1
|
Zhao X, Liu Z, Liu Y, Lu M, Xu J, Wu F, Jin W. Development and application of an RNA nanostructure to induce transient RNAi in difficult transgenic plants. Biotechnol J 2024; 19:e2400024. [PMID: 38797726 DOI: 10.1002/biot.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The development of RNA interference (RNAi) is crucial for studying plant gene function. Its use, is limited to a few plants with well-established transgenic techniques. Spray-induced gene silencing (SIGS) introduces exogenous double-stranded RNA (dsRNA) into plants by spraying, injection, or irrigation, triggering the RNAi pathway to instantly silence target genes. As is a transient RNAi technology that does not rely on transgenic methods, SIGS has significant potential for studying gene function in plants lacking advanced transgenic technology. In this study, to enhance their stability and delivery efficiency, siRNAs were used as structural motifs to construct RNA nanoparticles (NPs) of four shapes: triangle, square, pentagon, and hexagon. These NPs, when synthesized by Escherichia coli, showed that triangular and square shapes accumulated more efficiently than pentagon and hexagon shapes. Bioassays revealed that RNA squares had the highest RNAi efficiency, followed by RNA triangles, with GFP-dsRNA showing the lowest efficiency at 4 and 7 days post-spray. We further explored the use of RNA squares in inducing transient RNAi in plants that are difficult to transform genetically. The results indicated that Panax notoginseng-derived MYB2 (PnMYB2) and Camellia oleifera-derived GUT (CoGUT) were significantly suppressed in P. notoginseng and C. oleifera, respectively, following the application of PnMYB2- and CoGUT-specific RNA squares. These findings suggest that RNA squares are highly effective in SIGS and can be utilized for gene function research in plants.
Collapse
Affiliation(s)
- Xiayang Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhekai Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Mingdong Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Jinfeng Xu
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| |
Collapse
|
2
|
Kisaka H, Chin DP, Miwa T, Hirano H, Uchiyama S, Mii M, Iyo M. Development of an efficient Agrobacterium-mediated transformation method and its application in tryptophan pathway modification in Catharanthus roseus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:311-320. [PMID: 38434110 PMCID: PMC10902617 DOI: 10.5511/plantbiotechnology.23.0819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/19/2023] [Indexed: 03/05/2024]
Abstract
The biosynthetic pathway of Catharanthus roseus vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidine, which is biosynthesized by condensing tryptamine from the tryptophan pathway and secologanin from the isoprenoid pathway. Therefore, increasing the supply of precursor tryptophan may enhance vinca alkaloid content or their metabolic intermediates. Many reports on the genetic modification of C. roseus use cultured cells or hairy roots, but few reports cover the production of transgenic plants. In this study, we first investigated a method for stably producing transgenic plants of C. roseus, then, using this technique, we modified the tryptophan metabolism system to produce transgenic plants with increased tryptophan content. Transformed plants were obtained by infecting cotyledons two weeks after sowing with Agrobacterium strain A13 containing a plant expression vector, then selecting with 1/2 B5 medium supplemented with 50 mg l-1 kanamycin and 20 mg l-1 meropenem. Sixty-eight regenerated plants were obtained from 4,200 cotyledons infected with Agrobacterium, after which genomic PCR analysis using NPTII-specific primers confirmed gene presence in 24 plants with a transformation rate of 0.6%. Furthermore, we performed transformation into C. roseus using an expression vector to join trpE8 and aroG4 genes, which are feedback-resistant mutant genes derived from Escherichia coli. The resulting transformed plants showed exactly the same morphology as the wild-type, albeit with a marked increase in tryptophan and alkaloids content, especially catharanthine in leaves.
Collapse
Affiliation(s)
- Hiroaki Kisaka
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Dong Poh Chin
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Tetsuya Miwa
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Hiroto Hirano
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Sato Uchiyama
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Mayu Iyo
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| |
Collapse
|
3
|
Murali S, Ibrahim M, Rajendran H, Shagun S, Masakapalli SK, Raman K, Srivastava S. Genome-scale metabolic model led engineering of Nothapodytes nimmoniana plant cells for high camptothecin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1207218. [PMID: 37600193 PMCID: PMC10433906 DOI: 10.3389/fpls.2023.1207218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023]
Abstract
Camptothecin (CPT) is a vital monoterpene indole alkaloid used in anti-cancer therapeutics. It is primarily derived from Camptotheca acuminata and Nothapodytes nimmoniana plants that are indigenous to Southeast Asia. Plants have intricate metabolic networks and use them to produce secondary metabolites such as CPT, which is a prerequisite for rational metabolic engineering design to optimize their production. By reconstructing metabolic models, we can predict plant metabolic behavior, facilitating the selection of suitable approaches and saving time, cost, and energy, over traditional hit and trial experimental approaches. In this study, we reconstructed a genome-scale metabolic model for N. nimmoniana (NothaGEM iSM1809) and curated it using experimentally obtained biochemical data. We also used in silico tools to identify and rank suitable enzyme targets for overexpression and knockout to maximize camptothecin production. The predicted over-expression targets encompass enzymes involved in the camptothecin biosynthesis pathway, including strictosidine synthase and geraniol 10-hydroxylase, as well as targets related to plant metabolism, such as amino acid biosynthesis and the tricarboxylic acid cycle. The top-ranked knockout targets included reactions responsible for the formation of folates and serine, as well as the conversion of acetyl CoA and oxaloacetate to malate and citrate. One of the top-ranked overexpression targets, strictosidine synthase, was chosen to generate metabolically engineered cell lines of N. nimmoniana using Agrobacterium tumefaciens-mediated transformation. The transformed cell line showed a 5-fold increase in camptothecin production, with a yield of up to 5 µg g-1.
Collapse
Affiliation(s)
- Sarayu Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Maziya Ibrahim
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, India
| | - Hemalatha Rajendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Shagun Shagun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, India
| | - Smita Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Babbar R, Tiwari LD, Mishra RC, Shimphrui R, Singh AA, Goyal I, Rana S, Kumar R, Sharma V, Tripathi G, Khungar L, Sharma J, Agrawal C, Singh G, Biswas T, Biswal AK, Sahi C, Sarkar NK, Grover A. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111639. [PMID: 36796649 DOI: 10.1016/j.plantsci.2023.111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Hsp101 chaperone is vital for survival of plants under heat stress. We generated transgenic Arabidopsis thaliana (Arabidopsis) lines with extra copies of Hsp101 gene using diverse approaches. Arabidopsis plants transformed with rice Hsp101 cDNA driven by Arabidopsis Hsp101 promoter (IN lines) showed high heat tolerance while the plants transformed with rice Hsp101 cDNA driven by CaMV35S promoter (C lines) were like wild type plants in heat stress response. Transformation of Col-0 plants with 4633 bp Hsp101 genomic fragment (GF lines) from A. thaliana containing both its coding and the regulatory sequence resulted in mostly over-expressor (OX) lines and a few under-expressor (UX) lines of Hsp101. OX lines showed enhanced heat tolerance while the UX lines were overly heat sensitive. In UX lines, silencing of not only Hsp101 endo-gene was noted but also transcript of choline kinase (CK2) was silenced. Previous work established that in Arabidopsis, CK2 and Hsp101 are convergent gene pairs sharing a bidirectional promoter. The elevated AtHsp101 protein amount in most GF and IN lines was accompanied by lowered CK2 transcript levels under HS. We observed increased methylation of the promoter and gene sequence region in UX lines; however, methylation was lacking in OX lines.
Collapse
Affiliation(s)
- Richa Babbar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Lalit Dev Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rinchuila Shimphrui
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Aditya Abha Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Department of Botany, University of Lucknow, Lucknow-226007, India
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijyesh Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Gayatri Tripathi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jaydeep Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Chhavi Agrawal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Garima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Tanya Biswas
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anup Kumar Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, MP, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, MP, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
5
|
Kaur A, Sharma U, Singh S, Singh R, Vikal Y, Singh S, Malik P, Kaur K, Singh I, Bindra S, Sarmah BK, Sandhu JS. Introgressing cry1Ac for Pod Borer Resistance in Chickpea Through Marker-Assisted Backcross Breeding. Front Genet 2022; 13:847647. [PMID: 35495135 PMCID: PMC9039336 DOI: 10.3389/fgene.2022.847647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
The gram pod borer Helicoverpa armigera is a major constraint to chickpea (Cicer arietinum L.) production worldwide, reducing crop yield by up to 90%. The constraint is difficult to overcome as chickpea germplasm including wild species either lacks pod borer resistance or if possessing resistance is cross-incompatible. This study describes conversion of elite but pod borer-susceptible commercial chickpea cultivars into resistant cultivars through introgression of cry1Ac using marker-assisted backcross breeding. The chickpea cultivars (PBG7 and L552) were crossed with pod borer-resistant transgenic lines (BS 100B and BS 100E) carrying cry1Ac that led to the development of BC1F1, BC1F2, BC1F3, BC2F1, BC2F2, and BC2F3 populations from three cross combinations. The foreground selection revealed that 35.38% BC1F1 and 8.4% BC1F2 plants obtained from Cross A (PBG7 × BS 100B), 50% BC1F1 and 76.5% BC1F2 plants from Cross B (L552 × BS 100E), and 12.05% BC2F2 and 82.81% (average) BC2F3 plants derived from Cross C (PBG7 × BS 100E) carried the cry1Ac gene. The bioassay of backcross populations for toxicity to H. armigera displayed up to 100% larval mortality. BC1F1 and BC1F2 populations derived from Cross B and BC2F3 population from Cross C segregated in the Mendelian ratio for cry1Ac confirmed inheritance of a single copy of transgene, whereas BC1F1 and BC1F2 populations obtained from Cross A and BC2F2 population from Cross C exhibited distorted segregation ratios. BC1F1 plants of Cross A and Cross B accumulated Cry1Ac protein ranging from 11.03 to 11.71 µgg−1 in leaf tissue. Cry1Ac-positive BC2F2 plants from Cross C demonstrated high recurrent parent genome recovery (91.3%) through background selection using SSR markers and phenome recovery of 90.94%, amongst these 30% plants, were homozygous for transgene. The performance of BC2F3 progenies derived from homozygous plants was similar to that of the recurrent parent for main agronomic traits, such as number of pods and seed yield per plant. These progenies are a valuable source for H. armigera resistance in chickpea breeding programs.
Collapse
Affiliation(s)
- Ajinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Urvashi Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sarvjeet Singh
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ravinder Singh
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satnam Singh
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Khushpreet Kaur
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Inderjit Singh
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Shayla Bindra
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Bidyut Kumar Sarmah
- Department of Biotechnology-Assam Agricultural University Centre, Assam Agricultural University, Jorhat, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Jagdeep Singh Sandhu,
| |
Collapse
|
6
|
Carlson E, Stewart K, Baier K, McGuigan L, Culpepper T, Powell W. Pathogen-induced expression of a blight tolerance transgene in American chestnut. MOLECULAR PLANT PATHOLOGY 2022; 23:370-382. [PMID: 34841616 PMCID: PMC8828690 DOI: 10.1111/mpp.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
American chestnut (Castanea dentata) is a susceptible host of the invasive necrotrophic fungus Cryphonectria parasitica, which causes chestnut blight disease. The fungal pathogen attacks chestnut stems by invading wounded tissue and secreting oxalate. This process leads to the death of infected host cells and the formation of cankers, eventually girdling stems and killing the tree above the infections. To reduce damage caused by fungal oxalate, American chestnut has been genetically engineered to express a wheat oxalate oxidase (OxO). This enzyme degrades the oxalate produced by the pathogen and confers elevated tolerance to Cryphonectria parasitica infection. We report new lines of transgenic American chestnut that have been developed with the win3.12 inducible promoter from poplar (Populus deltoides) driving OxO expression. This promoter is responsive to both wounding and pathogen infection, with a low level of baseline expression. Targeted expression of OxO to wounded and infected tissue is sought as an alternative to constitutive expression for potential metabolic resource conservation and transgene stability over the long lifetime of a tree and over successive generations of breeding. Transgenic Castanea dentata lines harbouring the win3.12-OxO construct were evaluated for transgene expression patterns and tolerance to chestnut blight infection. OxO transcript levels were low in uninfected plants, but robust infection-induced expression levels were observed, with one transgenic line reaching levels comparable to those of previously characterized CaMV35S-OxO lines. In chestnut blight infection bioassays, win3.12-OxO lines showed elevated disease tolerance similar to blight-resistant Chinese chestnut (Castanea mollissima) controls.
Collapse
Affiliation(s)
- Erik Carlson
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Kristen Stewart
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Kathleen Baier
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Linda McGuigan
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Tobi Culpepper
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - William Powell
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| |
Collapse
|
7
|
Basu D, South PF. Design and Analysis of Native Photorespiration Gene Motifs of Promoter Untranslated Region Combinations Under Short Term Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:828729. [PMID: 35251099 PMCID: PMC8888687 DOI: 10.3389/fpls.2022.828729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Quantitative traits are rarely controlled by a single gene, thereby making multi-gene transformation an indispensable component of modern synthetic biology approaches. However, the shortage of unique gene regulatory elements (GREs) for the robust simultaneous expression of multiple nuclear transgenes is a major bottleneck that impedes the engineering of complex pathways in plants. In this study, we compared the transcriptional efficacies of a comprehensive list of well-documented promoter and untranslated region (UTR) sequences side by side. The strength of GREs was examined by a dual-luciferase assay in conjunction with transient expression in tobacco. In addition, we created suites of new GREs with higher transcriptional efficacies by combining the best performing promoter-UTR sequences. We also tested the impact of elevated temperature and high irradiance on the effectiveness of these GREs. While constitutive promoters ensure robust expression of transgenes, they lack spatiotemporal regulations exhibited by native promoters. Here, we present a proof-of-principle study on the characterization of synthetic promoters based on cis-regulatory elements of three key photorespiratory genes. This conserved biochemical process normally increases under elevated temperature, low CO2, and high irradiance stress conditions and results in ∼25% loss in fixed CO2. To select stress-responsive cis-regulatory elements involved in photorespiration, we analyzed promoters of two chloroplast transporters (AtPLGG1 and AtBASS6) and a key plastidial enzyme, AtPGLP using PlantPAN3.0 and AthaMap. Our results suggest that these motifs play a critical role for PLGG1, BASS6, and PGLP in mediating response to elevated temperature and high-intensity light stress. These findings will not only enable the advancement of metabolic and genetic engineering of photorespiration but will also be instrumental in related synthetic biology approaches.
Collapse
Affiliation(s)
| | - Paul F. South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Vetrici MA, Yevtushenko DP, Misra S. Overexpression of Douglas-Fir LEAFY COTYLEDON1 ( PmLEC1) in Arabidopsis Induces Embryonic Programs and Embryo-like Structures in the lec1-1 Mutant but Not in Wild Type Plants. PLANTS 2021; 10:plants10081526. [PMID: 34451571 PMCID: PMC8397997 DOI: 10.3390/plants10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis (SE) is the most promising method for the quick propagation of desirable plant genotypes. However, application of SE to conifers remains challenging due to our limited knowledge about the genes involved in embryogenesis and the processes that lead to somatic embryo formation. Douglas-fir, an economically important lumber species, possesses a homolog of the angiosperm embryo-regulatory LEC1 gene. In the present study, we analyzed the potential of Douglas-fir PmLEC1 to induce embryonic programs in the vegetative cells of a heterologous host, Arabidopsis thaliana. PmLEC1 complemented the Arabidopsis lec1-1 null mutant and led to a variety of phenotypes ranging from normal morphology to developmental arrest at various stages in the T1 generation. PmLEC1 did not affect the morphology of wild type Arabidopsis T1 plants. More profound results occurred in T2 generations. PmLEC1 expression induced formation of recurrent somatic embryo-like structures in vegetative tissues of the rescued lec1-1 mutant but loss of apical dominance (bushy phenotype) in wild type plants. The activation of embryonic programs in the lec1-1PmLEC1 T2 plants was confirmed by the presence of the embryo-specific transcripts, OLEOSIN and CRUCIFERIN. In contrast, no embryo-like structures, and no OLEOSIN or CRUCIFERIN were observed in PmLEC1-expressing bushy wild type T2 plants.
Collapse
Affiliation(s)
- Mariana A. Vetrici
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Correspondence: ; Tel.: +1-403-317-2879
| | - Dmytro P. Yevtushenko
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
| | - Santosh Misra
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
9
|
Jeong TY, Simpson MJ. Endocrine Disruptor Exposure Causes Infochemical Dysregulation and an Ecological Cascade from Zooplankton to Algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3845-3854. [PMID: 33617259 DOI: 10.1021/acs.est.0c07847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endocrine disruption is intimately linked to controlling the population of pollutant-exposed organisms through reproduction and development dysregulation. This study investigated how endocrine disruption in a predator organism could affect prey species biology through infochemical communication. Daphnia magna and Chlorella vulgaris were chosen as model prey and predator planktons, respectively, and fenoxycarb was used for disrupting the endocrine system of D. magna. Hormones as well as endo- and exometabolomes were extracted from daphnids and algal cells and their culture media and analyzed using liquid chromatography with tandem mass spectrometry. Biomolecular perturbations of D. magna under impaired offspring production and hormone dysregulation were observed. Differential biomolecular responses of the prey C. vulgaris, indicating changes in methylation and infochemical communication, were subsequently observed under the exposure to predator culture media, containing infochemicals released from the reproducibly normal and abnormal D. magna, as results of fenoxycarb exposure. The observed cross-species transfer of the endocrine disruption consequences, initiated from D. magna, and mediated through infochemical communication, demonstrates a novel discovery and emphasizes the broader ecological risk of endocrine disruptors beyond reproduction disruption in target organisms.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
10
|
Venkata BP, Polzin R, Wilkes R, Fearn A, Blumenthal D, Rohrbough S, Taylor NJ. Heterologous Overexpression of Arabidopsis cel1 Enhances Grain Yield, Biomass and Early Maturity in Setaria viridis. FRONTIERS IN PLANT SCIENCE 2020; 11:515078. [PMID: 33240288 PMCID: PMC7683425 DOI: 10.3389/fpls.2020.515078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Heterologous overexpression of Arabidopsis cellulase 1 (Atcel1) results in enhanced yield, early maturity, and increased biomass in dicotyledonous species like poplar and eucalyptus but has not been demonstrated in monocots. We produced transgenic Setaria viridis accession A10.1 plants overexpressing a monocotyledonous codon optimized (MCO) Atcel1. Agronomic characterization of the transgenic events showed that heterologous overexpression of MCOAtcel1 caused enhanced grain yield, shoot biomass, and accelerated maturation rate in the model grass species S. viridis under growth chamber conditions. The agronomic trait differences observed were consistent with previous reports in dicots but are here described in a monocot species and associated with increased seed yield. Overexpression of Atcel1 in S. viridis was shown to increase the number of panicles and seeds by 24-30%, enhance overall grain yield by up to 26%, and lead to a shoot dry biomass increase of 16-19%. Overexpression also reduced time to plant maturation and senescence by 12.5%. Our findings in S. viridis suggest that manipulation of Atcel1 has potential for developing early-maturing and higher-yielding monocotyledonous biomass crops suitable for climate-smart agriculture.
Collapse
Affiliation(s)
- Bala P. Venkata
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Srinivasan A, S V, Raman K, Srivastava S. Rational metabolic engineering for enhanced alpha-tocopherol production in Helianthus annuus cell culture. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Pandey AK, Madhu P, Bhat BV. Down-Regulation of CYP79A1 Gene Through Antisense Approach Reduced the Cyanogenic Glycoside Dhurrin in [ Sorghum bicolor (L.) Moench] to Improve Fodder Quality. Front Nutr 2019; 6:122. [PMID: 31544105 PMCID: PMC6729101 DOI: 10.3389/fnut.2019.00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
A major limitation for the utilization of sorghum forage is the production of the cyanogenic glycoside dhurrin in its leaves and stem that may cause the death of cattle feeding on it at the pre-flowering stage. Therefore, we attempted to develop transgenic sorghum plants with reduced levels of hydrogen cyanide (HCN) by antisense mediated down-regulation of the expression of cytochrome P450 CYP79A1, the key enzyme of the dhurrin biosynthesis pathway. CYP79A1 cDNA was isolated and cloned in antisense orientation, driven by rice Act1 promoter. Shoot meristem explants of sorghum cultivar CSV 15 were transformed by the particle bombardment method and 27 transgenics showing the integration of transgene were developed. The biochemical assay for HCN in the transgenic sorghum plants confirmed significantly reduced HCN levels in transgenic plants and their progenies. The HCN content in the transgenics varied from 5.1 to 149.8 μg/g compared to 192.08 μg/g in the non-transformed control on dry weight basis. Progenies with reduced HCN content were advanced after each generation till T3. In T3 generation, progenies of two promising events were tested which produced highly reduced levels of HCN (mean of 62.9 and 76.2 μg/g, against the control mean of 221.4 μg/g). The reduction in the HCN levels of transgenics confirmed the usefulness of this approach for reducing HCN levels in forage sorghum plants. The study effectively demonstrated that the antisense CYP79A1 gene deployment was effective in producing sorghum plants with lower HCN content which are safer for cattle to feed on.
Collapse
Affiliation(s)
- Arun K. Pandey
- ICAR-Indian Institute of Millets Research (IIMR), Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pusuluri Madhu
- ICAR-Indian Institute of Millets Research (IIMR), Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | |
Collapse
|
13
|
Yevtushenko DP, Misra S. Enhancing disease resistance in poplar through modification of its natural defense pathway. PLANT MOLECULAR BIOLOGY 2019; 100:481-494. [PMID: 31073810 DOI: 10.1007/s11103-019-00874-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/14/2019] [Indexed: 05/06/2023]
Abstract
Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.
Collapse
Affiliation(s)
- Dmytro P Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Santosh Misra
- Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
14
|
Mohammed S, Samad AA, Rahmat Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. RICE SCIENCE 2019; 26:133-146. [DOI: 10.1016/j.rsci.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Abstract
Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.
Collapse
Affiliation(s)
- Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
16
|
Liu W, Mazarei M, Ye R, Peng Y, Shao Y, Baxter HL, Sykes RW, Turner GB, Davis MF, Wang ZY, Dixon RA, Stewart CN. Switchgrass ( Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:122. [PMID: 29713381 PMCID: PMC5914048 DOI: 10.1186/s13068-018-1119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/16/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. RESULTS We identified and functionally characterized three switchgrass green tissue-specific promoters and assessed marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. CONCLUSIONS Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Yanhui Peng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Yuanhua Shao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Holly L. Baxter
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Robert W. Sykes
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Geoffrey B. Turner
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Mark F. Davis
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
17
|
Wang Q, An B, Hou X, Guo Y, Luo H, He C. Dicer-like Proteins Regulate the Growth, Conidiation, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Front Microbiol 2018; 8:2621. [PMID: 29403443 PMCID: PMC5777394 DOI: 10.3389/fmicb.2017.02621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
Colletotrichum gloeosporioides from Hevea brasiliensis is the hemibiotrophic fungi which could cause anthracnose in rubber trees. Dicer like proteins (DCL) were the core enzymes for generation of small RNAs. In the present study, the knocking-out mutants of two dicer like proteins encoding genes of C. gloeosporioides were constructed; and functions of two proteins were investigated. The results showed that DCL play important roles in regulating the growth, conidiation and pathogenicity of C. gloeosporioides; and there is a functional redundancy between DCL1 and DCL2. Microscopy analysis and DAB staining revealed that loss of penetration ability into the host cells, instead of the decreased growth rate, was the main cause for the impaired pathogenicity of the ΔDcl1ΔDcl2 double mutant. Proteomics analysis suggested that DCL proteins affected the expression of functional proteins to regulating multiple biological processes of C. gloeosporioides. These data lead to a better understanding of the functions of DCL proteins in regulating the development and pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xingrong Hou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yunfeng Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Chennareddy S, Cicak T, Clark L, Russell S, Skokut M, Beringer J, Yang X, Jia Y, Gupta M. Expression of a novel bi-directional Brassica napus promoter in soybean. Transgenic Res 2017; 26:727-738. [PMID: 28916981 DOI: 10.1007/s11248-017-0042-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The expression profile of a natural bi-directional promoter, derived from the Brassica napus EPSPS-A gene, was studied in transgenic soybean (Glycine max C.V. Maverick) lines. Two constructs, pDAB100331 and pDAB100333, were assembled to test the bi-directionality of the promoter. Two reporter genes, gfp and gusA, were employed and they were interchangeably placed in both constructs, one on each end of the promoter such that both proteins expressed divergently in each construct. In the T0 generation, GUS expression was more uniform throughout the leaf of pDAB100333 transgenic plants, where the gusA gene was expressed from the downstream or EPSPS-A end of the bi-directional promoter. Comparatively, GUS expression was more localized in the midrib and veins of the leaf of pDAB100331 transgenic plants, where the gusA gene was expressed from the upstream end of the bi-directional promoter. These observations indicated a unique expression pattern from each end of the promoter and consistently higher expression in genes expressed from the downstream end (e.g., EPSPS-A end) of the promoter in the tissues examined. The GFP expression pattern followed that of GUS when placed in the same position relative to the promoter. In the T1 generation, transcript analysis also showed higher expression of both gusA and gfp when those genes were located at the downstream end of the promoter. Accordingly, the pDAB100331 events exhibited a higher gfp/gusA transcript ratio, while pDAB100333 events produced a higher gusA/gfp transcript ratio consistent with the observations in T0 plants. These results demonstrated that the EPSPS-A gene bidirectional promoter can be effectively utilized to drive expression of two transgenes for the desired traits.
Collapse
Affiliation(s)
| | - Toby Cicak
- Dow AgroSciences, West Lafayette, IN, 47906, USA
| | | | | | | | | | - Xiaozeng Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Jia
- Dow AgroSciences, Indianapolis, IN, 46268, USA
| | - Manju Gupta
- Dow AgroSciences, Indianapolis, IN, 46268, USA
| |
Collapse
|
19
|
Aboulela M, Tanaka Y, Nishimura K, Mano S, Kimura T, Nakagawa T. A dual-site gateway cloning system for simultaneous cloning of two genes for plant transformation. Plasmid 2017; 92:1-11. [PMID: 28499723 DOI: 10.1016/j.plasmid.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
Analyses of the subcellular localization of proteins and protein-protein interaction networks are essential to uncover the molecular basis of diverse biological processes in plants. To this end, we have created a Gateway cloning-compatible vector system, named dual-site (DS) Gateway cloning system to allow simple cloning of two expression cassettes in a binary vector and to express them simultaneously in plant cells. In the DS Gateway cloning system, (i) a moderate constitutive nopaline synthase promoter (Pnos), which is much suitable for localization analysis, is used to guide each expression cassette, (ii) four series of vectors with different plant resistance markers are established, (iii) N-terminal fusion with 6 fluorescent proteins and 7 epitope tags is available, (iv) both N- and C-terminal fusions with split enhanced yellow fluorescent protein (EYFP) are possible for efficient detection of protein-protein interactions using a bimolecular fluorescence complementation (BiFC) assay. The usefulness of the DS Gateway cloning system has been demonstrated by the analysis of the expression and the subcellular localization patterns of two Golgi proteins in stable expression system using A. thaliana, and by the analyses of interactions between subunits of coat protein complex II (COPII) both in transient and stable expression systems using Japanese leek and A. thaliana, respectively. The DS Gateway cloning system provides a multipurpose, efficient expression tool in gene function analyses and especially suitable for investigating interactions and subcellular localization of two proteins in living plant cells.
Collapse
Affiliation(s)
- Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tetsuya Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Matsue, Japan; Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan.
| |
Collapse
|
20
|
|
21
|
Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants. Biochem Genet 2016; 54:291-305. [DOI: 10.1007/s10528-016-9719-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
|
22
|
Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants. Funct Integr Genomics 2015; 16:19-27. [DOI: 10.1007/s10142-015-0463-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
23
|
Tao YB, He LL, Niu LJ, Xu ZF. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. PLANTA 2015; 241:823-36. [PMID: 25502690 DOI: 10.1007/s00425-014-2222-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/30/2014] [Indexed: 05/09/2023]
Abstract
The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.
Collapse
Affiliation(s)
- Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | | | | | | |
Collapse
|
24
|
Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 2014; 9:e104956. [PMID: 25141304 PMCID: PMC4139310 DOI: 10.1371/journal.pone.0104956] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022] Open
Abstract
RNA silencing such as quelling and meiotic silencing by unpaired DNA (MSUD) and several other classes of special small RNAs have been discovered in filamentous fungi recently. More than four different mechanisms of microRNA-like RNAs (milRNAs) production have been illustrated in the model fungus Neurospora crassa including a dicer-independent pathway. To date, very little work focusing on small RNAs in fungi has been reported and no universal or particular characteristic of milRNAs were defined clearly. In this study, small RNA and degradome libraries were constructed and subsequently deep sequenced for investigating milRNAs and their potential cleavage targets on the genome level in the filamentous fungus F. oxysporum f. sp. lycopersici. As a result, there is no intersection of conserved miRNAs found by BLASTing against the miRBase. Further analysis showed that the small RNA population of F. oxysporum shared many common features with the small RNAs from N. crassa and other fungi. According to the known standards of miRNA prediction in plants and animals, milRNA candidates from 8 families (comprising 19 members) were screened out and identified. However, none of them could trigger target cleavage based on the degradome data. Moreover, most major signals of cleavage in transcripts could not match appropriate complementary small RNAs, suggesting that other predominant modes for milRNA-mediated gene regulation could exist in F. oxysporum. In addition, the PAREsnip program was utilized for comprehensive analysis and 3 families of small RNAs leading to transcript cleavage were experimentally validated. Altogether, our findings provided valuable information and important hints for better understanding the functions of the small RNAs and milRNAs in the fungal kingdom.
Collapse
|
25
|
Calin A, Cucu N, Tessio C. Stability of a Transgene in Potato Depends on Endogenous Plant Tissue Factors. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.1996.10818891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Konstantinova T, Parvanova D, Atanassov A, Djilianov D. Stable Integration of Transgenes in Tobacco. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2003.10817051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Ludwig-Müller J, Jahn L, Lippert A, Püschel J, Walter A. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 2014; 32:1168-79. [PMID: 24699436 DOI: 10.1016/j.biotechadv.2014.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany.
| | - Linda Jahn
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Annemarie Lippert
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Joachim Püschel
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Antje Walter
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| |
Collapse
|
28
|
Maessen G. Genomic stability and stability of expression in genetically modified plants. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
|
30
|
Pellegrini PA. Anomalies in the early stages of plant transgenesis: interests and interpretations surrounding the first transgenic plants. HISTORIA, CIENCIAS, SAUDE--MANGUINHOS 2013; 20:1453-1471. [PMID: 24473646 DOI: 10.1590/s0104-59702013000500002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/01/2012] [Indexed: 06/03/2023]
Abstract
The origins of plant transgenesis are discussed and the experiments that led to the first transgenic plants are analyzed. This process involved a series of actors, practices and interests specific to biotechnology. Consensus about the meaning of fundamental experiments was also at issue here. These events illustrate some of the conflicts related to genetically modified organisms, since scientists had different responses to plant transgenesis at the time of the first experiments, and opinions of the anomalies in those experiments varied. Thus, this article analyzes the interests and interpretations surrounding the first experiments involving transgenic plants.
Collapse
|
31
|
Deng L, Pan Y, Chen X, Chen G, Hu Z. Small RNAs were involved in homozygous state-associated silencing of a marker gene (Neomycin phosphotransferase II: nptII) in transgenic tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:8-15. [PMID: 23612328 DOI: 10.1016/j.plaphy.2013.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Homozygous state-associated co-suppression is not a very common phenomenon. In our experiments, two transgenic plants 3A29 and 1195A were constructed by being transformed with the constructs pBIN-353A and pBIN119A containing nptII gene as a marker respectively. The homozygous progeny from these two independent transgenic lines 3A29 and 1195A, displayed kanamycin-sensitivity and produced a short main root without any lateral roots as untransformed control (wild-type) seedlings when germinated on kanamycin media. For the seedlings derived from putative hemizygous plants, the percentage of the seedlings showing normal growth on kanamycin media was about 50% and lower than the expected percentage (75%). Southern analysis of the genomic DNA confirmed that the homozygous and hemizygous plants derived from the same lines contained the same multiple nptII transgenes, which were located on the same site of chromosome. Northern analysis suggested that the marker nptII gene was expressed in the primary and the hemizygous transformants, but it was silenced in the homozygous transgenic plants. Further Northern analysis indicated that antisense and sense small nptII-derived RNAs were present in the transgenic plants and the blotting signal of nptII-derived small RNA was much higher in the homozygous transgenic plants than that of hemizygous transgenic plants. Additionally, read-through transcripts from the TRAMP gene to the nptII gene were detected. These results suggest that the read-through transcripts may be involved in homozygous state-associated silencing of the nptII transgene in transgenic tomato plants and a certain threshold level of the nptII-derived small RNAs is required for the homozygous state-associated co-suppression of the nptII transgene.
Collapse
Affiliation(s)
- Lei Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Campus A, 174 Shapingba Main Street, Chongqing 400044, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Dhadi SR, Deshpande A, Driscoll K, Ramakrishna W. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5'-untranslated regions. Gene 2013; 526:400-10. [PMID: 23756196 DOI: 10.1016/j.gene.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Bidirectional promoters are defined as those that regulate adjacent genes organized in a divergent fashion (head to head orientation) and separated by <1 kb. In order to dissect bidirectional promoter activity in a model plant, deletion analysis was performed for seven rice promoters using promoter-reporter gene constructs, which identified three promoters to be bidirectional. Regulatory elements located in or close to the 5'-untranslated regions (UTR) of one of the genes (divergent gene pair) were found to be responsible for their bidirectional activity. DNA footprinting analysis identified unique protein binding sites in these promoters. Deletion/alteration of these motifs resulted in significant loss of expression of the reporter genes on either side of the promoter. Changes in the motifs at both the positions resulted in a remarkable decrease in bidirectional activity of the reporter genes flanking the promoter. Based on our results, we propose a novel mechanism for the bidirectionality of rice bidirectional promoters.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
33
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
34
|
Chen Z, Wang J, Ye MX, Li H, Ji LX, Li Y, Cui DQ, Liu JM, An XM. A Novel Moderate Constitutive Promoter Derived from Poplar (Populus tomentosa Carrière). Int J Mol Sci 2013; 14:6187-204. [PMID: 23507754 PMCID: PMC3634493 DOI: 10.3390/ijms14036187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 01/07/2023] Open
Abstract
A novel sequence that functions as a promoter element for moderate constitutive expression of transgenes, designated as the PtMCP promoter, was isolated from the woody perennial Populus tomentosa. The PtMCP promoter was fused to the GUS reporter gene to characterize its expression pattern in different species. In stable Arabidopsis transformants, transcripts of the GUS reporter gene could be detected by RT-PCR in the root, stem, leaf, flower and silique. Further histochemical and fluorometric GUS activity assays demonstrated that the promoter could direct transgene expression in all tissues and organs, including roots, stems, rosette leaves, cauline leaves and flowers of seedlings and maturing plants. Its constitutive expression pattern was similar to that of the CaMV35S promoter, but the level of GUS activity was significantly lower than in CaMV35S promoter::GUS plants. We also characterized the promoter through transient expression in transgenic tobacco and observed similar expression patterns. Histochemical GUS staining and quantitative analysis detected GUS activity in all tissues and organs of tobacco, including roots, stems, leaves, flower buds and flowers, but GUS activity in PtMCP promoter::GUS plants was significantly lower than in CaMV35S promoter::GUS plants. Our results suggested that the PtMCP promoter from poplar is a constitutive promoter with moderate activity and that its function is presumably conserved in different species. Therefore, the PtMCP promoter may provide a practical choice to direct moderate level constitutive expression of transgenes and could be a valuable new tool in plant genetic engineering.
Collapse
Affiliation(s)
- Zhong Chen
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Jia Wang
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Mei-Xia Ye
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Hao Li
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Le-Xiang Ji
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Ying Li
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Dong-Qing Cui
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Jun-Mei Liu
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| | - Xin-Min An
- National Engineering Laboratory for Tree Breeding (NDRC), Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants (MOE), the Tree and Ornamental Plant Breeding and Biotechnology Laboratory (SFA), College of Biological Science and Biotechnology, Beijing Forestry University, Qinghua Eastern Road No.35, Haidian District, Beijing 100083, China; E-Mails: (Z.C.); (J.W.); (M.-X.Y.); (H.L.); (L.-X.J.); (Y.L.); (D.-Q.C.); (J.-M.L.)
| |
Collapse
|
35
|
Abstract
In plants, transgenes often induce rapid turnover of homologous endogenous transcripts. This "cosuppression" of homologous genes is an extremely nonlinear response to small increases in gene expression or dosage, inversely amplifying them into dramatic phenotypic alterations. Pigment transgenes elicit metastable cosuppression patterns organized by flower morphology. Pattern organization and metastability reflect regulatory states (probably transgene transcription states) that respond to morphological features and are labile to physiology and development. Shifts between regulatory states can be highly ordered; for example, a shift may be imposed on a population of cells defining a meristem, which then stably maintains and transmits the new state throughout growth.
Collapse
|
36
|
Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus. Arch Virol 2012; 158:133-43. [DOI: 10.1007/s00705-012-1483-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
|
37
|
Wang L, Yang M, Akinnagbe A, Liang H, Wang J, Ewald D. Bacillus thuringiensis protein transfer between rootstock and scion of grafted poplar. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:745-50. [PMID: 22372666 DOI: 10.1111/j.1438-8677.2011.00555.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacillus thuringiensis (Bt) Cry1Ac protein is a toxin against different leaf-eating lepidopteran insects that attack poplar trees. In the present study, the mode of migration of the Bt-Cry1Ac protein within poplar grafts was investigated. Grafting was done using Pb29 (transgenic poplar 741 with cry1Ac genes), CC71 (transgenic poplar 741 with cry3A genes), non-transgenic poplar 741 and non-transgenic Populus tomentosa, either as scion or as rootstock. In order to detect migration of Bt-Cry1Ac protein from one portion of the graft union to different tissues in the grafted plant, ELISA analysis was employed to assess the content of Bt-Cry1Ac protein in the phloem, xylem, pith and leaves of the grafted poplar. To further verify migration of Bt-Cry1Ac protein, Clostera anachoreta larvae, which are susceptible to Bt-Cry1Ac protein, were fed leaves from the control graft (i.e., graft portion that originally did not contain Bt-Cry1Ac protein). The results showed that Bt-Cry1Ac protein was transported between rootstock and scion mainly through the phloem. Migration of Bt-Cry1Ac protein in the grafted union was also evidenced in that the leaves of the control graft did have a lethal effect on C. anachoreta larvae in laboratory feeding experiments.
Collapse
Affiliation(s)
- L Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| | - M Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| | - A Akinnagbe
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| | - H Liang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| | - J Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| | - D Ewald
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China College of Horticulture, Hebei North University, Zhangjiakou, China Department of Forestry & Wood Technology, Federal University of Technology, Akure, Nigeria Institute of Forest Genetics, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries, Waldsieversdorf, Germany
| |
Collapse
|
38
|
Tizaoui K, Kchouk ME. Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genet Mol Biol 2012; 35:640-9. [PMID: 23055804 PMCID: PMC3459415 DOI: 10.1590/s1415-47572012000400015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/21/2012] [Indexed: 11/22/2022] Open
Abstract
Transgene integration into plant genomes is a complex process accompanied by molecular rearrangements. Classic methods that are normally used to study transgenic population genetics are generally inadequate for assessing such integration. Two major characteristics of transgenic populations are that a transgenic genome may harbor many copies of the transgene and that molecular rearrangements can create an unstable transgenic locus. In this work, we examined the segregation of T1, T2 and T3 transgenic tobacco progenies. Since transfer DNA (T-DNA) contains the NptII selectable marker gene that confers resistance to kanamycin, we used this characteristic in developing a method to estimate the number of functional inserts integrated into the genome. This approach was based on calculation of the theoretical segregation ratios in successive generations. Mendelian ratios of 3:1, 15:1 and 63:1 were confirmed for five transformation events whereas six transformation events yielded non-segregating progenies, a finding that raised questions about causal factors. A second approach based on a maximum likelihood method was performed to estimate recombination frequencies between linked inserts. Recombination estimates varied among transformation events and over generations. Some transgenic loci were unstable and evolved continuously to segregate independently in the T3 generation. Recombination and amplification of the transgene and filler DNA yielded additional transformed genotypes.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Biology, Faculty of Sciences, El Manar, Tunis, Tunisia
| | | |
Collapse
|
39
|
Abstract
Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.
Collapse
|
40
|
Gambino G, Gribaudo I. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 2012; 21:1163-81. [DOI: 10.1007/s11248-012-9602-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 12/22/2022]
|
41
|
Post KH, Parry D. Non-target effects of transgenic blight-resistant American chestnut (Fagales: Fagaceae) on insect herbivores. ENVIRONMENTAL ENTOMOLOGY 2011; 40:955-963. [PMID: 22251697 DOI: 10.1603/en10063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
American chestnut [Castanea dentata (Marshall) Borkhausen], a canopy dominant species across wide swaths of eastern North America, was reduced to an understory shrub after introduction of the blight fungus [Cryphonectria parasitica (Murrill) Barr] in the early 1900s. Restoration of American chestnut by using biotechnology is promising, but the imprecise nature of transgenesis may inadvertently alter tree phenotype, thus potentially impacting ecologically dependent organisms. We quantified effects of genetic engineering and fungal inoculation of trees on insect herbivores by using transgenic American chestnuts expressing an oxalate oxidase gene and wild-type American and Chinese (C. mollissima Blume) chestnuts. Of three generalist folivores bioassayed, only gypsy moth [Lymantria dispar (L.)] was affected by genetic modification, exhibiting faster growth on transgenic than on wild-type chestnuts, whereas growth of polyphemus moth [Antheraea polyphemus (Cramer)] differed between wild-type species, and fall webworm [Hyphantria cunea (Drury)] performed equally on all trees. Inoculation of chestnuts with blight fungus had no effect on the growth of two herbivores assayed (polyphemus moth and fall webworm). Enhanced fitness of gypsy moth on genetically modified trees may hinder restoration efforts if this invasive herbivore's growth is improved because of transgene expression.
Collapse
Affiliation(s)
- K H Post
- Department of Environmental and Forest Biology, SUNY-College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | | |
Collapse
|
42
|
Naoumkina M, Dixon RA. Characterization of the mannan synthase promoter from guar (Cyamopsis tetragonoloba). PLANT CELL REPORTS 2011; 30:997-1006. [PMID: 21249366 DOI: 10.1007/s00299-011-1003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/27/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
Guar seed gum, consisting primarily of a high molecular weight galactomannan, is the most cost effective natural thickener, having broad applications in the food, cosmetics, paper, pharmaceutical and petroleum industries. The properties of the polymer can potentially be enhanced by genetic modification. Development of suitable endosperm-specific promoters for use in guar is desirable for metabolic engineering of the seed gum. A ~1.6 kb guar mannan synthase (MS) promoter region has been isolated. The MS promoter sequence was fused with the GUS reporter gene and overexpressed in the heterologous species alfalfa (Medicago sativa). The potential strength and specificity of the MS promoter was compared with those of the constitutive 35S promoter and the seed specific β-phaseolin promoter. Quantitative GUS assays revealed that the MS promoter directs GUS expression specifically in endosperm in transgenic alfalfa. Thus, the guar MS promoter could prove generally useful for directing endosperm-specific expression of transgenes in legume species.
Collapse
Affiliation(s)
- Marina Naoumkina
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|
43
|
Matvieieva NA, Vasylenko MY, Shahovsky AM, Bannykova MO, Kvasko OY, Kuchuk NV. Effective Agrobacterium-mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
De Guglielmo-Cróquer Z, Altosaar I, Zaidi M, Menéndez-Yuffá A. Transformation of coffee (Coffea Arabica L. cv. Catimor) with the cry1ac gene by biolistic, without the use of markers. BRAZ J BIOL 2010; 70:387-93. [DOI: 10.1590/s1519-69842010000200022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 06/01/2009] [Indexed: 12/24/2022] Open
Abstract
The transformation of coffee plantlets with the cry1ac gene of Bacillus thuringiensis was achieved by biolistic using either the whole pUBC plasmid or only the ubi-cry1ac-nos genetic cassette. The cry1ac gene was inserted into coffee plants in order to confer resistance to the leaf miner Leucoptera coffeella, an insect responsible for considerable losses in coffee crops. Bearing in mind that the genetic cassettes used for this study lack reporter genes and/or selection marker genes, the parameters for the transformation procedure by biolistic were previously standardised with a plasmid carrying the gus reporter gene. The presence of the cry1ac gene in young plantlet tissues was determined by PCR, Southern blot and reverse transcription-PCR. Our results show that the obtainment of viable coffee plantlets, transformed by bombardment with the cry1ac gene and without selection markers nor reporter genes, is feasible.
Collapse
|
45
|
Abstract
RNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species. Because transgene-induced RNAi has been effective at silencing one or more genes in a wide range of plants, this technology also bears potential as a powerful functional genomics tool across the plant kingdom. Transgene-induced RNAi has indeed been shown to be an effective mechanism for silencing many genes in many organisms, but the results from multiple projects which attempted to exploit RNAi on a genome-wide scale suggest that there is a great deal of variation in the silencing efficacy between transgenic events, silencing targets and silencing-induced phenotype. The results from these projects indicate several important variables that should be considered in experimental design prior to the initiation of functional genomics efforts based on RNAi silencing. In recent years, alternative strategies have been developed for targeted gene silencing, and a combination of approaches may also enhance the use of targeted gene silencing for functional genomics.
Collapse
Affiliation(s)
- Karen M McGinnis
- Department of Biological Sciences, Florida State University, Tallahassee, 32306-4295, USA.
| |
Collapse
|
46
|
Kaiser G, Kleiner O, Beisswenger C, Batschauer A. Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. PLANTA 2009; 230:505-515. [PMID: 19521716 DOI: 10.1007/s00425-009-0962-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/25/2009] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B, 280-320 nm) radiation may have severe negative effects on plants including damage to their genetic information. UV protection and DNA-repair mechanisms have evolved to either avoid or repair such damage. Since autotrophic plants are dependent on sunlight for their energy supply, an increase in the amount of UV-B reaching the earth's surface may affect the integrity of their genetic information if DNA damage is not repaired efficiently and rapidly. Here we show that overexpression of cyclobutane pyrimidine dimer (CPD) photolyase (EC 4.1.99.3) in Arabidopsis thaliana (L.), which catalyses the reversion of the major UV-B photoproduct in DNA (CPDs), strongly enhances the repair of CPDs and results in a moderate increase of biomass production under elevated UV-B.
Collapse
Affiliation(s)
- Gebhard Kaiser
- FB Biologie, Pflanzenphysiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | | | | | | |
Collapse
|
47
|
Xia H, Lu BR, Su J, Chen R, Rong J, Song Z, Wang F. Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice: its implication in ecological biosafety assessment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:635-644. [PMID: 19504082 DOI: 10.1007/s00122-009-1075-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 05/15/2009] [Indexed: 05/27/2023]
Abstract
Transgene outflow from genetically modified (GM) rice to its wild relatives may cause undesirable ecological consequences. Understanding the level of transgene expression in wild rice following gene flow is important for assessing such consequences, providing that transgene escape from GM rice cannot be prevented. To determine the expression of a transgene in common wild rice (Oryza rufipogon), we analyzed the content of Cry1Ac protein in three GM rice lines containing a Bt transgene, their F(1) hybrids with common wild rice and F(2) progeny at different growth stages, using the sandwich enzyme-linked immunosorbent assay. The average content of Cry1Ac protein in leaf samples of the wild rice lines ranged between 0.016 and 0.069% during the entire growth period, whereas that in stems varied between 0.12 and 0.39%. A great variation in Cry1Ac protein content was detected among individuals of F(1) hybrids and F(2) progeny, with some wild individuals showing higher level of Bt toxin than the cultivated GM rice. The results suggest that the Bt transgene can express normally in the interspecific hybrids between insect-resistant GM rice and common wild rice, and may have similar effects on the target insects as in GM rice.
Collapse
Affiliation(s)
- Hui Xia
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, 200433, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 2009; 46:373-82. [PMID: 19552760 DOI: 10.1111/j.1600-079x.2009.00673.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin is found in a wide variety of plant species. Several investigators have studied the physiological roles of melatonin in plants. However, its role is not well understood because of the limited information on its biosynthetic pathway. To clarify melatonin biosynthesis in plants, we isolated a cDNA-coded arylalkylamine N-acetyltransferase (AANAT), a possible limiting enzyme for melatonin biosynthesis, from Chlamydomonas reinhardtii (designated as CrAANAT). The predicted amino acid sequence of CrAANAT shares 39.0% homology to AANAT from Ostreococcus tauri and lacks cAMP-dependent protein kinase phosphorylation sites in the N- and C-terminal regions that are conserved in vertebrates. The enzyme activity of CrAANAT was confirmed by in vitro assay using Escherichia coli. Transgenic plants constitutively expressing the CrAANAT were produced using Micro-Tom, a model cultivar of tomato (Solanum lycopersicum L.). The transgenic Micro-Tom exhibited higher melatonin content compared with wild type, suggesting that melatonin was synthesized from serotonin via N-acetylserotonin in plants. Moreover, the melatonin-rich transgenic Micro-Tom can be used to elucidate the role of melatonin in plant development.
Collapse
Affiliation(s)
- Masateru Okazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
49
|
Matvieieva NA, Vasylenko MY, Shakhovsky AM, Kuchuk NV. Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes coding bacterial antigens from Mycobacterium tuberculosis. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709020042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Furtado A, Henry RJ, Pellegrineschi A. Analysis of promoters in transgenic barley and wheat. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:240-53. [PMID: 19175520 DOI: 10.1111/j.1467-7652.2008.00394.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Advances in the genetic transformation of cereals have improved the prospects of using biotechnology for plant improvement, and a toolbox of promoters with defined specificities would be a valuable resource in controlling the expression of transgenes in desired tissues for both plant improvement and molecular farming. A number of promoters have been isolated from the important cereals (wheat, barley, rice and maize), and these promoters have been tested mostly in homologous cereal systems and, to a lesser extent, in heterologous cereal systems. The use of these promoters across the important cereals would add value to the utility of each promoter. In addition, promoters with less sequence homology, but with similar specificities, will be crucial in avoiding homology-based gene silencing when expressing more than one transgene in the same tissue. We have tested wheat and barley promoters in transgenic barley and wheat to determine whether their specificity is shared across these two species. The barley bifunctional alpha-amylase/subtilisin inhibitor (Isa) promoter, specific to the pericarp in barley, failed to show any activity in wheat, whereas the wheat early-maturing (Em) promoter showed similar activity in wheat and barley. The wheat high-molecular-weight glutenin (HMW-Glu) and barley D-hordein (D-Hor) and B-hordein (B-Hor) storage protein promoters maintained endosperm-specific expression of green fluorescent protein (GFP) in wheat and barley, respectively. Using gfp, we have demonstrated that the Isa and Em promoters can be used as strong promoters to direct transgenes in specific tissues of barley and wheat grain. Differential promoter activity across cereals expands and adds value to a promoter toolbox for utility in plant biotechnology.
Collapse
Affiliation(s)
- Agnelo Furtado
- Cooperative Research Centre for Molecular Plant Breeding, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW 2480, Australia
| | | | | |
Collapse
|