1
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621122. [PMID: 39554061 PMCID: PMC11565853 DOI: 10.1101/2024.10.30.621122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryonic exposures to non-steroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckels cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
|
2
|
Teixeira RT, Marchese D, Duckney PJ, Dias FV, Carapeto AP, Louro M, Silva MS, Cordeiro C, Rodrigues MS, Malhó R. Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells. THE NEW PHYTOLOGIST 2025; 245:1056-1071. [PMID: 39555685 DOI: 10.1111/nph.20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P2) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | | | - Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana P Carapeto
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mariana Louro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
3
|
Zhu M, Du BY, Tan YQ, Yang Y, Zhang Y, Wang YF. CPK1 activates CNGCs through phosphorylation for Ca 2+ signaling to promote root hair growth in Arabidopsis. Nat Commun 2025; 16:676. [PMID: 39809784 PMCID: PMC11733299 DOI: 10.1038/s41467-025-56008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca2+ to establish and maintain a sharp cytosolic Ca2+ gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth. The loss-of-function mutants cpk1-1, cpk1-2, cngc5-1 cngc6-2 cngc9-1 (shrh1/short root hair 1), and cpk1 shrh1 show similar RH phenotypes, including shorter RHs, more RH branching, and dramatically attenuated cytosolic Ca2+ gradients at RH tips. The main CPK1-target sites are identified as Ser20, Ser27, and Ser26 for CNGC5/6/9, respectively, and the corresponding alanine substitution mutants fail to rescue RH growth in shrh1 and cpk1-1, while phospho-mimic versions restore the cytosolic Ca2+ gradient at RH apex and rescue the RH phenotypes in the same Arabidopsis mutants. Thus we discover the CPK1-CNGC modules essential for the Ca2+ signaling regulation and RH growth in Arabidopsis.
Collapse
Affiliation(s)
- Meijun Zhu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo-Ya Du
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan-Qiu Tan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Yang Yang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong-Fei Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Fritz C, Reimann TM, Adler J, Knab J, Schulmeister S, Kriechbaum C, Müller S, Parmryd I, Kost B. Plasma membrane and cytoplasmic compartmentalization: A dynamic structural framework required for pollen tube tip growth. PLANT PHYSIOLOGY 2024; 197:kiae558. [PMID: 39446406 DOI: 10.1093/plphys/kiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Rapid, unidirectional pollen tube tip growth is essential for fertilization and widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains (i) enriched in key signaling proteins or lipids, (ii) displaying high membrane order, or (iii) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included in this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which (i) enhance our understanding of cellular and regulatory processes underlying tip growth and (ii) highlight important areas of future research.
Collapse
Affiliation(s)
- Carolin Fritz
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Knab
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Choy Kriechbaum
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Müller
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benedikt Kost
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Kulich I, Schmid J, Teplova A, Qi L, Friml J. Rapid translocation of NGR proteins driving polarization of PIN-activating D6 protein kinase during root gravitropism. eLife 2024; 12:RP91523. [PMID: 38441122 PMCID: PMC10942638 DOI: 10.7554/elife.91523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.
Collapse
Affiliation(s)
- Ivan Kulich
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Julia Schmid
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Linlin Qi
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
6
|
Baillie AL, Sloan J, Qu LJ, Smith LM. Signalling between the sexes during pollen tube reception. TRENDS IN PLANT SCIENCE 2024; 29:343-354. [PMID: 37640641 DOI: 10.1016/j.tplants.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Plant reproduction is a complex, highly-coordinated process in which a single, male germ cell grows through the maternal reproductive tissues to reach and fertilise the egg cell. Focussing on Arabidopsis thaliana, we review signalling between male and female partners which is important throughout the pollen tube journey, especially during pollen tube reception at the ovule. Numerous receptor kinases and their coreceptors are implicated in signal perception in both the pollen tube and synergid cells at the ovule entrance, and several specific peptide and carbohydrate ligands for these receptors have recently been identified. Clarifying the interplay between these signals and the downstream responses they instigate presents a challenge for future research and may help to illuminate broader principles of plant cell-cell communication.
Collapse
Affiliation(s)
- Alice L Baillie
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jen Sloan
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa M Smith
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Xu L, Ren H, Xie D, Zhang F, Hu X, Fang S, Wang H, He D. Rac2 mediate foam cell formation and associated immune responses in THP-1 to promote the process of atherosclerotic plaques. Mol Immunol 2023; 163:196-206. [PMID: 37837955 DOI: 10.1016/j.molimm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Macrophages play an important role in the pathogenesis of atherosclerosis (AS) by mediating oxidative stress, inflammation and lipid metabolism, which can lead to the formation of vascular plaque. The Rac family isoforms of small molecules GTPase are active by binding to GTPase, but are inactivated by binding to GDP, and play a role in the switch of cell information conduction. This experiment adopts shRNA interference THP-1 cells respectively each subtype expression and inhibiting Rac1, Rac2, Rac3 activity, each subtype of Rac family on lipid metabolism, inflammatory reaction and oxidative stress. THP-1 cells were stimulated with Ox-LDL to establish AS cell models including lipid loading, adhesion, migration and chemotaxis. Oil Red O staining, cell immunofluorescence, scratching test, transwell, Western blot and other experiments were performed. To observe the different effects of three subtypes of Rac family on multiple links in the foaming process of THP-1 cells. ApoE-/- mice on a high-fat diet were used as animal models to examine the effects of Rac subtypes in vivo. The results showed that the activation of immune cells induced by ox-LDL was inhibited when Rac1, Rac2 and Rac3 in THP-1 were decreased, respectively. Thus, Rac1 and Rac3 act in combination with ox-LDL and are associated with cellular oxidative stress and inflammation. This study provides new means and ideas for finding potential intervention targets that have important regulatory effects on atherosclerosis, and provides a new direction for the development of clinical drugs.
Collapse
Affiliation(s)
- Ling Xu
- Department of clinical laboratory, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning 116021, China
| | - He Ren
- Department of Ultrasound, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Daqing Xie
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoxiao Hu
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Shu Fang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Hongli Wang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China.
| | - Dan He
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
8
|
Müller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. PLANT PHYSIOLOGY 2023; 193:26-41. [PMID: 37070572 DOI: 10.1093/plphys/kiad229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Engelhardt S, Trutzenberg A, Kopischke M, Probst K, McCollum C, Hofer J, Hückelhoven R. Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew. PLANT MOLECULAR BIOLOGY 2023; 111:329-344. [PMID: 36562946 PMCID: PMC10090020 DOI: 10.1007/s11103-022-01329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/03/2022] [Indexed: 06/15/2023]
Abstract
CRIB motif-containing barley RIC157 is a novel ROP scaffold protein that interacts directly with barley RACB, promotes susceptibility to fungal penetration, and colocalizes with RACB at the haustorial neck. Successful obligate pathogens benefit from host cellular processes. For the biotrophic ascomycete fungus Blumeria hordei (Bh) it has been shown that barley RACB, a small monomeric G-protein (ROP, Rho of plants), is required for full susceptibility to fungal penetration. The susceptibility function of RACB probably lies in its role in cell polarity, which may be co-opted by the pathogen for invasive ingrowth of its haustorium. However, how RACB supports fungal penetration success and which other host proteins coordinate this process is incompletely understood. RIC (ROP-Interactive and CRIB-(Cdc42/Rac Interactive Binding) motif-containing) proteins are considered scaffold proteins which can interact directly with ROPs via a conserved CRIB motif. Here we describe a previously uncharacterized barley RIC protein, RIC157, which can interact directly with RACB in planta. We show that, in the presence of constitutively activated RACB, RIC157 shows a localization at the cell periphery/plasma membrane, whereas it otherwise localizes to the cytoplasm. RIC157 appears to mutually stabilize the plasma membrane localization of the activated ROP. During fungal infection, RIC157 and RACB colocalize at the penetration site, particularly at the haustorial neck. Additionally, transiently overexpressed RIC157 renders barley epidermal cells more susceptible to fungal penetration. We discuss that RIC157 may promote fungal penetration into barley epidermal cells by operating probably downstream of activated RACB.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Adriana Trutzenberg
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Michaela Kopischke
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Katja Probst
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Christopher McCollum
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Johanna Hofer
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
10
|
Feiguelman G, Cui X, Sternberg H, Hur EB, Higa T, Oda Y, Fu Y, Yalovsky S. Microtubule-associated ROP interactors affect microtubule dynamics and modulate cell wall patterning and root hair growth. Development 2022; 149:279331. [PMID: 36314989 PMCID: PMC9845754 DOI: 10.1242/dev.200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xiankui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hasana Sternberg
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eliran Ben Hur
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Takeshi Higa
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshihisa Oda
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel,Author for correspondence (; )
| |
Collapse
|
11
|
Kastner C, Wagner VC, Fratini M, Dobritzsch D, Fuszard M, Heilmann M, Heilmann I. The pollen-specific class VIII-myosin ATM2 from Arabidopsis thaliana associates with the plasma membrane through a polybasic region binding anionic phospholipids. Biochimie 2022; 203:65-76. [DOI: 10.1016/j.biochi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
12
|
Sharma A, Chandran D. Host nuclear repositioning and actin polarization towards the site of penetration precedes fungal ingress during compatible pea-powdery mildew interactions. PLANTA 2022; 256:45. [PMID: 35864318 DOI: 10.1007/s00425-022-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Actin polarization and actin-driven host nuclear movement towards the fungal penetration site facilitates successful host colonization during compatible pea-Erysiphe pisi interactions. Proper nuclear positioning in plant cells is crucial for developmental processes and response to (a)biotic stimuli. During plant-fungal interactions, the host nucleus moves toward the infection site, a process regulated by the plant cytoskeleton. Notably, rearrangement of the plant cytoskeleton is one of the earliest cellular responses to pathogen invasion and is known to impact penetration efficiency. Yet, the connection between host nuclear movement and fungal ingress is still elusive, particularly in legumes. Here, we investigated the host nuclear dynamics during compatible interactions between Pisum sativum (pea) and the adapted powdery mildew (PM) fungus Erysiphe pisi to gain insights into the functional relevance of PM-induced nuclear movement in legumes. We show that the host nucleus moves towards the fungal appressorium before penetration and becomes associated with the primary haustorium. However, the nucleus migrates away from the primary infection site as the infection progresses toward colony expansion and sporulation. Treatment of pea leaves with the actin-polymerization inhibitor, cytochalasin D, abolished host nuclear movement towards the fungal penetration site and restricted PM growth. In contrast, treatment with oryzalin, a microtubule-polymerization inhibitor, had no effect. In addition to nuclear movement, strong polarization of host actin filaments towards the site of appressorial contact was evident at early infection stages. Our results suggest that actin focusing mediates host nuclear movement to the fungal penetration site and facilitates successful colonization during compatible pea-PM interactions.
Collapse
Affiliation(s)
- Akriti Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| |
Collapse
|
13
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
14
|
Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells. J Genet Genomics 2022; 49:986-989. [PMID: 35202888 DOI: 10.1016/j.jgg.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
|
15
|
Akamatsu A, Fujiwara M, Hamada S, Wakabayashi M, Yao A, Wang Q, Kosami KI, Dang TT, Kaneko-Kawano T, Fukada F, Shimamoto K, Kawano Y. The Small GTPase OsRac1 Forms Two Distinct Immune Receptor Complexes Containing the PRR OsCERK1 and the NLR Pit. PLANT & CELL PHYSIOLOGY 2021; 62:1662-1675. [PMID: 34329461 DOI: 10.1093/pcp/pcab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1.
Collapse
Affiliation(s)
- Akira Akamatsu
- Department of Biosciences, Kwansei Gakuin University, 2-1 Gakuen, Hyogo, 669-1337, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Masayuki Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Yanmar Holdings Co., Ltd, 1-32 Chayamachi, Kita Ward, Osaka 530-8311, Japan
| | - Satoshi Hamada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Megumi Wakabayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Field Solutions North East Asia, Agronomic Operations Japan, Agronomic Technology Station East Japan, Bayer Crop Science K.K., 9511-4 Yuki, Ibaraki 307-0001, Japan
| | - Ai Yao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Qiong Wang
- Department of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ken-Ichi Kosami
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Matsuyama, 1618 Shimoidaicho, Ehime 791-0112, Japan
| | - Thu Thi Dang
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d'Angers, Beaucouzé 49071, France
| | - Takako Kaneko-Kawano
- College of Pharmaceutical Sciences, Ritsumeikan University, 1 Chome-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Ko Shimamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yoji Kawano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, China
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokachō, Totsuka Ward, Yokohama, Kanagawa 244-0813, Japan
| |
Collapse
|
16
|
Lee Y, Dean GH, Gilchrist E, Tsai AY, Haughn GW. Asymmetric distribution of extracellular matrix proteins in seed coat epidermal cells of Arabidopsis is determined by polar secretion. PLANT DIRECT 2021; 5:e360. [PMID: 34877448 PMCID: PMC8628086 DOI: 10.1002/pld3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Although asymmetric deposition of the plant extracellular matrix is critical for the normal functioning of many cell types, the molecular mechanisms establishing this asymmetry are not well understood. During differentiation, Arabidopsis seed coat epidermal cells deposit large amounts of pectin-rich mucilage asymmetrically to form an extracellular pocket between the plasma membrane and the outer tangential primary cell wall. At maturity, the mucilage expands on contact with water, ruptures the primary cell wall, and extrudes to encapsulate the seed. In addition to polysaccharides, mucilage contains secreted proteins including the β-galactosidase MUCILAGE MODIFIED 2 (MUM2). A functional chimeric protein where MUM2 was fused translationally with Citrine yellow fluorescent protein (Citrine) indicated that MUM2-Citrine fluorescence preferentially accumulates in the mucilage pocket concomitant with mucilage deposition and rapidly disappears when mucilage synthesis ceases. A secreted form of Citrine, secCitrine, showed a similar pattern of localization when expressed in developing seed coat epidermal cells. This result suggested that both the asymmetric localization and rapid decrease of fluorescence is not unique to MUM2-Citrine and may represent the default pathway for secreted proteins in this cell type. v-SNARE proteins were localized only in the membrane adjacent to the mucilage pocket, supporting the hypothesis that the cellular secretory apparatus is redirected and targets secretion to the outer periclinal apoplast during mucilage synthesis. In addition, mutation of ECHIDNA, a gene encoding a TGN-localized protein involved in vesicle targeting, causes misdirection of mucilage, MUM2 and v-SNARE proteins from the apoplast/plasma membrane to the vacuole/tonoplast. Western blot analyses suggested that the disappearance of MUM2-Citrine fluorescence at the end of mucilage synthesis is due to protein degradation and because several proteases have been identified in extruded seed mucilage. However, as mutation of these genes did not result in a substantial delay in MUM2-Citrine degradation and the timing of their expression and/or their intracellular localization were not consistent with a role in MUM2-Citrine disappearance, the mechanism underlying the abrupt decrease of MUM2-Citrine remains unclear.
Collapse
Affiliation(s)
- Yi‐Chen Lee
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Gillian H. Dean
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| | - Erin Gilchrist
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Molecular DiagnosticsAnandia LaboratoriesVancouverCanada
| | - Allen Yi‐Lun Tsai
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
International Research Center for Agricultural & Environmental Biology, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
| | - George W. Haughn
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
17
|
Shi B, Wang J, Gao H, Yang Q, Wang Y, Day B, Ma Q. The small GTP-binding protein TaRop10 interacts with TaTrxh9 and functions as a negative regulator of wheat resistance against the stripe rust. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110937. [PMID: 34134844 DOI: 10.1016/j.plantsci.2021.110937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Small GTP-binding proteins, also known as ROPs (Rho of Plants), are a subfamily of the Ras superfamily of signaling G-proteins and are required for numerous signaling processes, ranging from growth and development to biotic and abiotic signaling. In this study, we cloned and characterized wheat TaRop10, a homolog of Arabidopsis ROP10 and member of the class II ROP, and uncovered a role for TaRop10 in wheat response to Puccinia striiformis f. sp. tritici (Pst). TaRop10 was downregulated by actin depolymerization and was observed to be differentially induced by abiotic stress and the perception of plant hormones. A combination of yeast two-hybrid and bimolecular fluorescence complementation assays revealed that TaRop10 interacted with a h-type thioredoxin (TaTrxh9). Knocking-down of TaRop10 and TaTrxh9 was performed using the BSMV-VIGS (barley stripe mosaic virus-based virus-induced gene silencing) technique and revealed that TaRop10 and TaTrxh9 play a role in the negative regulation of defense signaling in response to Pst infection. In total, the data presented herein further illuminate our understanding of how intact plant cells accommodate fungal infection structures, and furthermore, support the function of TaRop10 and TaTrxh9 in negative modulation of defense signaling in response to stripe rust infection.
Collapse
Affiliation(s)
- Beibei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Life Science, Shanxi Datong University, Datong, Shanxi 037009, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences / Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, Xinjiang 830091, China
| | - Qichao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States; Plant Resilience Institute, Michigan State University, East Lansing, MI, United States.
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
19
|
Retzer K, Weckwerth W. The TOR-Auxin Connection Upstream of Root Hair Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:150. [PMID: 33451169 PMCID: PMC7828656 DOI: 10.3390/plants10010150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
20
|
García-Soto I, Boussageon R, Cruz-Farfán YM, Castro-Chilpa JD, Hernández-Cerezo LX, Bustos-Zagal V, Leija-Salas A, Hernández G, Torres M, Formey D, Courty PE, Wipf D, Serrano M, Tromas A. The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:696450. [PMID: 34868100 PMCID: PMC8636059 DOI: 10.3389/fpls.2021.696450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus. In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1, decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation.
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Ivette García-Soto,
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | - Victor Bustos-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Mario Serrano,
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- La Cité College, Bureau de la Recherche et de l’Innovation, Ottawa, ON, Canada
- Alexandre Tromas,
| |
Collapse
|
21
|
Cheng X, Mwaura BW, Chang Stauffer SR, Bezanilla M. A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and Tissue-Level Patterning. THE PLANT CELL 2020; 32:3436-3451. [PMID: 32917738 PMCID: PMC7610296 DOI: 10.1105/tpc.20.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Rho of Plants (ROPs) are GTPases that regulate polarity and patterned wall deposition in plants. As these small, globular proteins have many interactors, it has been difficult to ensure that methods to visualize ROP in live cells do not affect ROP function. Here, motivated by work in fission yeast (Schizosaccharomyces pombe), we generated a fluorescent moss (Physcomitrium [Physcomitrella] patens) ROP4 fusion protein by inserting mNeonGreen after Gly-134. Plants harboring tagged ROP4 and no other ROP genes were phenotypically normal. Plants lacking all four ROP genes comprised an unpatterned clump of spherical cells that were unable to form gametophores, demonstrating that ROP is essentially for spatial patterning at the cellular and tissue levels. The functional ROP fusion protein formed a steep gradient at the apical plasma membranes of growing tip cells. ROP also predicted the site of branch formation in the apical cell at the onset of mitosis, which occurs one to two cell cycles before a branch cell emerges. While fluorescence recovery after photobleaching studies demonstrated that ROP dynamics do not depend on the cytoskeleton, acute depolymerization of the cytoskeleton removed ROP from the membrane only in recently divided cells, pointing to a feedback mechanism between the cell cycle, cytoskeleton, and ROP.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Bethany W Mwaura
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
22
|
Wallner ES. The value of asymmetry: how polarity proteins determine plant growth and morphology. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5733-5739. [PMID: 32687194 PMCID: PMC7888286 DOI: 10.1093/jxb/eraa329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Cell polarity is indispensable for forming complex multicellular organisms. Proteins that polarize at specific plasma membrane domains can either serve as scaffolds for effectors or coordinate intercellular communication and transport. Here, I give an overview of polarity protein complexes and their fundamental importance for plant development, and summarize novel mechanistic insights into their molecular networks. Examples are presented for proteins that polarize at specific plasma membrane domains to orient cell division planes, alter cell fate progression, control transport, direct cell growth, read global polarity axes, or integrate external stimuli into plant growth. The recent advances in characterizing protein polarity during plant development enable a better understanding of coordinated plant growth and open up intriguing paths that could provide a means to modulate plant morphology and adaptability in the future.
Collapse
|
23
|
Tang K, Yang S, Feng X, Wu T, Leng J, Zhou H, Zhang Y, Yu H, Gao J, Ma J, Feng X. GmNAP1 is essential for trichome and leaf epidermal cell development in soybean. PLANT MOLECULAR BIOLOGY 2020; 103:609-621. [PMID: 32415514 PMCID: PMC7385028 DOI: 10.1007/s11103-020-01013-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 05/31/2023]
Abstract
KEY MESSAGE Map-based cloning revealed that two novel soybean distorted trichome mutants were due to loss function of GmNAP1 gene, which affected the trichome morphology and pavement cell ploidy by regulating actin filament assembly. Trichomes increase both biotic and abiotic stress resistance in soybean. In this study, Gmdtm1-1 and Gmdtm1-2 mutants with shorter trichomes and bigger epidermal pavement cells were isolated from an ethyl methylsulfonate mutagenized population. Both of them had reduced plant height and smaller seeds. Map-based cloning and bulked segregant analysis identified that a G-A transition at the 3' boundary of the sixth intron of Glyma.20G019300 in the Gmdtm1-1 mutant and another G-A transition mutation at the 5' boundary of the fourteenth intron of Glyma.20G019300 in Gmdtm1-2; these mutations disrupted spliceosome recognition sites creating truncated proteins. Glyma.20G019300 encodes a Glycine max NCK-associated protein 1 homolog (GmNAP1) in soybean. Further analysis revealed that the GmNAP1 involved in actin filament assembling and genetic information processing pathways during trichome and pavement cell development. This study shows that GmNAP1 plays an important role in soybean growth and development and agronomic traits.
Collapse
Affiliation(s)
- Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Huangkai Zhou
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
24
|
Grebnev G, Cvitkovic M, Fritz C, Cai G, Smith AS, Kost B. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes. PLANT PHYSIOLOGY 2020; 183:1559-1585. [PMID: 32482906 PMCID: PMC7401101 DOI: 10.1104/pp.20.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.
Collapse
Affiliation(s)
- Gleb Grebnev
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Mislav Cvitkovic
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Carolin Fritz
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ana-Suncana Smith
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Denninger P, Reichelt A, Schmidt VAF, Mehlhorn DG, Asseck LY, Stanley CE, Keinath NF, Evers JF, Grefen C, Grossmann G. Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs. Curr Biol 2019; 29:1854-1865.e5. [PMID: 31104938 DOI: 10.1016/j.cub.2019.04.059] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
Abstract
Root hairs are tubular protrusions of the root epidermis that significantly enlarge the exploitable soil volume in the rhizosphere. Trichoblasts, the cell type responsible for root hair formation, switch from cell elongation to tip growth through polarization of the growth machinery to a predefined root hair initiation domain (RHID) at the plasma membrane. The emergence of this polar domain resembles the establishment of cell polarity in other eukaryotic systems [1-3]. Rho-type GTPases of plants (ROPs) are among the first molecular determinants of the RHID [4, 5], and later play a central role in polar growth [6]. Numerous studies have elucidated mechanisms that position the RHID in the cell [7-9] or regulate ROP activity [10-18]. The molecular players that target ROPs to the RHID and initiate outgrowth, however, have not been identified. We dissected the timing of the growth machinery assembly in polarizing hair cells and found that positioning of molecular players and outgrowth are temporally separate processes that are each controlled by specific ROP guanine nucleotide exchange factors (GEFs). A functional analysis of trichoblast-specific GEFs revealed GEF3 to be required for normal ROP polarization and thus efficient root hair emergence, whereas GEF4 predominantly regulates subsequent tip growth. Ectopic expression of GEF3 induced the formation of spatially confined, ROP-recruiting domains in other cell types, demonstrating the role of GEF3 to serve as a membrane landmark during cell polarization.
Collapse
Affiliation(s)
- Philipp Denninger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Anna Reichelt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Vanessa A F Schmidt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dietmar G Mehlhorn
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Lisa Y Asseck
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Claire E Stanley
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland; Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Nana F Keinath
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan-Felix Evers
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Christopher Grefen
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Le Bail A, Schulmeister S, Perroud PF, Ntefidou M, Rensing SA, Kost B. Analysis of the Localization of Fluorescent PpROP1 and PpROP-GEF4 Fusion Proteins in Moss Protonemata Based on Genomic "Knock-In" and Estradiol-Titratable Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:456. [PMID: 31031790 PMCID: PMC6473103 DOI: 10.3389/fpls.2019.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Tip growth of pollen tubes, root hairs, and apical cells of moss protonemata is controlled by ROP (Rho of plants) GTPases, which were shown to accumulate at the apical plasma membrane of these cells. However, most ROP localization patterns reported in the literature are based on fluorescent protein tagging and need to be interpreted with caution, as ROP fusion proteins were generally overexpressed at undefined levels, in many cases without assessing effects on tip growth. ROP-GEFs, important regulators of ROP activity, were also described to accumulate at the apical plasma membrane during tip growth. However, to date only the localization of fluorescent ROP-GEF fusion proteins strongly overexpressed using highly active promoters have been investigated. Here, the intracellular distributions of fluorescent PpROP1 and PpROP-GEF4 fusion proteins expressed at essentially endogenous levels in apical cells of Physcomitrella patens "knock-in" protonemata were analyzed. Whereas PpROP-GEF4 was found to associate with a small apical plasma membrane domain, PpROP1 expression was below the detection limit. Estradiol-titratable expression of a fluorescent PpROP1 fusion protein at the lowest detectable level, at which plant development was only marginally affected, was therefore employed to show that PpROP1 also accumulates at the apical plasma membrane, although within a substantially larger domain. Interestingly, RNA-Seq data indicated that the majority of all genes active in protonemata are expressed at lower levels than PpROP1, suggesting that estradiol-titratable expression may represent an important alternative to "knock-in" based analysis of the intracellular distribution of fluorescent fusion proteins in protonemal cells.
Collapse
Affiliation(s)
- Aude Le Bail
- Cell Biology, Department of Biology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | | | - Maria Ntefidou
- Cell Biology, Department of Biology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, Philipps University of Marburg, Marburg, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Fatema U, Ali MF, Hu Z, Clark AJ, Kawashima T. Gamete Nuclear Migration in Animals and Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:517. [PMID: 31068960 PMCID: PMC6491811 DOI: 10.3389/fpls.2019.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/03/2019] [Indexed: 05/04/2023]
Abstract
The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using fluorescently labeled proteins, details of these differences in gamete nuclear migration have emerged in a wide range of eukaryotes. Especially, gamete nuclear migration in flowering plants such as Arabidopsis thaliana, rice, maize, and tobacco has been further investigated, and showed high conservation of the mechanism, yet, with differences among these species. Here, with an emphasis on recent developments in flowering plants, we survey gamete nuclear migration in different eukaryotic groups and highlight the differences and similarities among species.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Mohammad F. Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Zheng Hu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Anthony J. Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Tomokazu Kawashima,
| |
Collapse
|
28
|
Hirano T, Konno H, Takeda S, Dolan L, Kato M, Aoyama T, Higaki T, Takigawa-Imamura H, Sato MH. PtdIns(3,5)P 2 mediates root hair shank hardening in Arabidopsis. NATURE PLANTS 2018; 4:888-897. [PMID: 30390081 DOI: 10.1038/s41477-018-0277-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/07/2018] [Indexed: 05/27/2023]
Abstract
Root hairs elongate by tip growth and simultaneously harden the shank by constructing the inner secondary cell wall layer. While much is known about the process of tip growth1, almost nothing is known about the mechanism by which root hairs harden the shank. Here we show that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), the enzymatic product of FORMATION OF APLOID AND BINUCLEATE CELLS 1 (FAB1), is involved in the hardening of the shank in root hairs in Arabidopsis. FAB1 and PtdIns(3,5)P2 localize to the plasma membrane along the shank of growing root hairs. By contrast, phosphatidylinositol 4-phosphate 5-kinase 3 (PIP5K3) and PtdIns(4,5)P2 localize to the apex of the root hair where they are required for tip growth. Reduction of FAB1 function results in the formation of wavy root hairs while those of the wild type are straight. The localization of FAB1 in the plasma membrane of the root hair shank requires the activity of Rho-related GTPases from plants 10 (ROP10) and localization of ROP10 requires FAB1 activity. Computational modelling of root hair morphogenesis successfully reproduces the wavy root hair phenotype. Taken together, these data demonstrate that root hair shank hardening requires PtdIns(3,5)P2/ROP10 signalling.
Collapse
Affiliation(s)
- Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Kyoto, Japan
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University Kurokami, Kumamoto, Japan
| | | | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| |
Collapse
|
29
|
Huang J, Liu H, Berberich T, Liu Y, Tao LZ, Liu T. Guanine Nucleotide Exchange Factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. RICE (NEW YORK, N.Y.) 2018; 11:42. [PMID: 30062598 PMCID: PMC6066601 DOI: 10.1186/s12284-018-0235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND RAC/ROP GTPase are versatile signaling molecules controlling diverse biological processes including cell polarity establishment, cell growth, morphogenesis, hormone responses and many other cellular processes in plants. The activities of ROPs are positively regulated by guanine nucleotide exchange factors (GEFs). Evidence suggests that RopGEFs regulate polar auxin transport and polar growth in pollen tube in Arabidopsis thaliana. However, the biological functions of rice RopGEFs during plant development remain largely unknown. RESULTS We investigated a member of the OsRopGEF family, namely OsRopGEF7B. OsRopGEF7Bpro:GUS analysis indicates that OsRopGEF7B is expressed in various tissues, especially in the floral meristem and floral organ primordia. Knock-out and -down of OsRopGEF7B by T-DNA insertion and RNA interference, respectively, predominantly caused an increase in the number of floral organs in the inner whorls (stamen and ovary), as well as abnormal paleae/lemmas and ectopic growth of lodicules, resulting in decline of rice seed setting. Bimolecular fluorescence complement (BiFC) assays as well as yeast two-hybrid assays indicate that OsRopGEF7B interacts with OsRACs. CONCLUSIONS OsRopGEF7B plays roles in floral organ development in rice, affecting rice seed setting rate. Manipulation of OsRopGEF7B has potential for application in genetically modified crops.
Collapse
Affiliation(s)
- Jiaqing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Schnepf V, Vlot AC, Kugler K, Hückelhoven R. Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with Blumeria graminis f.sp. hordei. MOLECULAR PLANT PATHOLOGY 2018; 19:393-404. [PMID: 28026097 PMCID: PMC6638053 DOI: 10.1111/mpp.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/30/2023]
Abstract
RHO (rat sarcoma homologue) GTPases (guanosine triphosphatases) are regulators of downstream transcriptional responses of eukaryotes to intracellular and extracellular stimuli. For plants, little is known about the function of Rho-like GTPases [called RACs (rat sarcoma-related C botulinum substrate) or ROPs (RHO of plants)] in transcriptional reprogramming of cells. However, in plant hormone response and innate immunity, RAC/ROP proteins influence gene expression patterns. The barley RAC/ROP RACB is required for full susceptibility of barley to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We compared the transcriptomes of barley plants either silenced for RACB or over-expressing constitutively activated RACB with and without inoculation with Bgh. This revealed a large overlap of the barley transcriptome during the early response to Bgh and during the over-expression of constitutively activated RACB. Global pathway analyses and stringent analyses of differentially expressed genes suggested that RACB influences, amongst others, the expression of signalling receptor kinases. Transient induced gene silencing of RACB-regulated signalling genes (a leucine-rich repeat protein, a leucine-rich repeat receptor-like kinase and an S-domain SD1-receptor-like kinase) suggested that they might be involved in RACB-modulated susceptibility to powdery mildew. We discuss the function of RACB in regulating the transcriptional responses of susceptible barley to Bgh.
Collapse
Affiliation(s)
- Vera Schnepf
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| | - A. Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental SciencesInstitute of Biochemical Plant PathologyNeuherbergD‐85764Germany
| | - Karl Kugler
- Helmholtz Zentrum MuenchenPlant Genome and Systems BiologyNeuherbergD‐85764Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| |
Collapse
|
31
|
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. PLANT PHYSIOLOGY 2018; 176:57-79. [PMID: 29150557 PMCID: PMC5761820 DOI: 10.1104/pp.17.01415] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Interactions between receptor like kinases and guanyl nucleotide exchange factors together with identification of effector proteins reveal putative ROP GTPases signaling cascades.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
32
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
33
|
Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase. Mol Cell Biol 2017; 37:MCB.00333-17. [PMID: 28894027 DOI: 10.1128/mcb.00333-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes.
Collapse
|
34
|
Liu Y, Dong Q, Kita D, Huang JB, Liu G, Wu X, Zhu X, Cheung AY, Wu HM, Tao LZ. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. PLANT PHYSIOLOGY 2017; 175:157-171. [PMID: 28698357 PMCID: PMC5580763 DOI: 10.1104/pp.17.00697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
Polar auxin transport, facilitated by the combined activities of auxin influx and efflux carriers to maintain asymmetric auxin distribution, is essential for plant growth and development. Here, we show that Arabidopsis (Arabidopsis thaliana) RopGEF1, a guanine nucleotide exchange factor and activator of Rho GTPases of plants (ROPs), is critically involved in polar distribution of auxin influx carrier AUX1 and differential accumulation of efflux carriers PIN7 and PIN2 and is important for embryo and early seedling development when RopGEF1 is prevalently expressed. Knockdown or knockout of RopGEF1 induces embryo defects, cotyledon vein breaks, and delayed root gravity responses. Altered expression from the auxin response reporter DR5rev:GFP in the root pole of RopGEF1-deficient embryos and loss of asymmetric distribution of DR5rev:GFP in their gravistimulated root tips suggest that auxin distribution is affected in ropgef1 mutants. This is reflected by the polarity of AUX1 being altered in ropgef1 embryos and roots, shifting from the normal apical membrane location to a basal location in embryo central vascular and root protophloem cells and also reduced PIN7 accumulation at embryos and altered PIN2 distribution in gravistimulated roots of mutant seedlings. In establishing that RopGEF1 is critical for AUX1 localization and PIN differential accumulation, our results reveal a role for RopGEF1 in cell polarity and polar auxin transport whereby it imapcts auxin-mediated plant growth and development.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingkun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Daniel Kita
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaowei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
36
|
Kang E, Zheng M, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth. PLANT PHYSIOLOGY 2017; 174:202-222. [PMID: 28314794 PMCID: PMC5411128 DOI: 10.1104/pp.16.01243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/14/2017] [Indexed: 05/24/2023]
Abstract
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.
Collapse
Affiliation(s)
- Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Mingzhi Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Shaul Yalovsky
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| |
Collapse
|
37
|
Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2581-2592. [PMID: 28369490 DOI: 10.1093/jxb/erx086] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ammonium is a major inorganic nitrogen source for plants. At low external supplies, ammonium promotes plant growth, while at high external supplies it causes toxicity. Ammonium triggers rapid changes in cytosolic pH, in gene expression, and in post-translational modifications of proteins, leading to apoplastic acidification, co-ordinated ammonium uptake, enhanced ammonium assimilation, altered oxidative and phytohormonal status, and reshaped root system architecture. Some of these responses are dependent on AMT-type ammonium transporters and are not linked to a nutritional effect, indicating that ammonium is perceived as a signaling molecule by plant cells. This review summarizes current knowledge of ammonium-triggered physiological and morphological responses and highlights existing and putative mechanisms mediating ammonium signaling and sensing events in plants. We put forward the hypothesis that sensing of ammonium takes place at multiple steps along its transport, storage, and assimilation pathways.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
38
|
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:349-374. [PMID: 28125287 DOI: 10.1146/annurev-arplant-042916-041022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)-the phosphorylated derivatives of phosphatidylinositol-are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| |
Collapse
|
39
|
Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 2016; 17:946. [PMID: 27871222 PMCID: PMC5117540 DOI: 10.1186/s12864-016-3229-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Maize (Zea mays) husk referring to the leafy outer enclosing the ear, plays an important role in grain production by directly contributing photosynthate and protecting ear from pathogen infection. Although the physiological functions related to husk have been extensively studied, little is known about its morphological variation and genetic basis in natural population. Results Here we utilized a maize association panel including 508 inbred lines with tropical, subtropical and temperate backgrounds to decipher the genetic architecture attributed to four husk traits, i.e. number of layers, length, width and thickness. Evaluating the phenotypic diversity at two different environments showed that four traits exhibit broadly natural variations and moderate levels of heritability with 0.64, 0.74, 0.49 and 0.75 for number, length, width and thickness, respectively. Diversity analysis indicated that different traits have dissimilar responses to subpopulation effects. A series of significantly positive or negative correlations between husk phenotypes and other agronomic traits were identified, indicating that husk growth is coordinated with other developmental processes. Combining husk traits with about half of a million of single nucleotide polymorphisms (SNPs) via genome-wide association study revealed a total of 9 variants significantly associated with traits at P < 1.04 × 10-5, which are implicated in multiple functional categories, such as cellular trafficking, transcriptional regulation and metabolism. Conclusions These results provide instrumental information for understanding the genetic basis of husk development, and further studies on identified candidate genes facilitate to illuminate molecular pathways regulating maize husk growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinhong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Chuangye Qi
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Yanye Ruan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Ao Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
41
|
Rong Y, Wang K, Shi R, Hou X, Dong CH. Expression, purification and characterization of ROP6 6-178 GTPase from Arabidopsis thaliana. Protein Expr Purif 2016; 131:1-6. [PMID: 27789389 DOI: 10.1016/j.pep.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 11/25/2022]
Abstract
The unique type of GTPases in plants, termed ROPs, are the small GTP-binding proteins involved in signal transduction which play important roles in regulation of hormonal response pathway, cell polarity, defense from plant pathogens, etc. In order to explore the regulation mechanism of AtROPs involved in, the purified ROPs were needed to explore the interactions of ROP GTPases with their regulators and effectors. In this study, the first ROP GTPase from Arabidopsis thaliana, AtROP66-178 was successfully expressed in Escherichia coli and obtained in high quality and purity through affinity chromatography and gel-filtration chromatography. The resultant protein was identified as a single band of 19 kDa in SDS-PAGE and was confirmed to be active to interact with guanine nucleotides through the fluorescence-based assay. The intrinsic tryptophan fluorescence intensity of AtROP66-178 was enhanced upon interacting with either GDP or GTP. Meanwhile, the equilibrium dissociation constants of AtROP66-178 with fluorescent guanine nucleotide analogue mantGDP and mantGTP were determined to be 0.0721 μM and 0.0422 μM, respectively, based on fluorescence polarization.
Collapse
Affiliation(s)
- Yongheng Rong
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kun Wang
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Renxing Shi
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Chun-Hai Dong
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
42
|
Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. Eur J Pharm Sci 2016; 98:40-50. [PMID: 27664331 DOI: 10.1016/j.ejps.2016.09.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
In the last decade, the number of studies related with extracellular vesicles (EVs) has dramatically grown since their role as key part of intercellular communication has been confirmed. EVs, as transporter of distinct bioactive molecules, can take part in different physiological mechanisms and have been gaining attention as potential tools with a wide range of therapeutic effects. Whereas a high number of studies have been published related to mammalian derived EVs, including products as food source, the existence of EVs in plants still is controversial. Recent descriptions of vesicles derived from edible plants show that they might contain pharmacological active molecules. In this context, EVs from food are attracting increasing interest due to their relevance in modulating cellular processes (involved in health and disease), as well as therapeutic vehicles. The present work aims to summarize the current knowledge on exosomes in foods, actually limited to only four FAO groups (Milk, Starchy roots and tubers, Nuts and seeds, and Fruits). In addition, we have further characterized EVs isolated from grape berry juice by classical differential centrifugation, and described a preliminary dissection of their secretion in vivo.
Collapse
Affiliation(s)
- Pedro Pérez-Bermúdez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Jesús Blesa
- Grupo de Ciencias de la Alimentación Basada en la Evidencia y Experimentación (CiAlBEx), Instituto de Ciencias de los Materiales, Parque Científico, Universitat de València, Paterna, Spain; Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, Instituto de Investigación Sanitaria La Fe-Universitat de València, Valencia, Spain
| | - José Miguel Soriano
- Grupo de Ciencias de la Alimentación Basada en la Evidencia y Experimentación (CiAlBEx), Instituto de Ciencias de los Materiales, Parque Científico, Universitat de València, Paterna, Spain; Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, Instituto de Investigación Sanitaria La Fe-Universitat de València, Valencia, Spain
| | - Antonio Marcilla
- Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, Instituto de Investigación Sanitaria La Fe-Universitat de València, Valencia, Spain; Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain.
| |
Collapse
|
43
|
Han SK, Torii KU. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 2016; 143:1259-70. [PMID: 27095491 DOI: 10.1242/dev.127712] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stomata are dispersed pores found in the epidermis of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. Stomata are formed from progenitor cells, which execute a series of differentiation events and stereotypical cell divisions. The sequential activation of master regulatory basic-helix-loop-helix (bHLH) transcription factors controls the initiation, proliferation and differentiation of stomatal cells. Cell-cell communication mediated by secreted peptides, receptor kinases, and downstream mitogen-activated kinase cascades enforces proper stomatal patterning, and an intrinsic polarity mechanism ensures asymmetric cell divisions. As we review here, recent studies have provided insights into the intrinsic and extrinsic factors that control stomatal development. These findings have also highlighted striking similarities between plants and animals with regards to their mechanisms of specialized cell differentiation.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection. Infect Immun 2016; 84:2524-33. [PMID: 27324482 DOI: 10.1128/iai.01554-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection.
Collapse
|
45
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
46
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
47
|
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:488-504. [PMID: 26738547 DOI: 10.1093/pcp/pcv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/24/2015] [Indexed: 05/03/2023]
Abstract
Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Colombian Institute for Agricultural Research-CORPOICA-Turipana, Km 13 via Monteria, Cereté, Cordoba, Colombia Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 586/11, CZ 783 71 Olomouc-Holice, Czech Republic
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Lenka Stillerová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Petra Schiebertová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Michal Grunt
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| |
Collapse
|
48
|
Gujas B, Rodriguez-Villalon A. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation. FRONTIERS IN PLANT SCIENCE 2016; 7:103. [PMID: 26904069 PMCID: PMC4751917 DOI: 10.3389/fpls.2016.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 05/31/2023]
Abstract
In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.
Collapse
|
49
|
Liu Y, Zhou J, Luo X, Yang C, Zhang Y, Shi S. Association of RAC1 Gene Polymorphisms with Primary End-Stage Renal Disease in Chinese Renal Recipients. PLoS One 2016; 11:e0148270. [PMID: 26841219 PMCID: PMC4739498 DOI: 10.1371/journal.pone.0148270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/OBJECTIVE RAC1 gene could influence susceptibility to renal failure by altering the activity and expression of Rac1, which is a member of the Rho family of small GTP-binding proteins. In clinical practice, renal transplantation provides the optimal treatment for people with end-stage renal disease (ESRD). The objective of this present study was to determine whether the RAC1 gene polymorphisms were associated with primary ESRD susceptibility in Chinese renal recipients. METHODS Six single nucleotide polymorphisms (SNPs) of RAC1 gene, including rs836488 T>C, rs702482 A>T, rs10951982 G>A, rs702483 A>G, rs6954996 G>A, and rs9374 G>A, were genotyped in 300 renal transplant recipients (cases) and 998 healthy Chinese subjects (controls) by using TaqMan SNP genotyping assay. Allele, genotype, and haplotype frequencies of the six SNPs were compared between cases and controls. Odds ratios (OR) and 95% confidence intervals (CI) were calculated in logistic regression models to evaluate the associations of the six SNPs with ESRD risk. RESULTS The genotype distributions for the six SNPs in controls were consistent with Hardy-Weinberg equilibrium (P > 0.05). Association analysis revealed that three SNPs were significantly associated with ESRD risk. Positive associations with ESRD risk were found for the rs836488, rs702482, and rs702483 in the co-dominant model (minor allele homozygotes versus major allele homozygotes); specifically, the frequencies of the minor allele homozygotes and the minor allele for the three SNPs were higher in the cases than in the controls. In addition, these three SNPs also had associations with increased ESRD risk under the additive model (P < 0.05), and positive associations were also found for the rs836488 in the dominant model (P < 0.05) and for the rs702483 in the recessive model (P < 0.05). All these associations were independent of confounding factors. The other three SNPs (rs10951982, rs6954996, and rs9374), in all comparison models, were not associated with ESRD risk (P > 0.05). In haplotype analysis, carriers with "C-T-G-G-G-G" haplotype had a significantly higher risk of ESRD compared with the most common haplotype "T-A-G-A-G-G" (P = 0.011, OR = 1.46, 95% CI = 1.09-1.94). CONCLUSION This study suggested that polymorphisms of RAC1 gene might influence the susceptibility to ESRD in Chinese Han population. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
50
|
Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 2015; 5:3129. [PMID: 24451849 DOI: 10.1038/ncomms4129] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/17/2013] [Indexed: 11/09/2022] Open
Abstract
In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.
Collapse
Affiliation(s)
- Qiaohong Duan
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Daniel Kita
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] [4]
| | - Eric A Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Mini Aggarwal
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Laura Gates
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Hen-Ming Wu
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Alice Y Cheung
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| |
Collapse
|