.1094/phyto-08-13-0240-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The secluded lifestyle of endoparasitic plant nematodes hampers progress toward a comprehensive understanding of plant-nematode interactions. A novel technique that enables nondestructive, long-term observations of a wide range of live nematodes in planta is presented here. As proof of principle, Pratylenchus penetrans, Heterodera schachtii, and Meloidogyne chitwoodi were labeled fluorescently with PKH26 and used to infect Arabidopsis thaliana grown in microscopy rhizosphere chambers. Nematode behavior, development, and morphology were observed for the full duration of each parasite's life cycle by confocal microscopy for up to 27 days after inoculation. PKH26 accumulated in intestinal lipid droplets and had no negative effect on nematode infectivity. This technique enabled visualization of Meloidogyne gall formation, nematode oogenesis, and nematode morphological features, such as the metacorpus, vulva, spicules, and cuticle. Additionally, microscopy rhizosphere chambers were used to characterize plant organelle dynamics during M. chitwoodi infection. Peroxisome abundance strongly increased in early giant cells but showed a marked decrease at later stages of feeding site development, which suggests a modulation of plant peroxisomes by root-knot nematodes during the infection process. Taken together, this technique facilitates studies aimed at deciphering plant-nematode interactions at the cellular and subcellular level and enables unprecedented insights into nematode behavior in planta.
Collapse
|
42
|
Ye N, Yang G, Chen Y, Zhang C, Zhang J, Peng X. Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:170-180. [PMID: 24401104 DOI: 10.1111/jipb.12125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Mutations in the photorespiration pathway display a lethal phenotype in atmospheric air, which can be fully recovered by elevated CO2 . An exception is that mutants of peroxisomal hydroxypyruvate reductase (HPR1) do not have this phenotype, indicating the presence of cytosolic bypass in the photorespiration pathway. In this study, we constructed overexpression of the OsHPR1 gene and RNA interference plants of OsHPR1 and OsHPR2 genes in rice (Oryza sativa L. cv. Zhonghua 11). Results from reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and enzyme assays showed that HPR1 activity changed significantly in corresponding transgenic lines without any effect on HPR2 activity, which is the same for HPR2. However, metabolite analysis and the serine glyoxylate aminotransferase (SGAT) activity assay showed that the metabolite flux of photorespiration was disturbed in RNAi lines of both HPR genes. Furthermore, HPR1 and HPR2 proteins were located to the peroxisome and cytosol, respectively, by transient expression experiment. Double mutant hpr1 × hpr2 was generated by crossing individual mutant of hpr1 and hpr2. The phenotypes of all transgenic lines were determined in ambient air and CO2 -elevated air. The phenotype typical of photorespiration mutants was observed only where activity of both HPR1 and HPR2 were downregulated in the same line. These findings demonstrate that two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice.
Collapse
Affiliation(s)
- Nenghui Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
43
|
Ram H, Priya P, Jain M, Chattopadhyay S. Genome-wide DNA binding of GBF1 is modulated by its heterodimerizing protein partners, HY5 and HYH. MOLECULAR PLANT 2014; 7:448-451. [PMID: 24157608 DOI: 10.1093/mp/sst143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Hathi Ram
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
44
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
45
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Gangappa SN, Holm M, Botto JF. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. PLANT SIGNALING & BEHAVIOR 2013; 8:25208. [PMID: 23733077 PMCID: PMC3999086 DOI: 10.4161/psb.25208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BBX24 and BBX25 are two important transcriptional regulators, which regulate seedling photomorphogenesis in Arabidopsis. Very recently, we have shown that BBX24 and BBX25 negatively regulate the expression of BBX22, reducing the function of HY5, by physically interacting with its bZIP domain. (1) Furthermore, HY5 HOMOLOG, HYH, has been reported to heterodimerize with HY5 and enhances its photomorphogenic function in seedling de-etiolation by serving as coactivator. (8) Here, we further report that BBX24 and BBX25 physically interact with HYH. The physical interactions of BBX24 and BBX25 with HYH could lead to depletion of HYH molecules from the active pool and, thus indirectly, reduce the function of HY5 in promoting photomorphogenesis. Hence, our results suggest another mode of regulation by which BBX24 and BBX25 exert their negative effects on HY5 indirectly through HYH for the fine-tuning of seedling photomorphogenesis.
Collapse
Affiliation(s)
- Sreeramaiah N. Gangappa
- Department of Biological and Environmental Sciences; Gothenburg University; Gothenburg, Sweden
- Current affiliation: Department of Biotechnology; National Institute of Technology; Durgapur, West Bengal, India
| | - Magnus Holm
- Department of Biological and Environmental Sciences; Gothenburg University; Gothenburg, Sweden
| | - Javier F. Botto
- Instituto de Investigaciones Fisiológicas y EcológicasVinculadas a la Agricultura; Facultad de Agronomía; Universidad de Buenos Aires y ConsejoNacional de InvestigacionesCientíficas y Técnicas; Buenos Aires, Argentina
- Correspondence to: Javier F. Botto,
| |
Collapse
|
47
|
Sarmiento F. The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development. PLANT SIGNALING & BEHAVIOR 2013; 8:e23831. [PMID: 23425851 PMCID: PMC7030190 DOI: 10.4161/psb.23831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants depend on light during all phases of its life cycle, and have evolved a complex signaling network to constantly monitor its surroundings. Photomorphogenesis, a process during which the plant reprograms itself in order to dwell life in presence of light is one of the most studied phenomena in plants. Recent mutant analyses using model plant Arabidopsis thaliana and protein interaction assays have unraveled a new set of players, an 8-member subfamily of B-box proteins, known as BBX subfamily IV. For the members of this subfamily, positive (BBX21, BBX22) as well as negative (BBX24) functions have been described for its members, showing a strong association to two major players of the photomorphogenic cascade, HY5 and COP1. The roles of these new BBX regulators are not restricted to photomorphogenesis, but also have functions in other facets of light-dependent development. Therefore this newly identified set of regulators has opened up new insights into the understanding of the fine-tuning of this complex process.
Collapse
Affiliation(s)
- Felipe Sarmiento
- Facultad de Agronomía; Universidad Nacional de Colombia; Bogotá, Colombia
- Correspondence to: Felipe Sarmiento,
| |
Collapse
|
48
|
León J. Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 2013; 69:299-313. [PMID: 23821155 DOI: 10.1007/978-94-007-6889-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Jasmonates are a family of oxylipins derived from linolenic acid that control plant responses to biotic and abiotic stress factors and also regulate plant growth and development. Jasmonic acid (JA) is synthesized through the octadecanoid pathway that involves the translocation of lipid intermediates from the chloroplast membranes to the cytoplasm and later on into peroxisomes. The peroxisomal steps of the pathway involve the reduction of cis-(+)-12-oxophytodienoic acid (12-OPDA) and dinor-OPDA, which are the final products of the choroplastic phase of the biosynthetic pathway acting on 18:3 and 16:3 fatty acids, respectively. Further shortening of the carbon side-chain by successive rounds of β-oxidation reactions are required to complete JA biosynthesis. After peroxisomal reactions are completed, (+)-7-iso-JA is synthesized and then transported to the cytoplasm where is conjugated to the amino acid isoleucine to form the bioactive form of the hormone (+)-7-iso-JA-Ile (JA-Ile). Further regulatory activity of JA-Ile triggering gene activation in the jasmonate-dependent signaling cascades is exerted through a process mediated by the perception via the E3 ubiquitin ligase COI1 and further ligand-activated interaction with the family of JAZ repressor proteins. Upon interaction, JAZ are ubiquitinated and degraded by the proteasome, thus releasing transcription factors such as MYC2 from repression and allowing the activation of JA-responsive genes.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, Valencia, Spain,
| |
Collapse
|
49
|
Abstract
In higher plants, light-grown seedlings exhibit photomorphogenesis, a developmental program controlled by a complex web of interactions between photoreceptors, central repressors, and downstream effectors that leads to changes in gene expression and physiological changes. Light induces peroxisomal proliferation through a phytochrome A-mediated pathway, in which the transcription factor HYH activates the peroxisomal proliferation factor gene PEX11b. Microarray analysis revealed that light activates the expression of a number of peroxisomal genes, especially those involved in photorespiration, a process intimately associated with photosynthesis. In contrast, light represses the expression of genes involved in β-oxidation and the glyoxylate cycle, peroxisomal pathways essential for seedling establishment before photosynthesis begins. Furthermore, the peroxisome is a source of signaling molecules, notably nitric oxide, which promotes photomorphogenesis. Lastly, a gain-of-function mutant of the peroxisomal membrane-tethered RING-type E3 ubiquitin ligase PEX2 partially suppresses the phenotype of the photomorphogenic mutant det1. Possible mechanisms underlying this phenomenon are discussed.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
50
|
Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK. Plant peroxisomes: biogenesis and function. THE PLANT CELL 2012; 24:2279-303. [PMID: 22669882 PMCID: PMC3406917 DOI: 10.1105/tpc.112.096586] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.
Collapse
Affiliation(s)
- Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|