1
|
Li Y, Wang J, Zhong S, Huo Q, Wang Q, Shi Y, Liu H, Liu J, Song Y, Fang X, Lin Z. MADS-box encoding gene Tunicate1 positively controls maize yield by increasing leaf number above the ear. Nat Commun 2024; 15:9799. [PMID: 39532880 PMCID: PMC11557842 DOI: 10.1038/s41467-024-54148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The leaves above the ear serve as a major source of carbohydrates for grain filling in maize. However, increasing the number of leaves above the ear to strengthen the source and improve maize yield remains challenging in modern maize breeding. Here, we clone the causative gene of the quantitative trait locus (QTL) associated with the number of leaves above the ear. The causative gene is the previously reported MADS-box domain-encoding gene Tunicate1 (Tu1), which is responsible for the phenotype of pod corn or Tunicate maize. We show that Tu1 can substantially increase the leaf number above the ear while maintaining the source‒sink balance. A distal upstream 5-base pair (bp) insertion of Tu1 originating from a popcorn landrace enhances its transcription, coregulates its plastochron activators and repressors, and increases the number of leaves above the ear. Field tests demonstrate that the 5-bp insertion of Tu1 can increase grain yields by 11.4% and 9.5% under regular and dense planting conditions, respectively. The discovery of this favorable Tu1 allele from landraces suggests that landraces represent a valuable resource for high-yield breeding of maize.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jian Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Shuyang Zhong
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding; China Agricultural University, 100193, Beijing, China
| | - Hangqin Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jiacheng Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yang Song
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Xiaojian Fang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Zhongwei Lin
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
2
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Qu Y, Zhang Y, Zhang Z, Fan S, Qi Y, Wang F, Wang M, Feng M, Liu X, Ren H. Advance Research on the Pre-Harvest Sprouting Trait in Vegetable Crop Seeds. Int J Mol Sci 2023; 24:17171. [PMID: 38138999 PMCID: PMC10742742 DOI: 10.3390/ijms242417171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.
Collapse
Affiliation(s)
- Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaqi Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu Qi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fang Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingqi Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Min Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| |
Collapse
|
4
|
Busche M, Hake S, Brunkard JO. Terminal ear 1 and phytochromes B1/B2 regulate maize leaf initiation independently. Genetics 2022; 223:6887217. [PMID: 36495288 PMCID: PMC9910401 DOI: 10.1093/genetics/iyac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Higher plants generate new leaves from shoot meristems throughout their vegetative lifespan. The tempo of leaf initiation is dynamically regulated by physiological cues, but little is known about the underlying genetic signaling pathways that coordinate this rate. Two maize (Zea mays) mutants, terminal ear1 (te1) and phytochrome B1;phytochrome B2 (phyB1;phyB2), oppositely affect leaf initiation rates and total leaf number at the flowering time: te1 mutants make leaves faster whereas phyB1;phyB2 mutants make leaves slower than wild-type plants. To test whether PhyB1, PhyB2, and TE1 act in overlapping or distinct pathways to regulate leaf initiation, we crossed te1 and phyB1;phyB2 created an F2 population segregating for these three mutations and quantified various phenotypes among the resulting genotypes, including leaf number, leaf initiation rate, plant height, leaf length, leaf width, number of juvenile leaves, stalk diameter, and dry shoot biomass. Leaf number and initiation rate in phyB1;phyB2;te1 plants fell between the extremes of the two parents, suggesting an additive genetic interaction between te1 and phyB1;phyB2 rather than epistasis. Therefore, we conclude that PhyB1, PhyB2, and TE1 likely control leaf initiation through distinct signaling pathways.
Collapse
Affiliation(s)
- Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA,Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Jacob O Brunkard
- Corresponding author: Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
5
|
Molecular Aspects of Seed Development Controlled by Gibberellins and Abscisic Acids. Int J Mol Sci 2022; 23:ijms23031876. [PMID: 35163798 PMCID: PMC8837179 DOI: 10.3390/ijms23031876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.
Collapse
|
6
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Wang Y, Zhang J, Sun M, He C, Yu K, Zhao B, Li R, Li J, Yang Z, Wang X, Duan H, Fu J, Liu S, Zhang X, Zheng J. Multi-Omics Analyses Reveal Systemic Insights into Maize Vivipary. PLANTS (BASEL, SWITZERLAND) 2021; 10:2437. [PMID: 34834800 PMCID: PMC8618366 DOI: 10.3390/plants10112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.
Collapse
Affiliation(s)
- Yiru Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Minghao Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Rui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Jian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Zongying Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Haiyang Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| |
Collapse
|
8
|
Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, Kusaba M. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. PLANT PHYSIOLOGY 2021; 186:767-781. [PMID: 33620479 PMCID: PMC8154090 DOI: 10.1093/plphys/kiab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Misaki Kamei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Present address: Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Shimoidai 1618, Matsuyama 791-0112, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Institute of Crop Science NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Author for communication:
| |
Collapse
|
9
|
Hibara KI, Miya M, Benvenuto SA, Hibara-Matsuo N, Mimura M, Yoshikawa T, Suzuki M, Kusaba M, Taketa S, Itoh JI. Regulation of the plastochron by three many-noded dwarf genes in barley. PLoS Genet 2021; 17:e1009292. [PMID: 33970916 PMCID: PMC8136844 DOI: 10.1371/journal.pgen.1009292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/20/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | - Masayuki Miya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sean Akira Benvenuto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Hibara-Matsuo
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | | | | | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shin Taketa
- Group of Genetic Resources and Functions, Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
11
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
13
|
Shi J, Tong Y. TaLAMP1 Plays Key Roles in Plant Architecture and Yield Response to Nitrogen Fertilizer in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 11:598015. [PMID: 33505409 PMCID: PMC7832495 DOI: 10.3389/fpls.2020.598015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
Understanding the molecular mechanisms in wheat response to nitrogen (N) fertilizer will help us to breed wheat varieties with improved yield and N use efficiency. Here, we cloned TaLAMP1-3A, -3B, and -3D, which were upregulated in roots and shoots of wheat by low N availability. In a hydroponic culture, lateral root length and N uptake were decreased in both overexpression and knockdown of TaLAMP1 at the seedling stage. In the field experiment with normal N supply, the grain yield of overexpression of TaLAMP1-3B is significantly reduced (14.5%), and the knockdown of TaLAMP1 was significantly reduced (15.5%). The grain number per spike of overexpression of TaLAMP1-3B was significantly increased (7.2%), but the spike number was significantly reduced (19.2%) compared with wild type (WT), although the grain number per spike of knockdown of TaLAMP1 was significantly decreased (15.3%), with no difference in the spike number compared with WT. Combined with the agronomic data from the field experiment of normal N and low N, both overexpression and knockdown of TaLAMP1 inhibited yield response to N fertilizer. Overexpressing TaLAMP1-3B greatly increased grain N concentration with no significant detrimental effect on grain yield under low N conditions; TaLAMP1-3 B is therefore valuable in engineering wheat for low input agriculture. These results suggested that TaLAMP1 is critical for wheat adaptation to N availability and in shaping plant architecture by regulating spike number per plant and grain number per spike. Optimizing TaLAMP1 expression may facilitate wheat breeding with improved yield, grain N concentration, and yield responses to N fertilizer.
Collapse
Affiliation(s)
- Ji Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Cao J, Chen L, Wang J, Xing J, Lv X, Maimaitijiang T, Lan H. Effects of genetic and environmental factors on variations of seed heteromorphism in Suaeda aralocaspica. AOB PLANTS 2020; 12:plaa044. [PMID: 33072248 PMCID: PMC7546916 DOI: 10.1093/aobpla/plaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
Seed heteromorphism is an adaptive strategy towards adversity in many halophytes. However, the underlying mechanisms and ecological significance of seed heteromorphism have not been deeply explored. Using Suaeda aralocaspica, a typical C4 annual halophyte without Kranz anatomy, we studied seed morphology, differentiation of morphs and fruit-setting patterns, and correlated these traits with germination responses, seed characteristics and heteromorphic seed ratio. To elucidate the genetic basis of seed heteromorphism, we analysed correlated patterns of gene expression for seed development-related genes as well. We observed that S. aralocaspica produced three types of seed morph: brown, large black and small black with differences in colour, size, mass and germination behaviour; the latter two were further distinguished by their origin in female or bisexual flowers, respectively. Further analysis revealed that seed heteromorphism was associated with genetic aspects including seed positioning, seed coat differentiation and seed developmental gene expression, while variations in seed heteromorphism may be associated with environmental conditions, e.g. annual precipitation, temperature, daylight and their monthly distribution in different calendar years. Seed heteromorphism and its variations in S. aralocaspica show multilevel regulation of the bet-hedging strategy that influences phenotypic plasticity, which is a consequence of internal genetic and external environmental factor interaction. Our findings contribute to the understanding of seed heteromorphism as a potential adaptive trait of desert plant species.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ling Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Xing
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiuyun Lv
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tayier Maimaitijiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Corresponding author’s e-mail address:
| |
Collapse
|
15
|
Yao M, Chen W, Kong J, Zhang X, Shi N, Zhong S, Ma P, Gallusci P, Jackson S, Liu Y, Hong Y. METHYLTRANSFERASE1 and Ripening Modulate Vivipary during Tomato Fruit Development. PLANT PHYSIOLOGY 2020; 183:1883-1897. [PMID: 32503901 PMCID: PMC7401104 DOI: 10.1104/pp.20.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 05/04/2023]
Abstract
Vivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of METHYLTRANSFERASE1 (SlMET1) promoted precocious seed germination and seedling growth within the tomato (Solanum lycopersicum) epimutant Colorless non-ripening (Cnr) fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including SlNCED SlNCED knockdown also induced viviparous seedling growth in Cnr fruits. Strikingly, Cnr ripening reversion suppressed vivipary. Moreover, neither SlMET1/SlNCED-virus-induced gene silencing nor transgenic SlMET1-RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.
Collapse
Affiliation(s)
- Mengqin Yao
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junhua Kong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, University of California, San Diego, California 92093
- Department of Statistics, University of Georgia, Athens, Georgia 30602
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia 30602
| | - Philippe Gallusci
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Stephen Jackson
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Yule Liu
- Centre for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom
| |
Collapse
|
16
|
Qiu Z, Chen S, Qi Y, Liu C, Zhai J, Xie S, Ma C. Exploring transcriptional switches from pairwise, temporal and population RNA-Seq data using deepTS. Brief Bioinform 2020; 22:5877690. [PMID: 32728687 DOI: 10.1093/bib/bbaa137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional switch (TS) is a widely observed phenomenon caused by changes in the relative expression of transcripts from the same gene, in spatial, temporal or other dimensions. TS has been associated with human diseases, plant development and stress responses. Its investigation is often hampered by a lack of suitable tools allowing comprehensive and flexible TS analysis for high-throughput RNA sequencing (RNA-Seq) data. Here, we present deepTS, a user-friendly web-based implementation that enables a fully interactive, multifunctional identification, visualization and analysis of TS events for large-scale RNA-Seq datasets from pairwise, temporal and population experiments. deepTS offers rich functionality to streamline RNA-Seq-based TS analysis for both model and non-model organisms and for those with or without reference transcriptome. The presented case studies highlight the capabilities of deepTS and demonstrate its potential for the transcriptome-wide TS analysis of pairwise, temporal and population RNA-Seq data. We believe deepTS will help research groups, regardless of their informatics expertise, perform accessible, reproducible and collaborative TS analyses of large-scale RNA-Seq data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuang Ma
- Bioinformatics Laboratory at Northwest A&F University
| |
Collapse
|
17
|
Hunter CT, Saunders JW, Magallanes-Lundback M, Christensen SA, Willett D, Stinard PS, Li QB, Lee K, DellaPenna D, Koch KE. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:799-813. [PMID: 29315977 DOI: 10.1111/tpj.13821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.
Collapse
Affiliation(s)
- Charles T Hunter
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Jonathan W Saunders
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| | - Maria Magallanes-Lundback
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Shawn A Christensen
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Denis Willett
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Philip S Stinard
- USDA-ARS, Maize Genetics Stock Center, 1102 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Qin-Bao Li
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Kwanghee Lee
- University of Connecticut, Plant Science and Landscape Architecture, 1376 Storrs Rd, Storrs, CT 06269, USA
| | - Dean DellaPenna
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Karen E Koch
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Grass inflorescence architecture and meristem determinacy. Semin Cell Dev Biol 2017; 79:37-47. [PMID: 29020602 DOI: 10.1016/j.semcdb.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
The grass inflorescence is striking not only for its beauty and diversity, but also for its developmental complexity. While models of inflorescence architecture have been proposed in both eudicots and grasses, these are inadequate to fully explain the complex branching events that occur during the development of the grass inflorescence. Key to understanding grass inflorescence architecture is the meristem determinacy/indeterminacy decision, which regulates the number of branching events that occur. Here we review what has been learned about meristem determinacy from grass mutants with defects in inflorescence development. A picture is emerging of a complex network of signaling molecules and meristem identity factors that interact to regulate inflorescence meristem activity, many of which have been modified during crop domestication directly affecting yield traits.
Collapse
|
19
|
Feldman MJ, Paul RE, Banan D, Barrett JF, Sebastian J, Yee MC, Jiang H, Lipka AE, Brutnell TP, Dinneny JR, Leakey ADB, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet 2017. [PMID: 28644860 PMCID: PMC5507400 DOI: 10.1371/journal.pgen.1006841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. Growth is a dynamic process that responds to a changing environment. Most of the methods that we have for measuring are static and collecting information throughout an organisms lifecycle is labor and cost prohibitive. Advances in imaging and robotics technology have enabled novel approaches to understanding how plants adapt to the environment. Using the model grass Setaria and new methods for measuring parameters from images, we investigate the genetic architecture of plant height in response to water availability and planting density. Height is one of the most influential components of plant architecture, determining tradeoffs between competition and resource allocation and is an important trait for boosting yields. The non-destructive nature of plant height measurements has enabled us to monitor growth throughout the plant life cycle in both field and controlled environments. We identified several loci controlling height in a population derived from a wild strain of Setaria viridis and its domesticated relative Setaria italica, as well as the developmental time in which these loci act. In this population, alleles inherited from the wild parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated parent collectively act to increase plant height later in development.
Collapse
Affiliation(s)
- Max J. Feldman
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Rachel E. Paul
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Darshi Banan
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jennifer F. Barrett
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Jose Sebastian
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Muh-Ching Yee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Hui Jiang
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Thomas P. Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - José R. Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Andrew D. B. Leakey
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chen Y, Li J, Fan K, Du Y, Ren Z, Xu J, Zheng J, Liu Y, Fu J, Ren D, Wang G. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel. PLoS One 2017; 12:e0174270. [PMID: 28339488 PMCID: PMC5365113 DOI: 10.1371/journal.pone.0174270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu)-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA). The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS) gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9) locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiankun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yicong Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongtao Ren
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Poretska O, Yang S, Pitorre D, Rozhon W, Zwerger K, Uribe MC, May S, McCourt P, Poppenberger B, Sieberer T. The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency. PLANT PHYSIOLOGY 2016; 171:1277-90. [PMID: 27208298 PMCID: PMC4902576 DOI: 10.1104/pp.15.01633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/01/2016] [Indexed: 05/03/2023]
Abstract
ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. In this work we evaluated the level of functional conservation between AMP1 and its human homolog HsGCPII, a tumor marker of medical interest. We show that HsGCPII cannot substitute AMP1 in planta and that an HsGCPII-specific inhibitor does not evoke amp1-specific phenotypes. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. We assessed the structural requirements of HP activity and excluded that it is a cytokinin analog. HP-treated wild-type plants showed amp1-related tissue-specific changes of various marker genes and a significant transcriptomic overlap with the mutant. HP was ineffective in amp1 and elevated the protein levels of PHAVOLUTA, consistent with the postulated role of AMP1 in miRNA-controlled translation, further supporting an AMP1-related mode of action. Our work suggests that plant and animal members of the M28 family of proteases adopted unrelated functions. With HP we provide a tool to characterize the plant-specific functions of this important class of proteins.
Collapse
Affiliation(s)
- Olena Poretska
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Saiqi Yang
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Delphine Pitorre
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Wilfried Rozhon
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Karin Zwerger
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Marcos Castellanos Uribe
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Sean May
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Peter McCourt
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Brigitte Poppenberger
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| | - Tobias Sieberer
- Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (O.P., S.Y., T.S.); Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria (O.P., D.P., K.Z., T.S.); Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany (W.R., B.P.); Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, UK (M.C.U., S.M.); and Cell and Systems Biology, University of Toronto, Toronto ON M5S 3B2, Canada (P.M.)
| |
Collapse
|
22
|
Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY. Dormancy and germination: How does the crop seed decide? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1104-12. [PMID: 26095078 DOI: 10.1111/plb.12356] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/07/2015] [Indexed: 05/18/2023]
Abstract
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.
Collapse
Affiliation(s)
- K Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - Y J Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - H W Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W G Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J B Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W Y Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Suzuki M, Sato Y, Wu S, Kang BH, McCarty DR. Conserved Functions of the MATE Transporter BIG EMBRYO1 in Regulation of Lateral Organ Size and Initiation Rate. THE PLANT CELL 2015; 27:2288-300. [PMID: 26276834 PMCID: PMC4568504 DOI: 10.1105/tpc.15.00290] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
Genetic networks that determine rates of organ initiation and organ size are key regulators of plant architecture. Whereas several genes that influence the timing of lateral organ initiation have been identified, the regulatory pathways in which these genes operate are poorly understood. Here, we identify a class of genes implicated in regulation of the lateral organ initiation rate. Loss-of-function mutations in the MATE transporter encoded by maize (Zea mays) Big embryo 1 (Bige1) cause accelerated leaf and root initiation as well as enlargement of the embryo scutellum. BIGE1 is localized to trans-Golgi, indicating a possible role in secretion of a signaling molecule. Interestingly, phenotypes of bige1 bear striking similarity to cyp78a mutants identified in diverse plant species. We show that a CYP78A gene is upregulated in bige1 mutant embryos, suggesting a role for BIGE1 in feedback regulation of a CYP78A pathway. We demonstrate that accelerated leaf formation and early flowering phenotypes conditioned by mutants of Arabidopsis thaliana BIGE1 orthologs are complemented by maize Bige1, showing that the BIGE1 transporter has a conserved function in regulation of lateral organ initiation in plants. We propose that BIGE1 is required for transport of an intermediate or product associated with the CYP78A pathway.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Yutaka Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shan Wu
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Byung-Ho Kang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
24
|
Suzuki Y, Miura K, Shigemune A, Sasahara H, Ohta H, Uehara Y, Ishikawa T, Hamada S, Shirasawa K. Marker-assisted breeding of a LOX-3-null rice line with improved storability and resistance to preharvest sprouting. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1421-1430. [PMID: 25917598 DOI: 10.1007/s00122-015-2516-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Breakage of the tight linkage between rice seed lipoxygenase - 3 and easy preharvest sprouting trait led to breeding of lines with few stale flavors after long storage and desirable preharvest sprouting resistance. Lipoxygenase-3 (LOX-3) is involved in the production of volatile constituents in stored rice, and the development of stale flavor is delayed in LOX-3 null rice. In the process of breeding new LOX-3-null lines with long storability, we found a close association between LOX-3 and preharvest sprouting resistance. To determine whether this relationship was due to the tight linkage of two genes or the pleiotropic effect of LOX-3, we performed marker-assisted selection using a BC3F3 population derived from crosses between LOX-3-present/preharvest sprouting-resistant lines and LOX-3-null/preharvest susceptible lines. In one individual, a recombination event occurred 13 kb downstream of LOX-3 (RM15750) and a significant quantitative trait locus, namely qPHS3, for easy preharvest sprouting trait (LOD = 10.4) was detected in an 842-kb region between RM15711 and RM15768. Using BC3F4 and BC3F5 populations, we succeeded in selecting LOX-3-absent and preharvest sprouting-resistant lines with only a 393-kb introgressed chromosome segment from the donor line for LOX-3-null at the LOX-3 locus on chromosome 3. This result indicated that the LOX-3 gene and the locus affecting preharvest sprouting are distinct. The selected line was named 'Hokuriku 244'. Sensory testing of rice grains with and without LOX-3 confirmed that stale flavor production in LOX-3-null rice during storage was lower than in normal LOX-3 rice. These results indicated that rice varieties with little stale flavor after long storage and preharvest sprouting resistance had been selected.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- NARO, Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang W, Pitorre D, Poretska O, Marizzi C, Winter N, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 suppresses ectopic stem cell niche formation in the shoot apical meristem in a largely cytokinin-independent manner. PLANT PHYSIOLOGY 2015; 167:1471-86. [PMID: 25673776 PMCID: PMC4378165 DOI: 10.1104/pp.114.254623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 05/03/2023]
Abstract
Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated. One mechanism to keep this radial symmetry integrated is that the existing SCN actively suppresses stem cell identity in the PZ. However, how this lateral inhibition system works at the molecular level is far from understood. Here, we show that a defect in the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) causes the formation of extra SCNs in the presence of an intact primary shoot apical meristem, which at least partially contributes to the enhanced shoot meristem size and leaf initiation rate found in the mutant. This defect appears to be neither a specific consequence of the altered cytokinin levels in amp1 nor directly mediated by the WUSCHEL/CLAVATA feedback loop. De novo formation of supernumerary stem cell pools was further enhanced in plants mutated in both AMP1 and its paralog LIKE AMP1, indicating that they exhibit partially overlapping roles to suppress SCN respecification in the PZ.
Collapse
Affiliation(s)
- Wenwen Huang
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Delphine Pitorre
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Olena Poretska
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Christine Marizzi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Nikola Winter
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Brigitte Poppenberger
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | - Tobias Sieberer
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| |
Collapse
|
26
|
Yi G, Neelakandan AK, Gontarek BC, Vollbrecht E, Becraft PW. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. PLANT PHYSIOLOGY 2015; 167:443-56. [PMID: 25552497 PMCID: PMC4326753 DOI: 10.1104/pp.114.251413] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
The aleurone is the outermost layer of cereal endosperm and functions to digest storage products accumulated in starchy endosperm cells as well as to confer important dietary health benefits. Whereas normal maize (Zea mays [Zm]) has a single aleurone layer, naked endosperm (nkd) mutants produce multiple outer cell layers of partially differentiated cells that show sporadic expression of aleurone identity markers such as a viviparous1 promoter-β-glucuronidase transgene. The 15:1 F2 segregation ratio suggested that two recessive genes were involved, and map-based cloning identified two homologous genes in duplicated regions of the genome. The nkd1 and nkd2 genes encode the INDETERMINATE1 domain (IDD) containing transcription factors ZmIDDveg9 and ZmIDD9 on chromosomes 2 and 10, respectively. Independent mutant alleles of nkd1 and nkd2, as well as nkd2-RNA interference lines in which both nkd genes were knocked down, also showed the nkd mutant phenotype, confirming the gene identities. In wild-type kernels, the nkd transcripts were most abundant around 11 to 16 d after pollination. The NKD proteins have putative nuclear localization signals, and green fluorescent protein fusion proteins showed nuclear localization. The mutant phenotype and gene identities suggest that NKD controls a gene regulatory network involved in aleurone cell fate specification and cell differentiation.
Collapse
Affiliation(s)
- Gibum Yi
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Anjanasree K Neelakandan
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Bryan C Gontarek
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Erik Vollbrecht
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| |
Collapse
|
27
|
Zheng Y, Wang Z. Differentiation mechanism and function of the cereal aleurone cells and hormone effects on them. PLANT CELL REPORTS 2014; 33:1779-1787. [PMID: 25007781 DOI: 10.1007/s00299-014-1654-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.
Collapse
Affiliation(s)
- Yankun Zheng
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | | |
Collapse
|
28
|
Chandrasekaran U, Xu W, Liu A. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci 2014; 4:33. [PMID: 25061509 PMCID: PMC4109380 DOI: 10.1186/2045-3701-4-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/12/2014] [Indexed: 02/28/2023] Open
Abstract
Background The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the “genome-phenome challenge”. Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. Results After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 μM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. Conclusions Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing castor bean agricultural and bioenergy use.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Aizhong Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| |
Collapse
|
29
|
Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G. The maize d2003, a novel allele of VP8, is required for maize internode elongation. PLANT MOLECULAR BIOLOGY 2014; 84:243-57. [PMID: 24214124 DOI: 10.1007/s11103-013-0129-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 09/04/2013] [Indexed: 05/03/2023]
Abstract
The d2003 is a natural dwarf mutant from maize inbred line K36 and has less than one-third of K36 plant height with severely shortened internodes. In this study, we reported the cloning of d2003 gene using positional cloning. The results showed that there was a single-base insertion in the coding region of Viviparous8 (VP8) in d2003 mutant, which resulted in a premature stop codon. Further genetic allelism tests confirmed that d2003 mutation is a novel allele of VP8. VP8 is mainly expressed in the stem apex, young leaves, and developing vascular tissues, and its expression levels in nodes are significantly higher than that in internodes at 12-leaf stage. Subcellular localization demonstrated that the VP8 protein is localized to the endoplasmic reticulum and the N-terminal 26 amino acids (aa) of VP8 protein are essential to its localization in ER. Further transgenic experiments showed that lack of the 26 aa leads to loss of VP8 function in Arabidopsis amp1 phenotype rescue. These results strongly suggested that the N-terminal 26 aa is critical for VP8 protein localization, and the correct protein localization of VP8 in ER is necessary for its function.
Collapse
Affiliation(s)
- Hongkun Lv
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guo X, Hou X, Fang J, Wei P, Xu B, Chen M, Feng Y, Chu C. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:403-16. [PMID: 23581288 PMCID: PMC3813988 DOI: 10.1111/tpj.12209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 05/19/2023]
Abstract
It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a large-scale screen was performed using our T-DNA mutant population, and a mutant germination-defective1 (gd1) was identified. In addition to the severe germination defect, the gd1 mutant also shows a dwarf phenotype and abnormal flower development. Molecular and biochemical analyses revealed that GD1 encodes a B3 domain-containing transcription factor with repression activity. Consistent with the dwarf phenotype of gd1, expression of the gibberelic acid (GA) inactivation gene OsGA2ox3 is increased dramatically, accompanied by reduced expression of GA biosynthetic genes including OsGA20ox1, OsGA20ox2 and OsGA3ox2 in gd1, resulting in a decreased endogenous GA₄ level. Exogenous application of GA not only induced GD1 expression, but also partially rescued the dwarf phenotype of gd1. Furthermore, GD1 binds to the promoter of OsLFL1, a LEC2/FUS3-like gene of rice, via an RY element, leading to significant up-regulation of OsLFL1 and a large subset of seed maturation genes in the gd1 mutant. Plants over-expressing OsLFL1 partly mimic the gd1 mutant. In addition, expression of GD1 was induced under sugar treatment, and the contents of starch and soluble sugar are altered in the gd1 mutant. These data indicate that GD1 participates directly or indirectly in regulating GA and carbohydrate homeostasis, and further regulates rice seed germination and seedling development.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Xiaomei Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Jun Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| | - Piwei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Bo Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| |
Collapse
|
31
|
Shi Y, Wang Z, Meng P, Tian S, Zhang X, Yang S. The glutamate carboxypeptidase AMP1 mediates abscisic acid and abiotic stress responses in Arabidopsis. THE NEW PHYTOLOGIST 2013; 199:135-150. [PMID: 23621575 DOI: 10.1111/nph.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/15/2013] [Indexed: 05/03/2023]
Abstract
ALTERED MERISTEM PROGRAM1 (AMP1) encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We isolated a new mutant allele of AMP1, amp1-20, from a screen for abscisic acid (ABA) hypersensitive mutants and characterized the function of AMP1 in plant stress responses. amp1 mutants displayed ABA hypersensitivity, while overexpression of AMP1 caused ABA insensitivity. Moreover, endogenous ABA concentration was increased in amp1-20- and decreased in AMP1-overexpressing plants under stress conditions. Application of ABA reduced the AMP1 protein level in plants. Interestingly, amp1 mutants accumulated excess superoxide and displayed hypersensitivity to oxidative stress. The hypersensitivity of amp1 to ABA and oxidative stress was partially rescued by reactive oxygen species (ROS) scavenging agent. Furthermore, amp1 was tolerant to freezing and drought stress. The ABA hypersensitivity and freezing tolerance of amp1 was dependent on ABA signaling. Moreover, amp1 had elevated soluble sugar content and showed hypersensitivity to high concentrations of sugar. By contrast, the contents of amino acids were changed in amp1 mutant compared to the wild-type. This study suggests that AMP1 modulates ABA, oxidative and abotic stress responses, and is involved in carbon and amino acid metabolism in Arabidopsis.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pei Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Siqi Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Coordinated Research Center for Crop Biology, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Center, Beijing, 100193, China
| |
Collapse
|
32
|
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ. Molecular mechanisms of seed dormancy. PLANT, CELL & ENVIRONMENT 2012; 35:1769-86. [PMID: 22620982 DOI: 10.1111/j.1365-3040.2012.02542.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seed dormancy is an important component of plant fitness that causes a delay of germination until the arrival of a favourable growth season. Dormancy is a complex trait that is determined by genetic factors with a substantial environmental influence. Several of the tissues comprising a seed contribute to its final dormancy level. The roles of the plant hormones abscisic acid and gibberellin in the regulation of dormancy and germination have long been recognized. The last decade saw the identification of several additional factors that influence dormancy including dormancy-specific genes, chromatin factors and non-enzymatic processes. This review gives an overview of our present understanding of the mechanisms that control seed dormancy at the molecular level, with an emphasis on new insights. The various regulators that are involved in the induction and release of dormancy, the influence of environmental factors and the conservation of seed dormancy mechanisms between plant species are discussed. Finally, expected future directions in seed dormancy research are considered.
Collapse
Affiliation(s)
- Kai Graeber
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Takacs EM, Li J, Du C, Ponnala L, Janick-Buckner D, Yu J, Muehlbauer GJ, Schnable PS, Timmermans MC, Sun Q, Nettleton D, Scanlon MJ. Ontogeny of the maize shoot apical meristem. THE PLANT CELL 2012; 24:3219-34. [PMID: 22911570 PMCID: PMC3462627 DOI: 10.1105/tpc.112.099614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize.
Collapse
Affiliation(s)
| | - Jie Li
- Department of Statistics and Statistical Laboratory, Iowa State University, Ames, Iowa 50011
| | - Chuanlong Du
- Department of Statistics and Statistical Laboratory, Iowa State University, Ames, Iowa 50011
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | | | - Jianming Yu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Dan Nettleton
- Department of Statistics and Statistical Laboratory, Iowa State University, Ames, Iowa 50011
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York 14583
- Address correspondence to
| |
Collapse
|
34
|
Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. PLANTA 2011; 234:527-39. [PMID: 21541665 PMCID: PMC3162143 DOI: 10.1007/s00425-011-1418-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.
Collapse
Affiliation(s)
- Daniel Uddenberg
- Uppsala Biocenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), 7080, 75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Griffiths J, Barrero JM, Taylor J, Helliwell CA, Gubler F. ALTERED MERISTEM PROGRAM 1 is involved in development of seed dormancy in Arabidopsis. PLoS One 2011; 6:e20408. [PMID: 21637772 PMCID: PMC3102729 DOI: 10.1371/journal.pone.0020408] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/19/2011] [Indexed: 01/02/2023] Open
Abstract
Mutants in the rice PLASTOCHRON 3 and maize VIVIPAROUS 8 genes have been shown to have reduced dormancy and ABA levels. In this study we used several mutants in the orthologous gene ALTERED MERISTEM PROGRAM 1 (AMP1) to determine its role in seed dormancy in Arabidopsis. Here we report that there are accession-specific effects of mutations in AMP1. In one accession, amp1 mutants produce seeds with higher dormancy, while those in two other accessions produce seeds of lower dormancy. These accession-specific effects of mutating AMP1 were shown to extend to ABA levels. We assayed global gene transcription differences in seeds of wild-type and mutant from two accessions demonstrating opposing phenotypes. The transcript changes observed indicate that the amp1 mutation shifts the seed transcriptome from a dormant into an after-ripened state. Specific changes in gene expression in the mutants give insight into the direct and indirect effects that may be contributing to the opposing dormancy phenotypes observed, and reveal a role for AMP1 in the acquisition and/or maintenance of seed dormancy in Arabidopsis.
Collapse
Affiliation(s)
- Jayne Griffiths
- Division of Plant Industry, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Jose M. Barrero
- Division of Plant Industry, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Jennifer Taylor
- Division of Plant Industry, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Chris A. Helliwell
- Division of Plant Industry, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Frank Gubler
- Division of Plant Industry, CSIRO, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
36
|
Becraft PW, Yi G. Regulation of aleurone development in cereal grains. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1669-75. [PMID: 21109580 DOI: 10.1093/jxb/erq372] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aleurone layer of cereal grains is important biologically as well as nutritionally and economically. Here, current knowledge on the regulation of aleurone development is reviewed. Recent reports suggest that the control of aleurone development is more complex than earlier models portrayed. Multiple levels of genetic regulation control aleurone cell fate, differentiation, and organization. The hormones auxin and cytokinin can also influence aleurone development. New technical advances promise to facilitate future progress.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
37
|
Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:701-16. [PMID: 21084430 PMCID: PMC3003815 DOI: 10.1093/jxb/erq308] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/19/2023]
Abstract
In maize, water stress at flowering causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basis and genes involved are not known. A candidate gene approach was used with association mapping to identify loci involved in accumulation of carbohydrates and ABA metabolites during stress. A panel of single nucleotide polymorphisms (SNPs) in genes from these metabolic pathways and in genes for reproductive development and stress response was used to genotype 350 tropical and subtropical maize inbred lines that were well watered or water stressed at flowering. Pre-pollination ears, silks, and leaves were analysed for sugars, starch, proline, ABA, ABA-glucose ester, and phaseic acid. ABA and sugar levels in silks and ears were negatively correlated with their growth. Association mapping with 1229 SNPs in 540 candidate genes identified an SNP in the maize homologue of the Arabidopsis MADS-box gene, PISTILLATA, which was significantly associated with phaseic acid in ears of well-watered plants, and an SNP in pyruvate dehydrogenase kinase, a key regulator of carbon flux into respiration, that was associated with silk sugar concentration. An SNP in an aldehyde oxidase gene was significantly associated with ABA levels in silks of water-stressed plants. Given the short range over which decay of linkage disequilibrium occurs in maize, the results indicate that allelic variation in these genes affects ABA and carbohydrate metabolism in floral tissues during drought.
Collapse
|
38
|
Twenty years on: The inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 2010; 341:95-113. [PMID: 19961843 DOI: 10.1016/j.ydbio.2009.11.029] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/25/2022]
|
39
|
Capelle V, Remoué C, Moreau L, Reyss A, Mahé A, Massonneau A, Falque M, Charcosset A, Thévenot C, Rogowsky P, Coursol S, Prioul JL. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC PLANT BIOLOGY 2010; 10:2. [PMID: 20047666 PMCID: PMC2826337 DOI: 10.1186/1471-2229-10-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/04/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. RESULTS The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue. CONCLUSIONS A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.
Collapse
Affiliation(s)
- Valérie Capelle
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Carine Remoué
- CNRS, UMR 8618, F-91405 Orsay, France
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Laurence Moreau
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Agnès Reyss
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Aline Mahé
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Agnès Massonneau
- INRA, Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 Biosciences Lyon-Gerland, F-69364 Lyon Cedex 07, France
- 52, Av de la Marjolaine, 34110 Frontigan, France
| | - Matthieu Falque
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Alain Charcosset
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Claudine Thévenot
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Peter Rogowsky
- INRA, Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 Biosciences Lyon-Gerland, F-69364 Lyon Cedex 07, France
| | - Sylvie Coursol
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Jean-Louis Prioul
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| |
Collapse
|
40
|
Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC. Genetic resources for maize cell wall biology. PLANT PHYSIOLOGY 2009; 151:1703-28. [PMID: 19926802 PMCID: PMC2785990 DOI: 10.1104/pp.109.136804] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.
Collapse
|
41
|
Kawakatsu T, Taramino G, Itoh JI, Allen J, Sato Y, Hong SK, Yule R, Nagasawa N, Kojima M, Kusaba M, Sakakibara H, Sakai H, Nagato Y. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:1028-40. [PMID: 19228340 DOI: 10.1111/j.1365-313x.2009.03841.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 (PLA3)/GOLIATH (GO) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3/GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2- a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2, pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1, PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brooks L, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MCP, Schnable PS, Nettleton D, Scanlon MJ. Microdissection of shoot meristem functional domains. PLoS Genet 2009; 5:e1000476. [PMID: 19424435 PMCID: PMC2673047 DOI: 10.1371/journal.pgen.1000476] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/09/2009] [Indexed: 12/30/2022] Open
Abstract
The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.
Collapse
Affiliation(s)
- Lionel Brooks
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Josh Strable
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Xiaolan Zhang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Kazuhiro Ohtsu
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ruilian Zhou
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ananda Sarkar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sarah Hargreaves
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Robert J. Elshire
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Douglas Eudy
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Teresa Pawlowska
- Department of Plant Pathology, Ithaca, New York, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Agriculture Research Service Department, United States Department of Agriculture, Washington, D.C., United States of America
| | - Diane Janick-Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Brent Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | | | - Patrick S. Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
43
|
Fang J, Chu C. Abscisic acid and the pre-harvest sprouting in cereals. PLANT SIGNALING & BEHAVIOR 2008; 3:1046-8. [PMID: 19513237 PMCID: PMC2634458 DOI: 10.4161/psb.3.12.6606] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/15/2008] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) leads to loss of grain weight and a reduction in the end use quality of kernels in cereals, especially in wheat, and PHS in rice also becomes a more and more serious problem recent years. Many factors are involved in the controlling this complex trait. Only recently, we have reported the large scale screening and charactersation of the rice phs mutants, providing insight into the molecular mechanism of pre-harvest sprouting in rice. It has been shown that mutations of genes in synthesis of the carotenoid precursors of ABA resulted in the pre-harvest sprouting, which is consequence of ABA deficiency, and photobleaching is likewise due to the absence of photoprotective carotenoids. The further study of all different rice phs mutants will help us to elucidate the complex phenomena and finally capture the target for improving PHS in rice or other cereals.
Collapse
Affiliation(s)
- Jun Fang
- State Key Laboratory of Plant Genomics; National Centre for Plant Gene Research (Beijing); Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| | | |
Collapse
|
44
|
Suzuki M, McCarty DR. Functional symmetry of the B3 network controlling seed development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:548-53. [PMID: 18691932 DOI: 10.1016/j.pbi.2008.06.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/28/2008] [Accepted: 06/30/2008] [Indexed: 05/22/2023]
Abstract
Two subfamilies of plant-specific B3 domain transcription factors regulate the fundamental transition between seed and vegetative phases of development. The AFL B3 genes activate the embryo maturation program, while the closely related VAL B3 genes shutdown the AFL network before germination. VP8/AMP1 signaling most probably acts upstream of the AFL network. Key downstream AFL targets elaborate seed-specific abscisic acid (ABA), gibberellin (GA), and auxin signaling. ABA feeds back into network via ABI3 interaction with ABI5. GA promotes repression of the AFL network by the VAL repressors and the PICKLE (PKL) chromatin-remodeling factor before germination. Strikingly, the functional symmetry of the AFL and VAL B3 genes is mirrored in patterns of chromatin modification.
Collapse
Affiliation(s)
- Masaharu Suzuki
- PMCB Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|